573
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Performance Analysis of Adaptive Array Signal Processing Algorithms

&

REFERENCES

  • S. Kaur, “Intelligence in wireless networks with cognitive radio networks!,” IETE Tech. Rev., Vol. 30, pp. 6–11, Jan. 2013.
  • M. Monzingo, Introduction to Adaptive Arrays, New York: Wiley, 1980.
  • Intellicell. Bringing Wireless to Life, Arraycomm, 2003 [Online]. Available: http://www.arraycomm.com
  • L. C. Godara, “Applications of antenna arrays to mobile communications, Part I: Performance, improvement, feasibility, and system considerations,” Proc. IEEE, Vol. 85, no. 7. pp. 1031–60, Jul. 1997.
  • R. H. Roy, “An overview of smart antenna technology: The next wave in wireless communication,” IEEE Proc. Aerospace Conf., Vol. 3, pp. 339–45, Mar. 1998.
  • J. Liberti, and T. Rappaport, Smart Antennas for Wireless Communications, New York: Prentice Hall, 1999.
  • F. B. Gross, Smart Antennas for Wireless Communications with MATLAB, Snowmass at Aspen, CO: Mc Graw-Hill, 2005.
  • K. L. Du, A. K. Y. Lai, K. K. M. Cheng, et al., “Neural methods for antenna array signal processing: A Review,” Signal Proc., Vol. 82, pp. 547–61, 2002.
  • C. A. Balanis, Introduction to Smart Antennas, Morgan & Claypool: Arizona State University, 2007.
  • T. Kaiser, “When will smart antennas be ready for the market? Part 1,” IEEE Signal Process. Mag., Vol. 22, no. 2, pp. 87–92, Mar. 2005.
  • T. Kaiser, “When will smart antennas be ready for the market? Part 2,” IEEE Signal Process. Mag., Vol. 22, no. 6, pp. 174–6, Nov. 2005.
  • F. Rayal, “Why have smart antennas not yet gained traction with wireless network operators,” IEEE Antennas Propag. Mag., Vol. 47, no. 6, pp. 124–6, Dec. 2005.
  • A. Paulraj, B. Ottersten, et al., Subspace Methods for Direction of Arrival Estimation, Vol. 10, Amsterdam: North-Holland, 1993, pp. 693–739.
  • S. M. Kay, Fundamentals of Statistical Signal Processing Volume I: Estimation Theory, Upper Saddle River, NJ: Prentice Hall PTR, Mar. 1993.
  • A. N. Mirkin, and L. H. Sibul, “Cramer-Rao bounds on angle estimation with a two dimensional array,” IEEE Trans. Signal Process., Vol. 39, no. 2, pp. 515–7, Feb. 1991.
  • R. O. Nielsen, “Estimation of azimuth and elevation angles for a plane wave sine wave with a 3-D array,” IEEE Trans. Signal Process., Vol. 42, no. 11, pp. 3274–6, Nov. 1994.
  • J. Goldberg, and H. Messer, “Inherent limitations in the localization of a coherently scattered source,” IEEE Trans. Signal Process., Vol. 46, no. 12, pp. 3441–4, Dec. 1998.
  • J. Capon, “High-resolution frequency-wave number spectrum analysis,” Proc. IEEE, Vol. 57, no. 8, pp. 1408–18, Aug. 1969.
  • L. C. Godara, “Applications of antenna arrays to mobile communications, Part II: Beamforming and direction-of-arrival considerations,” Proc. IEEE, Vol. 85, no. 8. pp. 1195–245, Aug. 1997.
  • V. F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J. R. Astron. Soc., Vol. 33, pp. 347–66, 1973.
  • A. Paulraj, and  Kailath, “Eigen structure methods for direction of arrival estimation in the presence of unknown noise field,” IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-34, pp. 13–20, 1986.
  • M. Wax, “Detection and localization of multiple sources in noise with unknown covariance,” IEEE Trans. Signal Process., Vol. 40, pp. 245–9, 1992.
  • R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., Vol. AP-34, no. 3, pp. 276–80, Mar. 1986.
  • T. J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-33, pp. 806–11, 1985.
  • Amina. El. Gonnouni, et al., “A support vector machine music algorithm,” IEEE Trans. Antennas Propag., Vol. 60, no. 10, Oct. 2012.
