142
Views
11
CrossRef citations to date
0
Altmetric
Articles

Computer-Based Segmentation of Cancerous Tissues in Biomedical Images Using Enhanced Deep Learning Model

&

References

  • M. Havaei, et al., “Brain tumor segmentation with deep neural networks,” Med. Image Anal., Vol. 35, pp. 18–31, Jan. 2017. doi:10.1016/j.media.2016.05.004.
  • A. Işın, C. Direkoğlu, and M. Şah, “Review of MRI-based brain tumor image segmentation using deep learning methods,” Procedia. Comput. Sci., Vol. 102, pp. 317–24, 2016. doi:10.1016/j.procs.2016.09.407.
  • J. Liu, M. Li, J. Wang, F. Wu, T. Liu, and Y. Pan, “A survey of MRI-based brain tumor segmentation methods,” Tinshhua Sci. Technol., Vol. 19, no. 6, pp. 578–95, Dec. 2014. doi:10.1109/TST.2014.6961028.
  • M. Soltaninejad, et al., “Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels,” Comput. Methods Programs Biomed., Vol. 157, pp. 69–84, Apr. 2018. doi:10.1016/j.cmpb.2018.01.003.
  • M. Soltaninejad, et al., “Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI,” Int. J. Comput. Assist. Radiol. Surg., Vol. 12, no. 2, pp. 183–203, Feb. 2017. doi:10.1007/s11548-016-1483-3.
  • S. Tripathi, R. Prakash, N. Melkani, and S. Kumar, “Study of Bayes theorem for classification of synthetic aperture data,” in 2015 Second International Conference on Advances in Computing and Communication Engineering, Dehradun, India, May 2015, pp. 187–91. doi:10.1109/ICACCE.2015.54.
  • G. Yang, T. Nawaz, T. R. Barrick, F. A. Howe, and G. Slabaugh, “Discrete wavelet transform-based whole-spectral and subspectral analysis for improved brain tumor clustering using single voxel MR spectroscopy,” IEEE Trans. Biomed. Eng., Vol. 62, no. 12, pp. 2860–6, Dec. 2015. doi:10.1109/TBME.2015.2448232.
  • G. Yang, F. Raschke, T. R. Barrick, and F. A. Howe, “Manifold learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering: manifold learning in MRS using nonlinear DR and unsupervised clustering,” Magn. Reson. Med., Vol. 74, no. 3, pp. 868–78, Sep. 2015. doi:10.1002/mrm.25447.
  • G. Yang, T. L. Jones, T. R. Barrick, and F. A. Howe, “Discrimination between glioblastoma multiforme and solitary metastasis using morphological features derived from the p: q tensor decomposition of diffusion tensor imaging: discrimination of GBM and solitary met using morphological features of DTI,” NMR Biomed., Vol. 27, no. 9, pp. 1103–1111, Sep. 2014. doi:10.1002/nbm.3163.
  • K. Simonyan, and A. Zisserman. “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556 [cs], September 2014, Accessed: 23 September 2019. [Online]. Available: http://arxiv.org/abs/1409.1556.
  • C. Szegedy, et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 1–9. doi:10.1109/CVPR.2015.7298594.
  • K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition,” arXiv:1512.03385 [cs], December 2015, Accessed: 23 September 2019. [Online]. Available: http://arxiv.org/abs/1512.03385.
  • A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Commun. ACM, Vol. 60, no. 6, pp. 84–90, May 2017. doi:10.1145/3065386.
  • V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: a deep convolutional encoder-decoder architecture for image segmentation,” arXiv:1511.00561 [cs], October 2016, Accessed: November 17, 2019. [Online]. Available: http://arxiv.org/abs/1511.00561.
  • G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. “Densely connected convolutional networks,” arXiv:1608.06993 [cs], January 2018, Accessed: November 21, 2020. [Online]. Available: http://arxiv.org/abs/1608.06993.
