99
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Determining the optimal phenological stage for predicting common dry bean (Phaseolus vulgaris) yield using field spectroscopy

, , &
Pages 379-388 | Received 11 Nov 2016, Accepted 27 Mar 2017, Published online: 09 Jul 2017

References

  • Abdel-Rahman EM, Ahmed FB, Ismail R. 2012. Random forest regression for sugarcane yield prediction in Umfolozi, South Africa based on Landsat TM and ETM+ derived spectral vegetation indices. In: Gonçalves JF, Correia KD (eds), Sugarcane: production, cultivation and uses. Hauppauge: Nova Science Publishers. pp 257–284.
  • Abdel-Rahman EM, Mutanga O, Odindi J, Adam E, Odindo A, Ismail R. 2014. A comparison of partial least squares (PLS) and spare partial least squares regression for predicting yield of Swiss chard grown under different irrigation water sources using hyperspectral data. Computers and Electronics in Agriculture 106: 11–19. doi: 10.1016/j.compag.2014.05.001
  • Acosta DE, Ramírez A, Domingo M, Gutiérrez LR, Medina GG. 2007. An empirical model to predict yield of rainfed dry bean with multi-year data. Revista Fitotecnia Mexicana 30: 311–319.
  • Almeida TIR, de Souza Filho CR, Rossetto R. 2006. ASTER and Landsat ETM+ images applied to sugarcane yield forecast. International Journal of Remote Sensing 27: 4057–4069. doi: 10.1080/01431160600857451
  • Analytical Spectral Devices. 2005. Handheld spectroradiometer: user guide version 4.05. Boulder: Analytical Spectral Devices Inc.
  • Analytical Spectral Devices. 2008. ViewSpec Pro™ User Manual. Boulder: Analytical Spectral Devices Inc.
  • Aparicio N, Villegas D, Casadesus J, Araus JL, Royo C. 2000. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agronomy Journal 92: 83–91. doi: 10.2134/agronj2000.92183x
  • Beninger CW, Hosfield GL. 2003. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat colour genotypes. Journal of Agricultural and Food Chemistry 51: 7879–7883. doi: 10.1021/jf0304324
  • Bleiholder H, Weber E, Lancashire PD, Feller C, Buhr L, Hess M, Wicke H, Hack H, Meier U, Klose R, van den Boom T. 2001. Growth stages of mono-and dicotyledonous plants (2nd edn). BBCH Monograph. Berlin/Braunschweig: Federal Biological Research Centre for Agriculture and Forestry.
  • Chandhla J. 2001. Optimisation of dry bean (Phaseolus vulgaris L.) seed production under greenhouse conditions. MSc thesis, University of Pretoria, South Africa.
  • Chung D, Keles S. 2010. Sparse partial least squares classification for high dimensional data. Statistical Applications in Genetics and Molecular Biology 9: 17–36. doi: 10.2202/1544-6115.1492
  • Curran PJ. 1994. Imaging spectrometry-its present and future role in environmental research In: Hill J, Mégier J (eds), Imaging spectrometry: a tool for environmental observations. London: Kluwer Academic Publishers. pp 1–23.
  • DAFF (Department of Agriculture, Forestry and Fisheries). 2010. Dry beans: production guidelines. Pretoria: DAFF.
  • DAFF. 2013. Trends in the agricultural sector. Pretoria: DAFF.
  • Darvishzadeh R, Skidmore A, Atzberg C, van Wieren S. 2008. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. International Journal of Applied Earth Observation and Geoinformation 10: 358–373. doi: 10.1016/j.jag.2008.02.005
  • Debouck D, Hidalgo R. 1986. Morphology of the common bean plant Phaseolus vulgaris. Cali: CIAT.
  • Fu Y, Yang G, Wang J, Song X, Feng H. 2014. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Computers and Electronics in Agriculture 100: 51–59. doi: 10.1016/j.compag.2013.10.010
