913
Views
6
CrossRef citations to date
0
Altmetric
Articles

A Review of CMOS Variable Gain Amplifiers and Programmable Gain Amplifiers

ORCID Icon, ORCID Icon &

References

  • D. V. Mercy, “A review of automatic gain control theory,” Radio Electron. Eng., Vol. 51, no. 11, pp. 579–90, Nov. 1981.
  • B. E. Bloodworth, P. P. Siniscalchi, G. A. De Veirman, A. Jezdic, R. Pierson, and R. Sundararaman, “A 450-Mb/s analog front end for PRML read channels,” IEEE J. Solid-State Circuits, Vol. 34, pp. 1661–75, 1999.
  • R. Gomez, A. Abidi, “A 50 MHz CMOS variable gain amplifier for magnetic data storage systems,” IEEE J. Solid-State Circuits, Vol. 27, no. 6, pp. 935–39, Jun. 1992.
  • I. Deligos, S. R. Naqvi, T. Copani, S. Kiaei, B. Bakkaloglu, S.-S. Je, and J. Chae, “A MEMS-based power-scalable hearing-aid analog front-end,” IEEE Trans. Biomed. Circuits Syst., Vol. 5, no. 3, pp. 201–13, 2011.
  • A. Boukhayma, A. Peizerat, and C. Enz, “A Sub-0.5 electron read noise VGA image sensor in a standard CMOS process,” IEEE J. Solide-State Circuits, Vol. 51, no. 9, pp. 2180–91, Sep. 2016.
  • Y. Zhang, Y-H. Liu, C. Bachman, Dolmans G, and de Groot Holst H, “A fast convergence two-stage AGC for a bluetooth low energy radio with 84 dB tuning range,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1921–5, 2014.
  • N-J. Oh, “CMOS Direct-conversion radio transceiver design for 5-GHz WLAN applications,” IETE Tech. Rev., Vol. 28, no. 2, pp. 113–22, 2011.
  • C.-F. Li, and R. J.-H. Cheng, “A two-stage digital AGC scheme with diversity selection for frame-based OFDM systems,” in Proc. 2006 IEEE Int. Symp. Circuits Syst., pp. 3530–3, Kos, May 2006.
  • M. Vucic and M. Butorac, “All-digital high-dynamic automatic gain control,” in Proc. 2009 IEEE Int. Symp. Circuits Syst., pp. 1032–5, Taipei, May 2009.
  • C. Huang, X. Yan, and L. He, “A high-precision all-digital automatic gain control algorithm for broadband real-time spectrum analyzer,” in Communications, Circuits and Systems (ICCCAS), 2013 International Conference on, Vol. 1, pp. 240–4, 15–17 Nov. 2013.
  • H. O. Elwan, and M. Ismail, “Digitally programmable decibel-linear CMOS VGA for low-power mixed-signal applications,” IEEE Trans. Circuits Syst. II Analog Digit Signal Process, Vol. 47, no. 2, pp. 388–98, May 2000.
  • C-C. Hsu, and J-T. Wu, “A highly linear 125-MHz CMOS switched-resistor programmable gain amplifier,” IEEE J. Solid State Circuits, Vol. 38, no. 10, pp. 1663–70, October. 2003.
  • S. Y. Kang, Y. Jang, I.-Y. Oh, and C. S. Park, “A 2.16 mW low power digitially-controlled variable gain amplifier,” IEEE Microw. Wireless Components Lett., Vol. 20, no. 3, pp. 172–4, 2010.
  • D. N. Green, “Global stability analysis of automatic gain control circuits,” IEEE Trans. Circuits Syst., Vol. 30, no. 2, pp. 78–82, Feb. 1983.
  • J. M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Trans. Circuits Syst II Analog Digit Signal Process, Vol. 45, no. 3, pp. 283–94, 1998.
  • O. O. Oyerinde, and S. H. Mneney, “Review of channel estimation for wireless communication systems.” IETE Tech. Rev. (Medknow Publications & Media Pvt. Ltd.), Vol. 29, no. 4, pp. 282–92, 2012.