  • K. V. Rangarao, and S. Venkatanarasimhan, “Gold-MUSIC: A variation on MUSIC to accurately determine peaks of the spectrum,” IEEE Trans. Antennas Propag., Vol. 61, no. 4, Apr. 2013.
  • F. G. Yan, M. Jin, and X. L. Qiao, “Low-complexity DOA estimation based on compressed MUSIC and its performance analysis,” IEEE Trans. Signal Process., Vol. 61, no. 8, pp. 1915–30, Apr. 2013.
  • K. C. Huarng, and C. C. Yeh, “A unitary transformation method for angle-of-arrival estimation,” IEEE Trans. Signal Process., Vol. 39, pp. 975–7, Apr. 1991.
  • F.-G. Yan, et al., “Real-valued MUSIC for efficient direction estimation with arbitrary array geometries,” IEEE Trans. Signal Process., Vol. 62, no. 6, Mar. 2014.
  • P. Stoica, and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons,” IEEE Trans. Acoust. Speech Signal Process., Vol. 38, pp. 2140–50, 1990.
  • X. Mestre, “An improved weighted MUSIC algorithm for small sample size scenarios,” in Proceedings of 14th Workshop on Adaptive Sensor Array Process, Boston, MA, Jun. 6–7, 2006.
  • Z. Zhou, H. C. So, and F. K. W. Chan, “Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, pp. 3537–40, 2012.
  • F. Wen, Q. Wan, R. Fan, et al., “Improved MUSIC algorithm for multiple noncoherent subarrays,” IEEE Signal Proc. Lett., Vol. 21, no. 5, May 2014.
  • J. He, M. N. S. Swamy, and M. O. Ahmad, “Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources,” IEEE Trans. Signal Process., Vol. 60, no. 4, Apr. 2012.
  • R. T. Behrens, and L. L. Scharf, “Signal processing applications of oblique projection operators,” IEEE Trans. Signal Process., Vol. 42, no. 6, pp. 1413–24, Jun. 1994.
  • L. Long, and L. Y. Da, “Real-time computation of the noise subspace for the MUSIC algorithm,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, Vol. 1, Apr. 1993, pp. 485–8.
  • A. Barabell, “Improving the resolution of Eigen structure based direction finding algorithms,” in Proceedings of ICASSP, Boston, MA, 1983, pp. 336–9.
  • W. Wasylkiwskyj, et al., “A new root-based direction-finding algorithm,” Radio Sci., Vol. 42, RS2S90, 2007. doi:10.1029/2004RS003147.
  • M. Pesavento, A. B. Gershman, and M. Haardt, “Unitary Root-MUSIC with a real-valued Eigen decomposition: A theoretical and experimental performance study,” IEEE Trans. Signal Proc., Vol. 48, no. 5, pp. 1306–14, May 2000.
  • Harry Trees, Optimum Array Processing, Detection, Estimation and Modulation Part IV, New York: John Wiley and Sons, 2002.
  • B. D. Rao, and K. V. S. Hari, “Performance analysis of ROOTMUSIC,” IEEE Trans. Acoust. Speech Signal Process., Vol. 37, pp. 1939–49, Dec. 1989.
  • R. Roy, and T. Kailath, “ESPRIT – estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Signal Process., Vol. 37, no. 7, pp. 984–95, Jul. 1989.
  • R. Bachl, “The forward and backward averaging technique applied to TLS-ESPRIT processing,” IEEE Trans. Signal Process., Vol. 43, no. 11, pp. 2691–9, 1995.
  • G. Xu, S. D. Silverstone, R. H. Roy, and T. Kailath, “Beamspace ESPRIT,” IEEE Trans. Signal Process., Vol. 42, pp. 349–56, 1994.
  • Y. D. Guo, Y. S. Zhang, and N. N. Tong, “Beamspace ESPRIT algorithm for bistatic MIMO radar,” Electron. Lett., Vol. 47, no. 15, pp. 876–8, 2011.
  • Z. Guimei, C. Baixiao, and Y. Minglei, “Unitary ESPRIT algorithm for bistatic MIMO radar,” Electron. Lett., Vol. 48, no. 3, pp. 179–81, Feb. 2012.
