Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 28, 2007 - Issue 3-4
256
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

COORDINATION AND BIOINORGANIC CHEMISTRY OF ARYL-APPENDED TRIS(2-PYRIDYLMETHYL)AMINE LIGANDS

Pages 123-171 | Published online: 05 Sep 2007

REFERENCES

  • Blackman , A. G. 2005 . The coordination chemistry of tripodal tetraamine ligands . Polyhedron , 24 , 1 – 39 .
  • Berreau , L. M. 2006 . Bioinorganic chemistry of group 12 complexes supported by tetradentate tripodal ligands having internal hydrogen bond donors . Eur. J. Inorg. Chem. , 273 – 283 .
  • Wada , A. , S. Yamaguchi , K. Jitsukawa , and H. Masuda , 2005 . Preparation of a hydroperoxo zinc(II) intermediate . Angew. Chem. Int. Ed. , 44 , 5698 – 5701 .
  • Mareque-Rivas , J. C. , R. Prabaharan , and R. T. M. de Rosales , 2004. Relative importance of hydrogen bonding and coordinating groups in modulating zinc-water acidity. Chem. Commun. , 76–77.
  • Arii , H. , Y. Funahashi , K. Jitsukawa , and H. Masuda , 2003 . Preparation and structural characterization of a novel dicoper(II) complex with a terminal hydroxide: A structural model of an active site in phosphohydrolases . Dalton Trans. , 2115 – 2116 .
  • Yamaguchi , S. , A. Wada , Y. Funahashi , S. Nagatomo , T. Kitagawa , K. Jitsukawa , and H. Masuda , 2003 . Thermal stability and absorption spectroscopic behavior of (µ-peroxo)dicopper complexes regulated with intramolecular hydrogen bonding interactions . Eur. J. Inorg. Chem. , 4378 – 4386 .
  • Yamaguchi , S. , S. Nagatomo , T. Kitagawa , Y. Funahashi , T. Ozawa , K. Jitsukawa , and H. Masuda , 2003 . Copper hydroperoxo species activated by hydrogen bonding interaction with its distal oxygen . Inorg. Chem. , 42 , 6968 – 6970 .
  • Yamaguchi , S. , I. Tokairin , Y. Wakita , Y. Funahashi , K. Jitsukawa , and H. Masuda , 2003 . Preparation and characterization of hydroxo-zinc(II) complex surrounded with hydrogen bonding and hydrophobic interaction groups. A structural/functional model of carbonic anhydrases . Chem. Lett. , 32 , 406 – 407 .
  • Ogo , S. , R. Yamahara , M. Roach , T. Suenobu , M. Aki , T. Ogura , T. Kitagawa , H. Masuda , S. Fukuzumi , and Y. Watanabe , 2002 . Structural and spectroscopic features of a cis (hydroxo)-Fe(III)-(carboxylato) configuration as an active site model for lipoxygenases . Inorg. Chem. , 41 , 5513 – 5520 .
  • Wada , A. , S. Ogo , Y. Watanabe , M. Mukai , T. Kitagawa , K. Jitsukawa , H. Masuda , and H. Einaga , 1999 . Synthesis and characterization of novel alkylperoxo mononuclear iron(III) complexes with a tripodal pyridylamine ligand: A model for peroxo intermediates in reactions catalyzed by non-heme iron enzymes . Inorg. Chem. , 38 , 3592 – 3593 .
  • Wada , A. , S. Ogo , S. Nagatomo , T. Kitagawa , Y. Watanabe , K. Jitsukawa , and H. Masuda , 2002 . Reactivity of hydroperoxide bound to a mononuclear non-heme iron site . Inorg. Chem. , 41 , 616 – 618 .
  • Jitsukawa , K. , M. Harata , H. Arii , H. Sakurai , and H. Masuda , 2001 . SOD activities of the copper complexes with tripodal polypyridylamine ligands having a hydrogen bonding site . Inorg. Chim. Acta. , 324 , 108 – 116 .