  • Fuentes J, Poncela P, Rodríguez J. 2015. Sparse partial least squares in time series for macroeconomic forecasting. Journal of Applied Econometrics 30: 576–595. doi: 10.1002/jae.2384
  • Goa X, Huete AR, Ni W, Feng H. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment 74: 609–620. doi: 10.1016/S0034-4257(00)00150-4
  • Huang Z, Turner BJ, Dury SJ, Wallis IR, Foley WJ. 2004. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment 93: 18–29. doi: 10.1016/j.rse.2004.06.008
  • Kancheva R. 2003. Main principles in vegetation spectrometric studies. Geology and Geophysics 46: 351–353.
  • Kornegay J, White JW, de la Cruz O. 1992. Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62: 171–180. doi: 10.1007/BF00041751
  • Kramer N, Sugiyama M. 2011. The degrees of freedom of partial least squares regression. Journal of the American Statistical Association 106: 697–705. doi: 10.1198/jasa.2011.tm10107
  • Ma BL, Dwyer LM, Costa CC, Cober ER, Morrison MJ. 2001. Early prediction of soybean yield from canopy reflectance measurements. Agronomy Journal 93: 1227–1234. doi: 10.2134/agronj2001.1227
  • Makanda I, Derera J, Tongoona P, Sibiya J. 2012. Genetic and GGE biplot analyses of sorghum germplasm for stem sugar traits in southern Africa. African Journal of Agricultural Research 72: 212–223.
  • McCuen RH, Knight Z, Cutte AG. 2006. Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engineering 11: 597–602. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
  • Monteiro PFC, Filho RA, Xavier AC, Monteiro ROC. 2012. Assessing biophysical variable parameters of bean crop with hyperspectral measurements. Scientia Agricola 69: 87–94. doi: 10.1590/S0103-90162012000200001
  • Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosystems Engineering 114: 358–371. doi: 10.1016/j.biosystemseng.2012.08.009
  • Nguyen HT, Kim JH, Nguyen AT, Nguyen LT, Shin JC, Lee BW. 2006. Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice. Precision Agriculture 7: 249–264. doi: 10.1007/s11119-006-9010-0
  • Nuarsa IW, Nishio F, Hongo C. 2011. Relationship between rice spectral and rice yield using MODIS data. Journal of Agricultural Science 3: 80–88.
  • Oliveira ECD, Costa JMND, Júnior P, Ferreira WPM, Justino FB, Neves LDO. 2012. The performance of the CROPGRO model for bean (Phaseolus vulgaris L.) yield simulation. Acta Scientiarum Agronomy 34: 239–246.
  • Raun WR, Solie JB, Johnson GV, Stone ML, Lukina EV, Thomason WE, Schepers JS. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal 93: 131–138. doi: 10.2134/agronj2001.931131x
  • R Develpoment Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Repinski SL, Kwak M, Gepts P. 2012. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theoretical and Applied Genetics 124: 1539–1547. doi: 10.1007/s00122-012-1808-8
  • Serrano L, Filella I, Penuelas J. 2000. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Science 40: 723–731. doi: 10.2135/cropsci2000.403723x
  • Siddiq M, Ravi R, Harte JB, Dolan KD. 2010. Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT-Food Science and Technology 43: 232–237. doi: 10.1016/j.lwt.2009.07.009
  • Ustin SL, Gitelson AA, Jacquemound S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment 113: 567–577. doi: 10.1016/j.rse.2008.09.013
  • Weber VS, Araus JL, Cairns E, Sanchez C, Melchinger AE, Orsini E. 2012. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Research 128: 82–90. doi: 10.1016/j.fcr.2011.12.016
  • White JW, Hoogenboom G, Jones JW, Boote KJ. 1995. Evaluation of the dry bean model BEANGRO V1.01 for crop production research in a tropical environment. Experimental Agriculture 31: 241–254. doi: 10.1017/S001447970002531X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.