  • M. Haardt, and M. E. Ali-Hackl, “Unitary ESPRIT: How to exploit additional information inherent in the rotational invariance structure,” in Proceedings of ICASSP, Adelaide, Australia, Vol. IV, Apr. 1994, pp. 229–32.
  • S. Ham, and R. Prasad, “Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels,” IEEE Trans. Veh. Technol., Vol. 48, no. 5, pp. 1584–95, Sep. 1999.
  • X. Zhang, X. Gao, and D. Xu, “Multi-invariance ESPRIT-based blind DOA estimation for MC-CDMA with an antenna array,” IEEE Trans. Veh. Technol., Vol. 58, no. 8, pp. 4686–90, Oct. 2009.
  • Y. Hua, and T. K. Sarkar, “Matrix pencil method and its performance,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New York, NY, pp. 2476–79, 14 April, 1988.
  • Y. Hua, and T. K. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,” IEEE Trans. Accoust. Speech Signal Process., Vol. 38, no. 5, pp. 814–24, May 1990.
  • V. K. Jain, and R. D. Gupta, “Identification of linear systems through a Grammian technique,” Int. J. Control., Vol. 12, no. 3, pp. 421–31, 1970.
  • V. K. Jain, and T. K. Sarkar, “High performance signal modeling by pencil-of-functions method: Band-pass case,” IEEE Trans. Accoust. Speech Signal Process., Vol. 34, no. 4, pp. 997–1000, Aug. 1986.
  • T. K. Sarkar, and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antenna Propag. Mag., Vol. 37, no. 1, Feb. 1995.
  • N. Kannana, and D. Kundub, “Estimating parameters in the damped exponential model,” Signal Process., Vol. 81, pp. 2343–51, 2001.
  • N. Yilmazer, R. F. Recio, and T. K. Sarkar, “Matrix pencil method for simultaneously estimating azimuth and elevation angles of arrival along with the frequency of the incoming signals,” Digit. Signal Process., Vol. 16, no. 6, pp. 796–816, 2006.
  • J. E. F. del Rio, and T. K. Sarkar, “Comparison between the matrix pencil method and the Fourier transform technique for high resolution spectral estimation,” Digit. Signal Process., Vol. 6, no. 2, pp. 108–25, 1996.
  • J. Koh, and T. K. Sarkar, “High resolution DOA estimation using matrix pencil,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, Monterey, CA, Vol. 1, Jun. 2004, pp. 423–6.
  • G. H. Golub, and C. F. Van Loan, “An analysis of the total least squares problem,” SIAM, Vol. 17, no. 6, 1980.
  • N. Yilmazer, J. Koh, and T. K. Sarkar, “Utilization of a unitary transform for efficient computation in the matrix pencil method to and the direction of arrival,” IEEE Trans. Antenna Propag., Vol. 54, no. 1, pp. 175–81, 2006.
  • M. F. Khan, and M. Tufail, “Beamspace matrix pencil method for direction of arrival estimation,” IEICE Electron. Express., Vol. 16, no. 6, pp. 1168–73, 2009.
  • S. Haykins, Neural Networks, 2nd ed., Prentice Hall, USA, 1999.
  • A. Rawat, R. N. Yadav, and S. C. Shrivastava, “Neural network in smart antenna arrays: A review,” Int. J. Electron. Commun., Elsevier, pp. 1434–8411, 2012.
  • B. Kosko, Ed., Neural Networks for Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1992.
  • A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “Performance of radial-basis function networks for direction of arrival estimation with antenna arrays,” IEEE Trans. Antennas Propag., Vol. 45, pp. 1611–7, 1997.
  • A. H. El Zooghby, C. G. Christodouolu, and M. Georgiopoulos, “A neural network-based smart antenna for multiple source tracking,” IEEE Trans. Antennas Propag., Vol. 48, pp. 768–76, 2000.
  • S. Caylar, K. Leblebicioglu, and G. Dural, “A new neural network approach to the target tracking problem with smart structure,” Radio Sci., Vol. 41, RS5004, 2006.
  • S. Caylar, G. Dural, and K. Leblebicioglu, “Neural network method for direction of arrival estimation with uniform cylindrical Microstrip patch array,” IET Microw. Antennas Propag., Vol. 4, no. 2, pp. 153–61, 2010.