  • A. Musaddiqa, F. Hashima, C. A. B. C. Ujanga and B. M. Ali, “Survey of channel assignment algorithms for multi-radio multi-channel wireless mesh networks,” IETE Tech. Rev., Vol. 32, no. 3, pp. 164–82, 2015.
  • C. Bai, and J. Wu, “CMOS temperature compensated logarithmic converter based on master slave control,” IET Electron. Lett., Vol. 50, no. 22, pp. 1574–5, Oct. 2014.
  • H. Y. Cheung, K. S. Cheung, and J. Lau, “A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering,” in The 2001 IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 390–3, 6–9 May 2001.
  • C. F. Liao, and S. I. Liu, “A 10Gb/s CMOS AGC amplifier with 35dB dynamic range for 10Gb ethernet,” in 2006 IEEE ISSCC-Digest of Technical Papers, San Francisco, CA, USA, Feb. 2006, pp. 2092–101, 2006.
  • H. D. Lee, K. A. Lee, and S. Hong, “A wideband CMOS variable gain amplifier With an exponential gain control,” IEEE Trans. Microwave Theory Tech, Vol. 55, no. 6, pp. 1363–73, 2007.
  • C-H. Wu, C-S. Liu and S-L. Liu, “A 2 GHz CMOS variable-gain amplifier with 50 dB linear-in-magnitude controlled gain range for 10GBase-LX4 Ethernet,” in IEEE international Solid-State Circuits Conf. Digest of Technical Papers, Vol. 1, pp. 484–541, 2004.
  • C. Liu, Y-P. Yan, W-L. Goh, Y-Z. Xiong, L-J. Zhang, and M. Madihian, “A 5-Gb/s automatic gain control amplifier With temperature compensation,” IEEE J. Solid-State Circuits, Vol. 47, no. 6, pp. 1323–33, Jun. 2012.
  • Y. Wang, B. Afshar, T.-Y. Cheng, V. Gaudet, and A. Niknejad, “A 2.5mW inductorless wideband VGA with dual feedback DC-offset correction in 90nm CMOS technology,” in 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, USA, Jun. 2008, pp. 91–4.
  • C. Deyun, Y. Shang, H. Yu, and J. Ren, “Design of ultra-Low-power 60-GHz direct-conversion receivers in 65-nm CMOS,” IEEE Trans. Microwave Theory Tech., Vol. 61, no. 9, pp. 3360–72, 2013.
  • B. Calvo, S. Celma, M. T. Sanz, J. P. Alegre, and F. Aznar, “Low voltage linearly tunable CMOS transconductor with common-mode feedforward,” IEEE Trans. Circuits and systems I-Regular Papers, Vol. 55, no. 3, pp. 715–21, 2008.
  • B. Gilbert, “A precise four-quadrant multiplier with Sub-nanosecond response,” IEEE J. Solid-State Circuits, Vol. SC-3, pp. 365–73, Dec. 1968.
  • R. G. Meyer, and W. D. Mack, “Monolithic AGC loop for a 160 Mb/s transimpedance amplifier,” IEEE J. Solid-State Circuits, Vol. 31, no. 9, pp. 1331–5, Sep. 1996.
  • O. Jeon, R. M. Fox, and B. A. Myers, “Analog AGC circuitry for a CMOS WLAN receiver,” IEEE J. Solid-State Circuits, Vol.41, no.10, pp. 2291–300, 2006.
  • B. Calvo, J. Ramirez-Angulo, and S. R. S. Garimella, “Highly-accurate low-voltage source degenerated-based V-I converter using positive feedback,” Electron. Lett., Vol. 43, no. 10, pp. 569–70, May. 2007.
  • T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits. Cambridge: Cambridge University Press, 2004, pp. 423–5.
  • T.-W. Kim, B. Kim and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance-linearization by multiple gated transistors,” IEEE J. Solid-State Circuits, Vol. 39, no. 1, pp. 223–9, 2004.
  • T. W. Kim, B. Kim, “A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications,” IEEE J. Solid-State Circuits, Vol. 41, no. 4, pp. 945–53, 2006.
