962
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Historical Developments and Recent Advances in High-power Magnetron: A Review

ORCID Icon, & ORCID Icon

References

  • L. Kumar, and K. U. Limaye, “Review of progress in indigenous design, development & production of microwave vacuum-electronic devices,” IETE Tech. Rev., Vol. 20, no. 2, pp. 75–93, 2003.
  • R. C. Jain, “A survey of industrial scientific and medical applications of microwave energy,” IETE Tech. Rev., Vol. 15, no. 6, pp. 443–459, 1998.
  • G. Shiers, “Ferdinand Braun and the cathode Ray tube,” Sci. Am., Vol. 230, no. 3, pp. 92–101, 1974. Accessed August 10, 2021.
  • J. Goerth. “Early magnetron development especially in Germany,” in International Conference on the Origins and Evolution of the Cavity Magnetron (CAVMAG 2010), Bournemouth, England, UK, April 19–20, 2010. Piscataway, New Jersey, USA: IEEE, pp. 17–22.
  • A. W. Hull, “The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders,” Phys. Rev., Vol. 18, no. 1, pp. 31–57, July 1921. Doi: 10.1103/PhysRev.18.31.
  • D. Rouwhorst, “Dutch contributions to magnetron development before 1940,” 2010 International Conference on the Origins and Evolution of the Cavity Magnetron, Vol. 1, pp. 103–104, 2010. DOI: 10.1109/CAVMAG.2010.5565556.
  • P. A. Redhead, “The invention of the cavity magnetron and its introduction into Canada and the USA,” La Physique au Canada, Vol. 57, no. 6, pp. 321–328, 2001.
  • Y. Blanchard, G. Galati, and P. Van Genderen, “The cavity magnetron: not just a British invention [historical corner],” IEEE Antennas Propag. Mag., Vol. 55, no. 5, pp. 244–254, 2013.
  • W. E. Willshaw, L. Rushforth, A. G. Stainsby, R. Latham, A. W. Balls, and A. H. King, “The high-power pulsed magnetron: development and design for radar applications,” Journal of the Institution of Electrical Engineers-Part IIIA: Radiolocation, Vol. 93, no. 5, pp. 985–1005, 1946.
  • GB Collins. Microwave magnetrons. New York (NY): McGraw-Hill; 1948. p. 1–10.
  • S. Millman, and A. T. Nordsieck, “The rising sun magnetron,” J. Appl. Phys, Vol. 19, pp. 156–165, Feb. 1948.
  • E. B. Callick, “An experimental study of Low-power CW magnetrons having Few segments,” Proceedings of the I.R.E, Vol. 40, no. 7, pp. 836–843, July, 1952. DOI: 10.1109/JRPROC.1952.273850.
  • H. A. H. Boot, H. Foster, and S. A. Self, “A new design of high-power S-band magnetron,” Proc. Inst. Elec. Eng., Vol. 105B, no suppl. 10, pp. 419–425, May 1958.
  • A. Palevsky, G. Bekefi, A. T. Drobot, R. K. Parker, and W. M. Black; G. Farney “High power relativistic magnetrons: Experiments and simulation,” in 1979 3rd International Topical Conference on High-Power Electron and Ion Beam Research & Technology, 1979, volume:2.
  • G. E. Thomas, “An alternate theory for the relativistic magnetron,” J. Appl. Phys., Vol. 53, no. 11, pp. 7572–7579, 1982.
  • W. P. Ballard, S. A. Self, and F. W. Crawford, “A relativistic magnetron with a thermionic cathode,” J. Appl. Phys., Vol. 53, no. 11, pp. 7580–7591, 1982.
  • H. Sze, B. Harteneck, J. Benford, and T. S. T. Young, “Operating characteristics of a relativistic magnetron with a washer cathode,” IEEE Trans. on Plasma Sci., Vol. 15, no. 3, pp. 327–334, Jun. 1987. Doi: 10.1109/TPS.1987.4316708.
  • R. A. Close, A. Palevsky, and G. Bekefi, “Radiation measurements from an inverted relativistic magnetron,” J. Appl. Phys, Vol. 54, no. 7, pp. 4147–4151, Jul. 1983.