  • Ogo , S. , S. Wada , Y. Watanabe , M. Iwase , A. Wada , M. Harata , K. Jitsukawa , H. Masuda , and H. Einaga , 1998 . Synthesis, structure, and spectroscopic properties of [FeIII(tnpa)(OH)(PhCOO)]ClO4: A model complex for an active form of soybean lipoxygenase-1 . Angew. Chem. Int. Ed. Engl. , 37 , 2102 – 2104 .
  • Wada , A. , M. Harata , K. Hasegawa , K. Jitsukawa , H. Masuda , M. Mukai , T. Kitagawa , and H. Einaga , 1998. Structural and spectroscopic characterization of a mononuclear hydroperoxo-copper(II) complex with tripodal pyridylamine ligands. Angew. Chem. Int. Ed. Engl. , 37, 798–799.
  • Harata , M. , K. Hasegawa , K. Jitsukawa , H. Masuda , and H. Einaga , 1998 . Preparations, structures, and properties of copper(II) complexes with a new tripodal tetradentate ligand, N-(2-pyridylmethyl)bis(6-pivaloylamido-2-pyridylmethyl)amine, and reactivities of the Cu(I) complex with dioxygen . Bull. Chem. Soc. Jpn. , 71 , 1031 – 1038 .
  • Harata , M. , K. Jitsukawa , H. Masuda , and H. Einaga , 1998 . Preparations, structures, and properties of Cu(II) complexes with tripodal tetradentate ligand, tris(6-pivaloylamino-2-pyridylmethyl)amine (htppa), and reaction of its Cu(I) complex with dioxygen . Bull. Chem. Soc. Jpn. , 71 , 637 – 645 .
  • Berreau , L. M. , S. Mahapatra , J. A. Halfen , V. G. Young , Jr. , and W. B. Tolman , 1996 . Independent synthesis and structural characterization of a mononuclear copper-hydroxide complex previously assigned as a copper-superoxide species . Inorg. Chem. , 35 , 6339 – 6342 .
  • Pascher , T. , B. G. Karlsson , M. Nordling , B. G. Malmstrom , and T. Vanngard , 1993 . Reduction potentials and their pH dependence in site-directed-mutant forms of azurin from Pseudomonas aeruginosa . Eur. J. Biochem. , 212 , 289 – 296 .
  • Parks , J. E. , B. E. Wagner , and R. H. Holm , 1971 . Three-dimensional macrocyclic encapsulation reactions. II. Synthesis and properties of nonoctahedral clathro chelates derived from tris(2-aldoximo-6-pyridyl)phosphine and boron trifluoride or tetrafluoroborate . Inorg. Chem. , 10 , 2472 – 2478 .
  • Mandon , D. , A. Nopper , T. Litrol , and S. Goetz , 2001 . Tridentate coordination of monosubstituted derivatives of the tris(2-pyridylmethyl)amine ligand to FeCl3: Structures and spectroscopic properties of [((2-bromopyridyl)methyl)bis-(2-pyridylmethyl)]amine FeIIICl3 and [(((2-p-methoxyphenyl)pyridyl)methyl)bis(2-pyridylmethyl)]amine FeIIICl3 and comparison with the [bis(2-pyridylmethyl)]amine FeIIICl3 complex . Inorg. Chem. , 40 , 4803 – 4806 .
  • Chuang , C. , K. Lim , Q. Chen , J. Zubieta , and J. W. Canary , 1995 . Synthesis, cyclic voltammetry, and X-ray crystal structures of copper(I) and copper(II) complexes of tris((6-phenyl-2-pyridyl)methyl)amine (TPPA) . Inorg. Chem. , 34 , 2562 – 2568 .
  • Makowska-Grzyska , M. M. , E. Szajna , C. Shipley , A. M. Arif , M. H. Mitchell , J. A. Halfen , and L. M. Berreau , 2003 . First row divalent transition metal complexes of aryl-appended tris((pyridyl)methyl)amine ligands: Syntheses, structures, electrochemistry, and hydroxamate binding properties . Inorg. Chem. , 42 , 7472 – 7488 .