  • J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic segmentation,” arXiv:1411.4038 [cs], March 2015, Accessed: 17 November 2019. [Online]. Available: http://arxiv.org/abs/1411.4038.
  • Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware semantic segmentation,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, July 2017, pp. 4438–46. doi:10.1109/CVPR.2017.472.
  • O. Ronneberger, P. Fischer, and T. Brox. “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597 [cs], May 2015, Accessed: 17 November 2019. [Online]. Available: http://arxiv.org/abs/1505.04597.
  • S. Tripathi, and N. Sharma, “Computer-aided automatic approach for denoising of magnetic resonance images,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 1–10, Jun. 2021. doi:10.1080/21681163.2021.1944914.
  • T. L. Jones, T. J. Byrnes, G. Yang, F. A. Howe, B. A. Bell, and T. R. Barrick, “Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique,” Neuro-Oncology, no. u159, Aug. 2014. doi:10.1093/neuonc/nou159.
  • M. Soltaninejad, X. Ye, G. Yang, N. Allinson, and T. Lambrou. “Brain tumour grading in different MRI protocols using SVM on statistical features,” p. 7.
  • Sumit Tripathi Neeraj Sharma. “Denoising of magnetic resonance images using discriminative learning-based deep convolutional neural network,” Vol. Pre-press, pp. 1–16, 2021. doi:10.3233/THC-212882.
  • S. Tripathi, and Ashish Verma Neeraj Sharma, “Augmented deep learning architecture to effectively segment the cancerous regions in biomedical images,” in 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (ISSSC), 2020, pp. 1–6. doi:10.1109/iSSSC50941.2020.9358876.
  • S. Tripathi, T. S. Sharan, S. Sharma, and N. Sharma, “An augmented deep learning network with noise suppression feature for efficient segmentation of magnetic resonance images,” IETE Tech. Rev., 1–14, Jun. 2021. doi:10.1080/02564602.2021.1937349.
  • T. S. Sharan, S. Tripathi, S. Sharma, and N. Sharma, “Encoder modified U-Net and feature pyramid network for multi-class segmentation of cardiac magnetic resonance images,” IETE Tech. Rev., 1–13, Aug. 2021. doi:10.1080/02564602.2021.1955760.
  • S. Tripathi, A. Verma, and N. Sharma, “Automatic segmentation of brain tumour in MR images using an enhanced deep learning approach,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 1–10, Sep. 2020. doi:10.1080/21681163.2020.1818628.
  • M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, “Robust estimation for brain tumor segmentation,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI, Vol. 2879, 2003, R. E. Ellis, and T. M. Peters, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 530–537. doi:10.1007/978-3-540-39903-2_65.
  • H. Khotanlou, O. Colliot, J. Atif, and I. Bloch, “3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models,” Fuzzy Sets Syst., Vol. 160, no. 10, pp. 1457–1473, May 2009. doi:10.1016/j.fss.2008.11.016.
  • D. Cobzas, N. Birkbeck, M. Schmidt, M. Jagersand, and A. Murtha, “3D variational brain tumor segmentation using a high dimensional feature Set,” in 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007, pp. 1–8. doi:10.1109/ICCV.2007.4409130.
  • S. Parisot, H. Duffau, S. Chemouny, and N. Paragios, “Joint tumor segmentation and dense deformable registration of brain MR images,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, Vol. 7511, N. Ayache, H. Delingette, P. Golland, and K. Mori, Eds. Berlin, Heidelberg: Springer, 2012, pp. 651–8. doi:10.1007/978-3-642-33418-4_80.
  • A. Hamamci, N. Kucuk, K. Karaman, K. Engin, and G. Unal, “Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications,” IEEE Trans. Med. Imag., Vol. 31, no. 3, pp. 790–804, Mar. 2012. doi:10.1109/TMI.2011.2181857.
  • M. Havaei, P.-M. Jodoin, and H. Larochelle, “Efficient interactive brain tumor segmentation as within-brain kNN classification,” in 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, Aug. 2014, pp. 556–61. doi:10.1109/ICPR.2014.106.