  • R. K. Parker, R. Tobin, and G. K. Farney. Initial performance characteristics of a high power hybrid inverted coaxial magnetron,” In Conf Rec. Abstracts 1980 IEEE Int. Conf. Plasma Science, p. 94, 1980.
  • R. R. Smith, J. Benford, B. Harteneck, and H. M. Sze, “Development and test of an L-band magnetron,” IEEE Trans. Plasma Sci., Vol. 19, no. 4, pp. 628–631, 1991.
  • G. E. Dombrowski, “Computer simulation study of primary and secondary anode loading in magnetrons,” IEEE Trans. Electron Devices, Vol. 38, no. 10, pp. 2234–2238, 1991.
  • J.-J. Feng, R. G. Carter, and F.-J. Liao. Simulation of a long anode magnetron resonant system using MAFIA,” in ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No. 98EX106). IEEE, 1998, pp. 748–751.
  • Y. M. Saveliev, S. N. Spark, B. A. Kerr, M. I. Harbour, S. C. Douglas, and W. Sibbett. New cathodes for a relativistic magnetron,” in 12th International Conference on High-Power Particle Beams. BEAMS'98. Proceedings (Cat. No. 98EX103), vol. 2. IEEE, 1998, pp. 861–864.
  • A. Cook, J. Drexler, and F. Feulner. A 1.5 megawatt, high efficiency, X-band CEM* coaxial magnetron,” in 1961 International Electron Devices Meeting. IEEE, 1961, pp. 10–12.
  • Z. Yujie. Research on a Novel Millimeter Wave Radar Transmitter,” in 2006 CIE International Conference on Radar. IEEE, 2006, pp. 1–4.
  • K. Schunemann, B. Trush, D. Vavriv, and V. Volkov. Millimeter wave transmitters on the basis of spatial-harmonic magnetrons with cold secondary-emission cathode for coherent radar systems,” in 2000 30th European Microwave Conference. IEEE, 2000, pp. 1–3.
  • J.-I. Kim, J.-H. Won, and G.-S. Park, “Numerical study of a 10-vane strapped magnetron oscillator,” J. Korean Phys. Soc., Vol. 44, no. 5, pp. 1229–1233, May 2004.
  • J.-I. Kim, et al., “Investigation of millimeter-wavelength 20-vane spatial-harmonic magnetron using three-dimensional particle-in-cell simulation,” IEEE Trans. Plasma Sci., Vol. 40, no. 8, pp. 1966–1971, Aug. 2012.
  • H. J. Kim, and J. J. Choi, “Three-dimensional particle-in-cell simulation study of a frequency tunable relativistic magnetron,” in IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 14, no. 4, pp. 1045–1049, Aug. 2007. DOI: 10.1109/TDEI.2007.4286546.
  • V. B. Neculaes, et al., “Magnetic priming effects on noise, startup, and mode competition in magnetrons,” IEEE Trans. Plasma Sci., Vol. 33, no. 1, pp. 94–102, Feb. 2005.
  • Y. M. Saveliev, B. A. Kerr, M. I. Harbour, S. C. Douglas, and W. Sibbett, “Operation of a relativistic rising-sun magnetron with cathodes of various diameters,” IEEE Trans. Plasma Sci., Vol. 30, no. 3, pp. 938–946, Jun. 2002. DOI: 10.1109/TPS.2002.801652.
  • J. Robinson, M. Doherty, B. Davenport, M. Lander, and T. Treado. High power S-band magnetron,” in Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524), Monterey, CA, USA, 2002, pp. 24–25. DOI: 10.1109/IVELEC.2002.999241.
  • I. I. Vintizenko, A. I. Zarevich, S. S. Novikov, and A. I. Ryabchikov. Microwave radiation characteristics of relativistic magnetron with coupled cavities,” in 7th Korea-Russia International Symposium on Science and Technology, Proceedings KORUS 2003. (IEEE Cat. No.03EX737), Ulsan, Korea (South), 2003, pp. 248–252 vol.2.