  • A. H. El Zooghby, H. L. Southall, and C. G. Christodoulou, “Experimental validation of a neural network direction finder,” in Proceedings of the IEEE International Symposium on Antenna and Propagation, Vol. 3, Orlando, FL, Jul. 1999, pp. 1592–5.
  • W. Guo, T. Qiu, et al., Performance of RBF Neural Networks for Array Processing in Impulsive Noise Environment, Vol. 18. Digital Signal Processing, Elsevier, USA, 2008, pp. 168–78.
  • J. Litva, and T. Kowk-Yeung Lo, Digital Beamforming in Wireless Communication, Artech House, USA, 1996.
  • P. W. Howells, “Intermediate frequency sidelobe canceller,” Technical report, U.S. Patent 3202990, May, 1959.
  • S. Applebaum, “Adaptive arrays,” Technical Report SPL TR-66-001, Syracuse Univ. Res. Corp. Report, 1965.
  • H. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory, New York: Wiley Interscience, 2002.
  • H. Van Trees, Detection, Estimation, and Modulation Theory, Part I, New York: Wiley, 1968.
  • L. Godara, Smart Antennas, Boca Raton, FL: CRC Press, 2004.
  • H. Simon Haykins, and N. Owsley Justice, et al., Array Signal Processing, New York: Prentice Hall, 1985.
  • M. Barrett, and R. Arnott, “Adaptive antennas for mobile communications,” Electron. Commun. Eng. J., Vol. 6, pp. 203–14, Aug. 1994.
  • G. Tsoulos, M. A. Beach, and S. C. Swales, “Adaptive antennas for third generation DS-CDMA cellular systems,” in Proceedings of IEEE VTC 95, Chicago, Aug. 1995, pp. 45–9.
  • S. Kapoor, S. Gollamudi, S. Nagaraj, and Yih-Fang Huang, “Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio systems,” IEEE Trans. Veh. Technol., Vol. 48, pp. 1341–55, Sep. 1999.
  • R. G. Vaughan, “On optimum combining at the mobile,” IEEE Trans. Veh. Technol., Vol. 33, pp. 181–8, Nov. 1984.
  • S. C. Swales, M. A. Beach, D. J. Edwards, and J. P. McGeehan, “The performance enhancement of multibeam adaptive base station antennas for cellular land mobile radio systems,” IEEE Trans. Veh. Technol., Vol. 39, pp. 56–7, Feb. 1990.
  • Y. Wang, and J. R. Cruz, “Adaptive antenna arrays for cellular CDMA communication systems,” in Proceedings of IEEE International Conference Acoustics, Speech and Signal Processing, Detroit, 1995, pp. 1725–8.
  • Y. Jian, X. Hongsheng, Y. Feng, and Z. Yu, “Fast adaptive blind beamforming algorithm for antenna array in CDMA systems,” IEEE Trans. Veh. Technol., Vol. 55, pp. 549–58, Mar. 2006.
  • C. Seungwon, C. Jinho, I. Heung-Jae, and C. Byungcho, “A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers,” IEEE Trans. Veh. Technol., Vol. 51, pp. 808–16, Sep. 2002.
  • V. K. Garg, S. R. Laxpati, and D. Wang, “Use of smart antenna system in universal mobile communications systems (UMTS),” IEEE Lett. Antenna Wireless Propag., Vol. 3, pp. 66–70, Dec. 2004.
  • M. D. Migliore, “A beamforming algorithm for adaptive antennas operating in crowded CDMA signal environment,” IEEE Trans. Antenna Propag., Vol. 54, pp. 1354–7, Apr. 2006.
  • B. Widro, and M. Hoff, “Adaptive switch circuits,” in IRE Wescom, Convention Record, Part 4, Sep. 1976, pp. 585–98.
  • B. Widrow, P. Mantey, L. Griffiths, et al., “Adaptive Antenna Systems,” Proc. IEEE, Vol. 55, no. 12, pp. 2143–59, Dec. 1967.
  • D. T. M. Slock, “On the convergence behavior of the LMS and the normalized LMS algorithms,” IEEE Trans. Signal Process., Vol. 41, no. 9, pp. 2811–25, Sep. 1993.
  • L. C. Godara, and D. A. Gray, “A structured gradient algorithm for adaptive beamforming,” J. Acoust. Soc. Am., Vol. 86, pp. 1040–6, 1989.