  • N. Subbanna, D. Precup, and T. Arbel, “Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI,” in 2014 IEEE Conference on Computer Vision and Pattern recognition, Columbus, OH, USA, Jun. 2014, pp. 400–5. doi:10.1109/CVPR.2014.58.
  • J. Kleesiek, A. Biller, G. Urban, U. Kothe, and F. A. Hamprecht. “ilastik for multi-modal brain tumor segmentation,” p. 6.
  • Z. Shi, et al., “Bayesian VoxDRN: a probabilistic deep voxelwise dilated residual network for whole heart segmentation from 3D MR images,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Vol. 11073, A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Eds. Cham: Springer International Publishing, 2018, pp. 569–77. doi:10.1007/978-3-030-00937-3_65.
  • S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, “A survey of MRI-based medical image analysis for brain tumor studies,” Phys. Med. Biol., Vol. 58, no. 13, pp. R97–R129, Jul. 2013. doi:10.1088/0031-9155/58/13/R97.
  • D. Zikic, et al., “Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, Vol. 7512, N. Ayache, H. Delingette, P. Golland, and K. Mori, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 369–76. doi:10.1007/978-3-642-33454-2_46.
  • X. Guan, et al. “3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework,” p. 34.
  • H. Huang, et al., “A deep multi-task learning framework for brain tumor segmentation,” Front. Oncol., Vol. 11, p. 690244, Jun. 2021. doi:10.3389/fonc.2021.690244.
  • W. Zhang, et al., “ME-Net: multi-encoder net framework for brain tumor segmentation,” Int. J. Imag. Syst. Technol., Vol. 22571, Mar. 2021. doi:10.1002/ima.22571.
  • Y. Jin, et al., “3D PBV-Net: an automated prostate MRI data segmentation method,” Comput. Biol. Med., Vol. 128, p. 104160, Jan. 2021. doi:10.1016/j.compbiomed.2020.104160.
  • Y. Liu, et al., “Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation,” IEEE. Access., Vol. 8, pp. 151817–28, 2020. doi:10.1109/ACCESS.2020.3017168.
  • Y. Liu, et al., “Automatic prostate zonal segmentation using fully convolutional network with feature pyramid attention,” IEEE. Access., Vol. 7, pp. 163626–32, 2019. doi:10.1109/ACCESS.2019.2952534.
  • M. Soltaninejad, L. Zhang, T. Lambrou, G. Yang, and X. Ye. “MRI brain tumor segmentation using random forests and fully convolutional networks,” p. 5.
  • J. Chen, et al., “JAS-GAN: generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets,” IEEE J. Biomed. Health Inform., 1–1, 2021. doi:10.1109/JBHI.2021.3077469.
  • X. Zhou, et al., “Systematic and comprehensive automated ventricle segmentation on ventricle images of the elderly patients: a retrospective study,” Front. Aging Neurosci., Vol. 12, p. 618538, Dec. 2020. doi:10.3389/fnagi.2020.618538.
  • P. F. Ferreira, et al., “Automating in vivo cardiac diffusion tensor postprocessing with deep learning–based segmentation,” Magn. Reson. Med., Vol. 84, no. 5, pp. 2801–14, Nov. 2020. doi:10.1002/mrm.28294.
  • M. Li, C. Wang, H. Zhang, and G. Yang, “MV-RAN: multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis,” Comput. Biol. Med., Vol. 120, p. 103728, 2020. doi:10.1016/j.compbiomed.2020.103728.
  • C. Wang, T. MacGillivray, G. Macnaught, G. Yang, and D. Newby, “A two-stage U-Net model for 3D multi-class segmentation on full-resolution cardiac data,” in Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges, Vol. 11395, M. Pop, M. Sermesant, J. Zhao, S. Li, K. McLeod, A. Young, K. Rhode, and T. Mansi, Eds. Cham: Springer International Publishing, 2019, pp. 191–9. doi:10.1007/978-3-030-12029-0_21.