  • M. C. Jones, et al., “Simulations of magnetic priming in a relativistic magnetron,” IEEE Trans. Electron Devices, Vol. 52, no. 5, pp. 858–863, May 2005. DOI: 10.1063/1.2803757.
  • M. Daimon, and W. Jiang, “Modified configuration of relativistic magnetron with diffraction output for efficiency improvement,” Appl. Phys. Lett., Vol. 91, no. 19, pp. 191503-1–191503-3, 2007.
  • A. Sayapin, Y. Hadas, and Y. E. Krasik, “Drastic improvement in the S-band relativistic magnetron operation,” Appl. Phys. Lett., Vol. 95, no. 7, pp. 074101-1–074101-3, 2009. DOI: 10.1063/1.3206939.
  • V. D. Yeryomka, M. A. Kopot’, and O. P. Kulagin. Submillimetric-wave magnetron oscillator: Simulation of its specific features,” in 2010 International Kharkov Symposium On Physics And Engineering Of Microwaves, Millimeter And Submillimeter Waves, Kharkiv, Ukraine, 2010, pp. 1–4. Doi: 10.1109/MSMW.2010.5546037.
  • T. P. Fleming, M. R. Lambrecht, P. J. Mardahl, and J. D. Keisling, “A high-efficiency megawatt-class nonrelativistic magnetron,” IEEE Trans. Plasma Sci., Vol. 40, no. 9, pp. 2112–2118, Sep. 2012.
  • S. K. Vyas, S. Maurya, R. K. Verma, and V. P. Singh, “Strapped magnetron performance affected by dielectric material filling,” IEEE Trans. Plasma Sci., Vol. 43, no. 9, pp. 3142–3146, Sept. 2015. DOI: 10.1109/TPS.2015.2465139.
  • S. K. Vyas, S. Maurya, and V. P. Singh, “Efficiency enhancement of CW magnetron by ferrite material filling,” IEEE Trans. on Plasma Science, Vol. 44, no. 12, pp. 3262–3267, Dec. 2016. Doi: 10.1109/TPS.2015.2465139.
  • Changjun Liu, Heping Huang, Zhengyu Liu, Feixiang Huo, and Kama Huang, “Experimental study on microwave power combining based on injection-locked 15-kW S-band continuous-wave magnetrons” IEEE Trans. Plasma Sci., Vol. 44, no. 8, pp. 1291–1297, Aug. 2016.
  • H. Huang, K. Huang, and C. Liu, “Experimental study on the phase deviation of 20-kW S-band CW phase-locked magnetrons,” IEEE Microwave Compon. Lett., Vol. 28, no. 6, pp. 509–511, Jun. 2018.
  • M. K. Joshi, S. K. Vyas, T. Tiwari, and R. Bhattacharjee, “A New approach for high-power coaxial magnetron using stacked anode resonators,” IEEE Trans. Electron Devices, Vol. 67, no. 4, pp. 1808–1813, Apr. 2020.
  • A. R. Jadhav, J. John, K. Tuckley, P. K. Sharma, and H. V. Dixit, “Simulation studies on stacked magnetrons for enhanced power output suitable for power combining applications,” IEEE Trans. Plasma Sci., Vol. 49, no. 2, pp. 680–688, Feb. 2021. DOI: 10.1109/TPS.2021.3051280.
  • Available from: https://www.cpii.com/product.cfm/8/2
  • S. K. Vyas, and T. Tiwari, “Study of hole and slot type S-band pulsed power magnetron,” J. of Electromagn. Waves and Appl., Vol. 32, no. 8, pp. 1008–1017, 2017. DOI: 10.1080/09205071.2017.1412358.
  • A. S. Gilmour. Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons, Artech, 2011.
  • R. A. White, “More information on the cold cathode operation of a hot cathode magnetron,” IEEE Trans. Electron Devices, Vol. 10, no. 2, pp. 96–97, Mar. 1963. Doi: 10.1109/T-ED.1963.15090.
  • R. A. White, “Cold cathode operation of a hot cathode magnetron,” in IEEE Trans. Electron Devices, Vol. 10, no. 1, pp. 59–59, Jan. 1963. Doi: 10.1109/T-ED.1963.15080.