  • S. Chen, N. N. Ahmad, and L. Hanzo, “Adaptive minimum bit-error rate beamforming,” IEEE Trans. Wireless Commun., Vol. 4, no. 2, pp. 341–8, Mar. 2005.
  • M. Yasin, and A. Pervez, “Enhanced sample matrix inversion is a better beamformer for a smart antenna system,” World Appl. Sci. J., Vol. 10, no. 10, pp. 1167–75, 2010.
  • S. Haykins, Adaptive Filter Theory, 3rd ed., Englewood Cliffs, NJ: Prentice Hall, p. 585, 1995.
  • P. Fabre, and C. Gueguen, “Improvement of the fast recursive least-square algorithms via normalization: A comparative study,” IEEE Trans. Acoust. Speech Signal Process., Vol. 34, no. 2, pp. 296–308, 1986.
  • C. P. Ji, Y. J. Yuan, M. Y. Wu, and S. Liu, “An improved method for low-sidelobe beampattern optimization,” Adv. Inform. Sci. Serv. Sci., Vol. 3, no. 10, pp. 12–9, 2011.
  • J.-C. Chang, “Robust adaptive diagonal variable loading RLS beamforming,” Adv. Inform. Sci. Serv. Sci., Vol. 4, no. 13, pp. 235–43, July 2012.
  • D. N. Godard, “Self-recovering equalization and carrier tracking in two dimensional data communication systems,” IEEE Trans. Commun., Vol. Com-28, no. 11, pp. 1867–75, Nov. 1980.
  • B. D. Van Veen, and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE Signal Proc. Mag., Vol. 7, no. 3, pp. 4–24, Apr. 1988.
  • J. Shynk, and R. Gooch, “The constant modulus array for cochannel signals copy and direction finding,” IEEE Trans. Signal Process., Vol. 44, no. 3, pp. 652–60, Mar. 1996.
  • B. G. Agee, “The least-squares CMA: A new technique for rapid correction of constant modulus signals,” in Proceedings of ICASSP'1986, Tokyo, 1986, pp. 953–6.
  • A. Boonpoonga, P. Sirisuk, and M. Krairiksh, “Efficient parallel architecture for implementation of the CMA adaptive antenna,” IETE Tech. Rev., Vol. 30, pp. 303–12, Jul. 2013.
  • A. J. Vander Veen, and A. Paulraj, “An analytical constant modulus algorithm,” IEEE Trans. Signal Process., Vol. 44, no. 5, May 1996.
  • I. Santamaria, “SVM-based blind beamforming of constant modulus signals,” IEEE Int. Joint Conf. Neural Netw., Vol. 3, pp. 2029–33, Jul. 2004.
  • K.C.H. Blom, et. al. “Angular CMA: A modified constant modulus algorithm providing steering angle updates,” in ICWMC 2011: The Seventh International Conference on Wireless and Mobile Communications, Luxembourg, June 19–24, 2011.
  • L. Wang, et al., “Adaptive reduced-rank constrained constant modulus algorithms based on joint iterative optimization of filters for beamforming,” IEEE Trans. Signal Process., Vol. 58, no. 6, pp. 2983–97, Jun. 2010.
  • Y. Chen, “Recursive least squares constant modulus algorithm for blind adaptive array,” IEEE Trans. Signal Process., Vol. 52, no. 5, pp. 1452–6, May 2004.
  • J. Li, P. Stoica, and Z. Wang, “On robust capon beamforming and diagonal loading,” IEEE Trans. Signal Process., Vol. 51, pp. 1702–15, 2003.
  • K. L. Du, K. K. M. Cheng, and M. N. S. Swamy, “A fast neural beamformer for antenna arrays,” presented at the IEEE International Conference on Communications, New York City, NY, April–May, 2002.
  • A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “A neural network based linearly constrained minimum variance beamformer,” Microwave Opt. Technol. Lett., Vol. 21, no. 6, pp. 451–5, 1999.
  • A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “Neural network based adaptive beamforming for one and two dimensional antenna arrays,” IEEE Trans. Antennas Propag., Vol. 46, pp. 1891–3, 1998.
  • S. Mathur, and R. P. S. Gangwar, “A decision directed smart antenna system with neural estimation for M-quadrature amplitude modulated signals,” Indian J. Radio Space Phys., Vol. 39, pp. 45–52, Feb. 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.