  • Z. Chen, Y. Zheng, F. C. Choong, and M. Je, “A low-power variable-gain amplifier with improved linearity: analysis and design,” IEEE Trans. Circuits Syst. Regul. Pap., Vol. 59, no. 10, pp. 2176–85, Oct. 2012.
  • W. C. Song, C. J. Oh, and G. H. Cho, “High frequency/high dynamic range CMOS VGA,” Electron. Lett., Vol. 36, no. 13, pp. 1096–8, 2000.
  • T-W. Pan, and A. Abidi, “A 50 dB variable gain amplifier using parasitic bipolar transistor in CMOS,” IEEE J. Solid-State Circuits, Vol. 24, no. 4,pp. 951–61, 1989.
  • C.-F. Bai and J-H. Wu, “A 66 dB continuous gain adjusting CMOS AGC amplifier with both feedforward and feedback loop,” in 2014 International Symposium on Integrated Circuits (ISIC), Singapore, Dec. 2014, pp. 244–7.
  • W. Liu, C-C. Chang, and S-L. Liu, “Realization of exponential V-I converter using composite NMOS transistors,” Electron. Lett., Vol. 36, no. 1, pp. 8–10, 2000.
  • K. M. Abdelfattah, and A. M. Soliman, “Variable gain amplifiers based on a new approximation method to realize the exponential function,” IEEE Trans. Circuits Syst., Vol. 49, no. 9, pp. 1348–54, 2002.
  • F. Sheikhhosseini, and A. Nabavi, “A 120dB All CMOS variable gain amplifier based on New exponential equation,” in IEEE Asia Pacific Conference on Circuits and Systems, pp. 272–5, 2010.
  • C-C. Chang, M-L. Lin, S-I. Liu, “CMOS current-mode exponential-control variable-gain amplifier,” Electron. Lett., Vol. 37, no. 14, pp. 868–9, 2001.
  • Q-H. Duong, and Q. Le, “A 95-dB linear low-power variable gain amplifier,” IEEE Trans. Circuits Syst., Vol. 53, no. 8, pp. 1648–57, August, 2006.
  • H. H. Nguyen, H. N. Nguyen, J. S. Lee, and S. G. Lee, “A binary-weighted switching and reconfiguration-based programmable gain amplifier,” IEEE Trans. Circuits Syst. II Express Briefs, Vol. 56, no. 9, pp. 699–703, 2009.
  • H. Elwan, A. Tekin, and K. Pedrotti, “A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS,” IEEE J. Solid-State Circuits, Vol. 44, no. 9, pp. 2503–14, 2009.
  • I. Choi, H. Seo, and B. Kim, “Accurate dB-linear variable gain amplifier with gain error compensation,” IEEE J. Solid-State Circuits, Vol. 48, no. 2, pp. 456–64, 2013.
  • S. B. Park, J. E. Wilson, and M. Ismail, “The chip–peak detectors for multistandard wireless receivers,” IEEE Circuits Devices Magazine Vol. 22, no. 6, pp. 6–9, 2006.
  • S. Y. Kang, S. T. Ryu, and C. S. Park, “A precise decibel-linear programmable gain amplifier using a constant current-density function,” IEEE Trans. Microwave Theory Tech., Vol. 60, no. 9, pp. 2843–50, Sept. 2012.
  • C. P. Wu, and H-W. Tsao, “A 110-MHz 84-dB CMOS programmable gain amplifier With integrated RSSI function,” IEEE J. Solid State Circuits, Vol. 40, no. 6, pp. 1249–58, June 2005.
  • J. Xiao, and I. Mehr, “A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits, Vol. 42, no. 2, pp. 292–301, Feb. 2007.
  • W-Y. Hu, and J-W. Lin, “An RF transceiver with auto signal detection and combined PGA/RSSI in 0.18µm CMOS for 2.1G bluetooth applications,” in 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, Jun. 2009, pp. 109–12.
  • V. Giannini, J. Craninckx, S. D'Amico, and A. Baschirotto, “Flexible baseband analog circuits for software-defined radio front-ends,” IEEE J. Solid State Circuits, Vol. 42, no. 7, pp. 1501–12, Jul. 2007.