  • D. Vavriv, “Spatial-harmonic magnetrons with cold secondary-emission cathode: Towards unlimited lifetime,” 2010 International Conference on the Origins and Evolution of the Cavity Magnetron, Vol. 1, pp. 64–66, 2010.
  • N. I. Avtomonov, V. D. Naumenko, D. M. Vavriv, K. Schunemann, A. N. Suvorov, and V. A. Markov, “Toward terahertz magnetrons: 210-GHz spatial-harmonic magnetron With cold cathode,” IEEE Trans. Electron Devices, Vol. 59, no. 12, pp. 3608–3611, Dec. 2012. Doi: 10.1109/TED.2012.2217974.
  • N. N. Esfahani, and K. Schunemann, “Particle-in-Cell simulation of a spatial-harmonic magnetron With a cold secondary emission cathode,” IEEE Trans. Plasma Sci., Vol. 40, no. 12, pp. 3512–3519, Dec. 2012. Doi: 10.1109/TPS.2012.2222934.
  • S. Li, T. Yan, F. Li, J. Yang, and W. Shi, “Experimental study of millimeter magnetrons with cold cathodes,” IEEE Trans. Plasma Sci., Vol. 44, no. 8, pp. 3512–3519, Aug. 2016.
  • S. K. Vyas, N. Shekhawatand, and T. Tiwari, “Thermal analysis and fabrication of cathode for S-band pulsed magnetron”,” Physical & Environmental Scie. Bulletin, Vol. 5, no. 1 & 2, pp. 1–4, Jan. 2018.
  • R. K. Verma, S. Maurya, and V. P. Singh, “Study of mode control in long-AnodeHigh-power pulse magnetron,” IEEE Trans. on Plasma Science, Vol. 42, no. 12, pp. 4010–4014, Dec. 2014.
  • S. Michizono, Y. Saito, T. Matsumoto, S. Fukuda, and S. Anami, “RF-windows used at the KEKB linac,” Appl. Surf. Sci., Vol. 169, pp. 742–746, 2001.
  • S. Michizono, and Y. Saito, “Operational status of the vacuum system of the 300m Surface discharge and surface potential on alumina rf windows,” Vacuum, Vol. 60, no. 1-2, pp. 235–239, 2001.
  • T. Tiwari. Study of dielectric window for X-band linac,” in 2008 International Conference on Recent Advances in Microwave Theory and Applications. IEEE, 2008, pp. 132–134.
  • Y. Joo, B.-J. Lee, S.-H. Kim, H.-S. Kong, W. Hwang, S. Roh, and J. Ryu, “Development of new S-band RF window for stable high-power operation in linear accelerator RF system,” Nucl. Instrum. Methods Phys. Res., Sect. A, Vol. 866, pp. 1–8, 2017.
  • M. K. Joshi, T. Tiwari, and R. Bhattacharjee. Design and multipactor analysis of a high-power RF window,” in 2019 International Vacuum Electronics Conference (IVEC). IEEE, 2019, pp. 1–2.
  • A. Sil, N. K. Samria, and D. S. Venkateswarlu, “Thermal analysis of a cathode: temperature distribution and warm-up time,” Appl. Surf. Sci., Vol. 45, no. 3, pp. 229–245, 1990.
  • H. K. Dwivedi, and D. S. Venkateswarlu, “Thermal design considerations for fast warm-up cathodes in MM wave magnetrons,” IEEE Trans. Electron Devices, Vol. 43, no. 11, pp. 2011–2018, 1996.
  • M. A. Sattorov, A. Bera, A. Sharma, W.-J. Kang, O.-J. Kwon, S.-S. Jung, D.-H. Kim, et al., “Thermal analysis of a strapped magnetron,” IEEE Trans. Electron Devices, Vol. 58, no. 8, pp. 2784–2788, 2011.
  • T. Feng, D.-P. Gao, and Z.-C. Zhang. Thermal analysis of a high-power Continuous Wave Magnetron cavity,” in 2015 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2015, pp. 1-2.