  • Jensen , M. P. , S. J. Lange , M. P. Mehn , E. L. Que , and L. Que , Jr. , 2003. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant. J. Am. Chem. Soc. , 125, 2113–2128.
  • Machkour , A. , N. K. Thallaj , L. Benhamou , M. Lachkar , and D. Mandon , 2006 . The coordination chemistry of FeCl3 and FeCl2 to bis[2-(2,3-dihydroxyphenyl)-6-pyridylmethyl](2-pyridylmethyl)amine: Access to a diiron(III) compound with an unusual petagonal-bipyramidal/square pyramidal environment . Chem. Eur. J. , 12 , 6660 – 6668 .
  • Thallaj , N. K. , A. Machkour , D. Mandon , and R. Welter , 2005 . Square pyramidal geometry around the metal and tridentate coordination mode of the tripod in the [6-(3′-cyanophenyl)-2-pyridylmethyl]bis(2-pyridylmethyl)amine FeCl2 Complex: A solid state effect . New J. Chem. , 29 , 1555 – 1558 .
  • Canary , J. W. , C. S. Allen , J. M. Castagnetto , Y.-H. Chiu , P. J. Toscano , and Y. Wang , 1998 . Solid state and solution characterization of chiral, conformationally mobile tripodal ligands . Inorg. Chem. , 37 , 6255 – 6262 .
  • Chuang , C.-L. , K. Lim , and J. W. Canary , 1995 . The influence of phenyl substituents on the redox potentials of sterically hindered tripodal ligand/copper complexes . Supramolecular Chemistry. , 5 , 39 – 43 .
  • He , Z. , D. C. Craig , and S. B. Colbran , 2002 . Structures and properties of 6-aryl substituted tris(2-pyridylmethyl)amine transition metal complexes . J. Chem. Soc., Dalton Trans. , 4224 – 4235 .
  • Chuang , C.-L. , O. dos Santos , X. Xu , and J. W. Canary , 1997 . Synthesis and cyclic voltammetry studies of copper complexes of bromo- and alkoxyphenyl-substituted derivatives of tris(2-pyridylmethyl)amine: Influence of cation-alkoxy interactions on copper redox potentials . Inorg. Chem. , 36 , 1967 – 1972 .
  • Rudzka , K. , M. M. Makowska-Grzyska , E. Szajna , A. M. Arif , and L. M. Berreau , 2005 . Neutral acetohydroxamic acid coordination to a mononuclear Ni(II) center stabilized by an intramolecular hydrogen-bonding interaction . Chem. Commun. , 489 – 491 .
  • Rudzka , K. , A. M. Arif , and L. M. Berreau , 2005 . Chemistry of a Ni(II) acetohydroxamic acid complex: Formation, reactivity with water, and attempted preparation of zinc and cobalt analogues . Inorg. Chem. , 44 , 7234 – 7242 .
  • Zhu , L. , O. dos Santos , C. W. Koo , M. Rybstein , L. Pape , and J. W. Canary , 2003 . Geometry-dependent phosphodiester hydrolysis catalyzed by binuclear copper complexes . Inorg. Chem. , 42 , 7912 – 7920 .
  • Gross , F. and H. Vahrenkamp , 2005 . Zinc complex chemistry of N,N,O ligands providing a hydrophobic cavity . Inorg. Chem. , 44 , 3321 – 3329 .
  • Mandon , D. , A. Machkour , S. Goetz , and R. Welter , 2002. Trigonal bipyramidal geometry and tridentate coordination mode of the tripod in FeCl2 complexes with tris(2-pyridylmethyl)amine derivatives bis-α-substituted with bulky groups. Structures and spectroscopic comparative studies. Inorg. Chem. , 41, 5364–5372.
  • Lange , S. J. , H. Miyake , and L. Que , Jr. , 1999 . Evidence for a nonheme Fe(IV)=O species in the intramolecular hydroxylation of a phenyl moiety . J. Am. Chem. , 121 , 6330 – 6331 .