  • P-I. Mak, U. Seng-Pan, and R. P. Martins, “On the design of a programmable-gain amplifier with built-in compact DC-offset cancellers for very low-voltage WLAN systems,” IEEE Trans. Circuits Syst. Regul. Pap., Vol. 55, no. 2, pp. 496–509, March 2008.
  • G. Palumbo, and S. Pennisi, “Current-feedback amplifiers versus voltage operational amplifiers,” IEEE Trans. Circuits Syst. Part I Fund. Theory Appl., Vol. 48, no. 5, pp. 617–23, May 2001.
  • S. J. G. Gift, and B. Maundy, “Improving the bandwidth gain-independence and accuracy of the current feedback amplifier,” IEEE Trans. Circuits Syst. Part I Exp. Briefs, Vol. 52, no. 3, pp. 136–9, Mar. 2005.
  • J. Bayard, “CFOA based inverting amplifier bandwidth enhancement,” IEEE Trans. Circuits Syst. Part I Exp. Briefs, Vol. 48, no. 12, pp. 1148–50, Dec 2001.
  • E. M. Spinelli, R. Pallàs-Areny, and M. A. Mayosky, “AC-coupled front-end for biopotential measurements,” IEEE Trans. Biomed. Eng., Vol. 50, no. 3, pp. 391–5, 2003.
  • J. Szynowski, “CMRR analysis of instrumentation amplifiers,” IET Electron. Lett., Vol. 14, no. 19, pp. 547–49, 1983.
  • W. Surakampontorn, V. Riewruja, K. Kumwachara, and K. Dejhan, “Accurate CMOS-based current conveyors,” IEEE Trans. Instrum. Meas., Vol. 40, no. 4, pp. 699–702, 1991.
  • H. A. Alzaher, H. Elwan, and M. Ismail, “A CMOS fully balanced second-generation current conveyor,” IEEE Trans. Circuits Syst II Analog Digit. Signal Process, Vol. 50, no. 6, pp. 278–87, 2003.
  • I. A. Awad, and A. M. Soliman, “New CMOS realization of the CCII,” IEEE Trans. Circuits Syst II Analog Digit. Signal Process, Vol. 46, no. 4, pp. 460–63, 1999.
  • H-W. Cha, and K. Watanabe, “Wideband CMOS current conveyor,” Electron. Lett., Vol. 32, no. 14, pp. 1245–46, 1996.
  • S. Pennisi, M. Piccioni, G. Scotti, and A. Trifiletti, “High-CMRR current amplifier architecture and Its CMOS implementation,” IEEE Trans. Circuits Systems-II, Vol. 53, no. 10, pp. 1118-22, Oct. 2006.
  • S. D’Amico, M. De Blasi, M. De Matteis, and A. Baschirotto, “A 255MHz programmable gain amplifier and low-pass filter for ultra low power impulse-radio UWB receivers,” IEEE Trans. Circuits Systems-I, Vol. 59, no. 2, pp. 337–45, Feb. 2012.
  • L. Acosta, R. G. Carvajal, J. Ramirez-Angulo, and A. Lopez-Martin, “A simple approach for the implementation of CMOS amplifiers with constant bandwidth independent of gain,” in Proc. IEEE ISCAS 2008, pp. 292–5, May 18–21, 2008.
  • C. Garcia-Alberdi, J. Aguado-Ruiz, A. J. Lopez-Martin, and R-A. Jaime, “Micropower class-AB VGA with gain-independent bandwidth,” IEEE Trans. Circuits Systems-II, Vol. 60, no. 7, pp. 397–401, July 2013.
  • B. Calvo, S. Celma, and M. T. Sanz, “Low-voltage low-power 100 MHz programmable gain amplifier in 0.35 µm CMOS,” Analog Integr. Circuits Signal Process, Vol. 48, no. 3, pp. 263–6, May 2006.
  • C. Bai, J. Wu, C. Chen, and X. Deng, “A 35-dBm OIP3 CMOS constant bandwidth PGA with extended input range and improved common-mode rejection,” IEEE Trans. Circuits Systems II-Express Briefs, Vol. 64, no. 9, pp. 922–26, Aug. 2017.