  • S. Maurya, S. Prasad, M. Kumar, P. Chaudhary, N. Shekhawat, and V. V. P. Singh. Electromagnetic design and analysis of a high power tunable pulsed magnetron using MAGIC-3D,” in 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011, pp. 441–442.
  • H. J. Kim, and J. J. Choi, “Characterization of a 16-vane strapped magnetron oscillator by three-dimensional particle-in-cell code simulations,” Curr. Appl. Phys., Vol. 6, pp. 66–70, 2006.
  • S. Maurya, V. V. P. Singh, and S. Prasad. Study of Mode Control in an S-Band Pulsed Tunable Magnetron,” in Proceedings of the international conference on microwaves 08.
  • A. Leggieri, D. Passi, G. Felici, S. De Stefano, and F. Di Paolo, “Magnetron high power system design,” International Journal of Simulation Systems, Sci. & Technology, Vol. 16, no. 1, pp. 1–13, 2015. DOI: 10.5013/IJSSST.a.16.01.03.
  • M. K. Joshi, S. K. Vyas, T. Tiwari, and R. Bhattacharjee. Particle-in-Cell Simulation and Analysis of 28-Vane Megawatt-Class Pulsed Power Coaxial Magnetron in X-Band,” Accepted for publication in IEEE Transactions on Plasma Science, 2020.
  • J. Lee, G. Kim, S. Kim, Y. Lee, I. S. Kim, and J. Kim. Investigation of X-Band Coaxial Magnetron using Three-dimensional Particle-In-Cell Simulation,” 2019 International Vacuum Electronics Conference (IVEC), Busan, Korea (South), 2019, pp. 1–2, DOI: 10.1109/IVEC.2019.8744923.
  • N. F. Alekseev, D. D. Malairov, and I. B. Bensen, “Generation of high-power oscillations with a magnetron in the centimeter band,” Proceedings of the IRE, Vol. 32, no. 3, pp. 136–139, 1944.
  • H.-G. Unger, V. D. Naumenko, J.-Y. Raguin, and D. M. Vavriv. Space-harmonic millimeter-wave magnetrons with secondary-emission cathode,” in ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No. 98EX106). IEEE, 1998, pp. 726–729.
  • S. A. Berdin, et al., “Special traits of the millimeter wave relativistic magnetron,” , Vol. 3, pp. 54–59, 2014.
  • Y. Yin, M. Song, T. Hu, H. Li, B. Wang, and L. Meng, “External coupled millimeter wave magnetron With simple diffraction output,” IEEE Electron Device Lett., Vol. 40, no. 8, pp. 1305–1308, 2019.
  • H. Obata, N. Tsuji, and K. Furumoto, “Frequency bandwidth narrowing technology for pulsed magnetrons,” IEEE Trans. Electron Devices, Vol. 56, no. 12, pp. 3191–3195, Dec. 2009.
  • J. Benford, H. Sze, W. Woo, R. R. Smith, and B. Harteneck, “Phase locking of relativistic magnetrons,” Phys. Rev. Lett, Vol. 62, pp. 969–971, 1989.
  • V. B. Neculaes, et al., “Magnetic priming effects on noise, startup, and mode competition in magnetrons,” IEEE Trans. Plasma Sci., Vol. 33, no. 1, pp. 94–102, Feb. 2005.
  • A. D. Andreev. Axial strapping of a multi-core (cascaded) magnetron,” U.S. Patent 9 711 315 B2, Jul. 18, 2017.
  • T. Treado, T. A. Hansen, and D. J. Jenkins. Power-combining and Injection-Locking Magnetrons for Accelerator Applications, Vol. 2, pp. 702–704, 1991. DOI: 10.1109/PAC.1991.164412.
  • S. Li, Y. Fan, and X. Wang, “An L-band relativistic magnetron with cathode priming,” IEEE Trans. Plasma Sci., Vol. 47, no. 1, pp. 204–208, Jan. 2019.
  • J. J. Choi, H. S. Lee, K. H. Jang, S. H. Sim, and H. S. Choi, “Development of a 14-vane, double-strapped, 5.8-GHz magnetron oscillator,” J. Korean Phys. Soc., Vol. 69, no. 4, pp. 632–639, Aug. 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.