  • Y. Mo, et al., “The deep poincaré map: a novel approach for left ventricle segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Vol. 11073, A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Eds. Cham: Springer International Publishing, 2018, pp. 561–8. doi:10.1007/978-3-030-00937-3_64.
  • G. Yang, et al., “Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention,” Future Gener. Comput. Syst., Vol. 107, pp. 215–28, Jun. 2020. doi:10.1016/j.future.2020.02.005.
  • W. Zhanga, et al., “Multi-task learning with multi-view weighted fusion attention for artery-specific calcification analysis,” Inf. Fusion, Vol. 71, pp. 64–76, Jul. 2021.
  • Y. Wu, et al., “Fast and automated segmentation for the three-directional multi-slice cine myocardial velocity mapping,” Diagnostics, Vol. 11, no. 2, p. 346, Feb. 2021. doi:10.3390/diagnostics11020346.
  • Y. LeCun, L. Bottou, Y. Bengio, and P. Ha, “Gradient-Based learning applied to document recognition,” Proceedings of the IEEE, Vol. 86, no. 11, pp. 2278–2324, 1998.
  • H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo. “Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks,” arXiv:1705.03820 [cs], June 2017, Accessed: 29 August 2021. [Online]. Available: http://arxiv.org/abs/1705.03820.
  • L. Zhang, G. Yang, and X. Ye, “Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons,” J. Med. Imag., Vol. 6, no. 2, p. 1, Apr. 2019. doi:10.1117/1.JMI.6.2.024001.
  • H. Chen, X. Qi, L. Yu, and P.-A. Heng. “DCAN: deep contour-aware networks for accurate gland segmentation,” arXiv:1604.02677 [cs], April 2016, Accessed: 21 November 2020. [Online]. Available: http://arxiv.org/abs/1604.02677.
  • N. Feng, X. Geng, and L. Qin, “Study on MRI medical image segmentation technology based on CNN-CRF model,” IEEE. Access., Vol. 8, pp. 60505–14, 2020. doi:10.1109/ACCESS.2020.2982197.
  • K. Kamnitsas, et al., “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Med. Image Anal., Vol. 36, pp. 61–78, Feb. 2017. doi:10.1016/j.media.2016.10.004.
  • H. Lu, H. Wang, Q. Zhang, D. Won, and S. W. Yoon, “A dual-tree complex wavelet transform based convolutional neural network for human thyroid medical image segmentation,” in 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, Jun. 2018, pp. 191–8. doi:10.1109/ICHI.2018.00029.
  • P. Naylor, M. Lae, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance Map,” IEEE Trans. Med. Imag., Vol. 38, no. 2, pp. 448–59, Feb. 2019. doi:10.1109/TMI.2018.2865709.
  • Y. Huang, C. Qiu, X. Wang, S. Wang, and K. Yuan, “A compact convolutional neural network for surface defect inspection,” Sensors, Vol. 20, no. 7, p. 1974, Apr. 2020. doi:10.3390/s20071974.
  • S. Tripathi, T. S. Sharan, S. Sharma, and N. Sharma, “Segmentation of brain tumour in MR images using modified deep learning network,” in 2021 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, Kerala, India, Jul. 2021, pp. 1–5. doi:10.1109/ICSCC51209.2021.9528298.
  • A. F. Agarap. “Deep learning using rectified linear units (ReLU),” arXiv:1803.08375 [cs, stat], February 2019, Accessed: 22 October 2020. [Online]. Available: http://arxiv.org/abs/1803.08375.
  • Y. Wu, and K. He. “Group normalization .08494.
  • V. Thakkar, S. Tewary, and C. Chakraborty, “Batch normalization in Convolutional Neural networks – a comparative study with CIFAR-10 data,” in 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Jan. 2018, pp. 1–5. doi:10.1109/EAIT.2018.8470438.
  • K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, and A. N. Poo, “Multi-category classification by soft-Max combination of binary classifiers,” in Multiple Classifier Systems, Vol. 2709, T. Windeatt, and F. Roli, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 125–34.  doi:10.1007/3-540-44938-8_13.