  • Y. Zheng, J. Yan, Y. P. Xu, “A CMOS VGA with DC offset cancellation for direct-conversion receivers,” IEEE Trans. Circuits Systems I Reg. Pap., Vol. 56, no. 1, pp. 103–13, 2009.
  • A. A. Abidi, “General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback,” IEEE Trans. Microwave Theory Tech., Vol. 51, no. 5, pp. 1610–2, 2003.
  • T. B. Kumar, K. Ma, and K. S Yeo, “Temperature-compensated dB-linear digitally controlled variable gain amplifier with DC offset cancellation,” IEEE Trans. Microwave Theory Tech., Vol. 61, no. 7, pp. 2648–61, 2013.
  • M. Elmala, B. Carlton, R. Bishop, and K. Soumyanath, “A highly linear filter and VGA chain with novel DC-offset correction in 90 nm digital CMOS process,” in Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005.
  • Y. Wang, B. Afshar, T-Y. Cheng, V. Gaudet, and A. M. Niknejad, “A 2.5mW inductorless wideband VGA with dual feedback DC-offset correction in 90nm CMOS technology,” in 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008.
  • R. Harjani, J. Kim, and J. Harvey, “DC-coupled IF stage design for a 900-MHz ISM receiver,” IEEE J. Solid-State Circuits, Vol. 38, no.1, pp. 126–34. 2003.
  • H-Y. Shih, C. N. Kuo, W. H. Chen, T. Y. Yang, K. C. Juang, “A 250 MHz 14 dB-NF 73 dB-gain 82 dB-DR analog baseband chain with digital-assisted DC-offset calibration for ultra-wideband,” IEEE J. Solid-State Circuits, Vol. 45, no. 2, pp. 338–50, 2010.
  • J. Li, M. Parlak, H. Mukai, M. Matsuo, and J. F. Buckwalter, “A reconfigurable 50-Mb/s-1 Gb/s pulse compression radar signal processor with offset calibration in 90-nm CMOS,” IEEE Trans. Microwave Theory Tech., Vol. 63, no. 1, pp. 266–78, 2015.
  • N. J. Oh, “A single-stage low-power RF receiver front-End: series resonator based LMV cell,” IETE Tech. Rev., Vol. 32, no. 1, pp. 61–9, 2014.
  • J. R. Custódio, J. Goes, N. Paulino, J. P. Oliveira, and E. Bruun, “A 1.2-V 165 µW 0.29-mm2 multibit sigma-delta ADC for hearing aids using nonlinear DACs and with over 91 dB dynamic-range,” IEEE Trans. Biomed. Circuits Syst., Vol. 7, no. 3, pp. 376–85, 2013.
  • A. Mehdi, S. Mirzakuchaki, and A. A. Beheshti-Shirazi, “Design and implementation of high throughput, robust, parallel M-QAM demodulator in digital communication receivers,” IEEE Trans. Circuits Systems I Reg. Pap., Vol. 63, no. 8, pp. 1295–304, 2016.
  • J. P. A. Pérez, B. Calvo, and S. Celma, “A high-performance CMOS feedforward AGC circuit for a WLAN receiver,” IEEE Trans. Ind. Electron., Vol. 57, no. 8, pp. 2851–7, 2010.
  • S. Gupta, D. Gangopadhyay, H. Lakdawala, J. C. Rudell, D. J. Allstot, “A 0.8–2GHz fully-integrated QPLL-timed direct-RF-sampling bandpass ADC in 0.13 µm CMOS,” IEEE J. Solid-State Circuits, Vol. 47, no. 5, pp. 1141–53, 2012.
  • S. Ray, and M. M. Hella, “A 10 Gb/s inductorless AGC amplifier with 40 dB linear variable gain control in 0.13 CMOS,” IEEE J. Solid-State Circuits, Vol. 51, no. 2, pp. 440–56, 2016.
  • C. Chao, and J. Wu, “0.6-V 2.1-mW RF receiver based on passive mixing and master–slave common-mode rejection technique in 65 nm CMOS,” Electron. Lett., Vol. 52, no. 5, pp. 335–36, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.