  • Szajna , E. , P. Dobrowolski , A. L. Fuller , A. M. Arif , and L. M. Berreau , 2004 . NMR studies of mononuclear octahedral Ni(II) complexes supported by tris((2-pyridyl)methyl)amine-type ligands . Inorg. Chem. , 43 , 3988 – 3997 .
  • Jensen , M. P. , E. L. Que , X. Shan , E. Rybak-Akimova , and L. Que , Jr. 2006 . Spectroscopic and kinetic studies of the reaction of [CuI(6-PhTPA)]+with O2 . Dalton Trans. , 3523 – 3527 .
  • He , Z. , S. B. Colbran , and D. C. Craig , 2003 . Could redox-switched binding of a redox-active ligand to a copper(II) centre drive a conformational proton pump gate? A synthetic model study . Chem. Eur. J. , 9 , 116 – 129 .
  • Xu , X. , K. J. Maresca , D. Das , S. Zahn , J. Zubieta , and J. W. Canary , 2002 . Crystal-driven distortion of ligands in copper coordination complexes: Conformational pseudo-enantiomers . Chem. Eur. J. , 8 , 5679 – 5683 .
  • Nishio , M. , Y. Umezawa , M. Hirota , and Y. Takeuchi , 1995 . The CH/π interaction: Significance in molecular recognition . Tetrahedron. , 51 , 8665 – 8701 .
  • Nishio , M. , M. Hirota , and Y. Umezawa , 1998 . The CH/π Interaction: Evidence, Nature and Consequences , Wiley-VCH , New York .
  • Huheey , J. E. , E. A. Keiter , and R. L. Keiter , 1993 . Inorganic Chemistry: Principles of Structure and Reactivity, , 4th ed. , HarperCollins College Publishers , New York .
  • Addison , A. W. , T. N. Rao , J. Reedijk , J. van Rijn , and G. C. Verschoor , 1984 . Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulfur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate . J. Chem. Soc., Dalton Trans. , 1349 – 1356 .
  • Diebold , A. and K. S. Hagen , 1998 . Iron(II) polyamine chemistry: Variation of spin state and coordination number in solid state and solution with iron(II) tris(2-pyridylmethyl)amine complexes . Inorg. Chem. , 37 , 215 – 223 .
  • Gütlich , P. 1981 . Spin crossover in iron complexes . Struct. Bonding. , 44 , 83 .
  • Gütlich , P. , Y. Garcia , and H. A. Goodwin , 2000 . Spin crossover phenomena in Fe(II) complexes . Chem. Soc. Rev. , 29 , 419 – 427 .
  • Toftlund , H. 1989 . Spin equilibria in iron(II) complexes . Coord. Chem. Rev. , 94 , 67 – 108 .
  • Jolly , W. L. 1970. The Synthesis and Characterization of Inorganic Compounds , Waveland Press , Prospect Heights , IL.
  • Lever , A. B. P. 1984 . Inorganic Electronic Spectroscopy, , 2nd ed. , Elsevier , Amsterdam .
  • Evans , D. F. 1959 . The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance . J. Chem. Soc. , 2003 – 2005 .
  • Szajna , E. , A. M. Arif , and L. M. Berreau , 2005 . Aliphatic carbon-carbon bond cleavage reactivity of a mononuclear Ni(II) cis-β-keto-enolate complex in the presence of base and O2: A model reaction for acireductone dioxygenase (ARD) . J. Am. Chem. Soc. , 127 , 17186 – 17187 .
  • Szajna-Fuller , E. , K. Rudzka , A. M. Arif , and L. M. Berreau , 2007 . Acireductone dioxygenase (ARD)-type reactivity of a Ni(II) Complex having monoanionic coordination of a model substrate: Product identification and comparisons to unreactive analogues . Inorg. Chem. , 46 , 5499 – 5507 .