  • K. Janocha, and W. M. Czarnecki. “On loss functions for deep neural networks in classification,” arXiv:1702.05659 [cs], February 2017, Accessed: 17 November 2019. [Online]. Available: http://arxiv.org/abs/1702.05659.
  • M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes challenge: a retrospective,” Int. J. Comput. Vis., Vol. 111, no. 1, pp. 98–136, Jan. 2015. doi:10.1007/s11263-014-0733-5.
  • D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Machine Intell, Vol. 26, no. 5, pp. 530–49, May 2004. doi:10.1109/TPAMI.2004.1273918.
  • E. Fernandez-Moral, R. Martins, D. Wolf, and P. Rives, “A new metric for evaluating semantic segmentation: leveraging global and contour accuracy,” in 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, Jun. 2018, pp. 1051–6. doi:10.1109/IVS.2018.8500497.
  • A. Maier, C. Syben, T. Lasser, and C. Riess, “A gentle introduction to deep learning in medical image processing,” Zeitschrift für Medizinische Physik, Vol. 29, no. 2, pp. 86–101, May 2019. doi:10.1016/j.zemedi.2018.12.003.
  • L. Cai, J. Gao, and D. Zhao, “A review of the application of deep learning in medical image classification and segmentation,” Ann. Transl. Med., Vol. 8, no. 11, pp. 713–3, Jun. 2020. doi:10.21037/atm.2020.02.44.
  • F. Liu, and M. Fang, “Semantic segmentation of underwater images based on improved Deeplab,” JMSE, Vol. 8, no. 3, pp. 188, Mar. 2020. doi:10.3390/jmse8030188.
  • G. Csurka, D. Larlus, and F. Perronnin, “What is a good evaluation measure for semantic segmentation?,” in In Proceedings of the British Machine Vision Conference 2013, Bristol, 2013, pp. 32.1–32.11. doi:10.5244/C.27.32.
  • A. A. Taha, A. Hanbury, and O. A. J. del Toro, “A formal method for selecting evaluation metrics for image segmentation,” in In 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, Oct. 2014, pp. 932–6. doi:10.1109/ICIP.2014.7025187.
  • A. A. Taha, and A. Hanbury, “Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool,” BMC Med. Imag., Vol. 15, no. 1, p. 29, Dec. 2015. doi:10.1186/s12880-015-0068-x.
  • M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: achievements and challenges,” J. Digit Imag., Vol. 32, no. 4, pp. 582–96, Aug. 2019. doi:10.1007/s10278-019-00227-x.
  • C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. “Activation functions: comparison of trends in practice and research for deep learning,” arXiv:1811.03378 [cs], November 2018, Accessed: 06 February 2021. [Online]. Available: http://arxiv.org/abs/1811.03378.
  • F. Chollet. “Xception: deep learning with depthwise separable convolutions,” arXiv:1610.02357 [cs], April 2017, Accessed: 22 March 2021. [Online]. Available: http://arxiv.org/abs/1610.02357.
  • M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. “The importance of skip connections in biomedical image segmentation,” arXiv:1608.04117 [cs], September 2016, Accessed: 17 November 2019. [Online]. Available: http://arxiv.org/abs/1608.04117.
  • Y. Hu, A. Huber, J. Anumula, and S.-C. Liu. “Overcoming the vanishing gradient problem in plain recurrent networks,” arXiv:1801.06105 [cs], July 2019, Accessed: 22 March 2021. [Online]. Available: http://arxiv.org/abs/1801.06105.
  • L. Chan, M. Hosseini, C. Rowsell, K. Plataniotis, and S. Damaskinos, “Histosegnet: semantic segmentation of histological tissue type in whole slide images,” in In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), Oct. 2019, pp. 10661–70. doi:10.1109/ICCV.2019.01076.
  • J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image analysis,” IEEE. Access., Vol. 6, pp. 9375–89, 2018. doi:10.1109/ACCESS.2017.2788044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.