  • Szajna-Fuller , E. , B. M. Chambers , A. M. Arif , and L. M. Berreau , 2007 . Carboxylate coordination chemistry of a mononuclear Ni(II) center in a hydrophobic or hydrogen bond donor secondary environment: Relevance to acireductone dioxygenases . Inorg. Chem. , 46 , 5486 – 5498 .
  • Rudzka , K. , A. M. Arif , and L. M. Berreau , 2006 . Glyoxalase I-type hemithioacetal isomerization reactivity of a mononuclear Ni(II) deprotonated amide complex . J. Am. Chem. Soc. , 128 , 17018 – 17023 .
  • Pavon , J. A. and P. F. Fitzpatrick , 2006 . Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation . Biochemistry , 45 , 11030 – 11037 .
  • Fitzpatrick , P. F. 2003 . Mechanism of aromatic amino acid hydroxylation . Biochemistry , 42 , 14083 – 14091 .
  • Fitzpatrick , P. F. 2000 . The aromatic amino acid hydroxylases . Adv Enzymol Relat Areas Mol Biol. , 74 , 235 – 294 .
  • Moran , G. R. , A. Derecskei-Kovacs , P. J. Hillas , and P. F. Fitzpatrick , 2000 . On the catalytic mechanism of tryptophan hydroxylase . J. Am. Chem. Soc. , 122 , 4535 – 4541 .
  • Fitzpatrick , P. F. 1999 . Tetrahydropterin-dependent amino acid hydroxylases . Annu. Rev. Biochem. , 68 , 355 – 381 .
  • Goodwill , K. E. , C. Sabatier , C. Marks , R. Raag , P. F. Fitzpatrick , and R. C. Stevens , 1997 . Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases . Nat. Struct. Biol. , 4 , 578 – 585 .
  • Flatmark , T. and R. C. Stevens , 1999 . Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms . Chem. Rev. , 99 , 2137 – 2160 .
  • Hillas , P. J. and P. F. Fitzpatrick , 1996. A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines. Biochemistry , 35, 6969–6975.
  • Kappock , T. J. and J. P. Caradonna , 1996 . Pterin-dependent amino acid hydroxylases . Chem. Rev. , 96 , 2659 – 2756 .
  • Frantom , P. A. , R. Pongdee , G. A. Sulikowksi , and P. F. Fitzpatrick , 2002 . Intrinsic deuterium isotope effects on benzylic hydroxylation by tyrosine hydroxylase . J. Am. Chem. Soc. , 124 , 4202 – 4203 .
  • Jensen , M. P. , M. P. Mehn , and L. Que , Jr. , 2003 . Intramolecular aromatic amination through iron-mediated nitrene transfer . Angew. Chem. Int. Ed. , 42 , 4357 – 4360 .
  • Solomon , E. I. , U. M. Sundaram , and T. E. Machonkin , 1996 . Multicopper oxidases and oxygenases . Chem. Rev. , 96 , 2563 – 2606 .
  • Tolman , W. B. 2006 . Using synthetic chemistry to understand copper protein active sites: A personal perspective . J. Biol. Inorg. Chem. , 11 , 261 – 271 .
  • Mirica , L. M. , D. J. Rudd , M. A. Vance , E. I. Solomon , K. O. Hodgson , B. Hedman , and T. D. P. Stack , 2006 . µ-η 2:η 2-Peroxodicopper(II) complex with a secondary diamine ligand: A functional model of tyrosinase . J. Am. Chem. Soc. , 128 , 2654 – 2665 .
  • Mirica , L. V. , M. Vance , D. J. Rudd , B. Hedman , K. O. Hodgson , E. I. Solomon , and T. D. P. Stack , 2005 . Tyrosinase reactivity in a model complex: An alternative hydroxylation mechanism . Science , 308 , 1890 – 1892 .
  • Lewis , E. A. and W. B. Tolman , 2004 . Reactivity of dioxygen-copper systems . Chem. Rev. , 104 , 1047 – 1076 .
  • Palavicini , S. , A. Granata , E. Monzani , and L. Casella , 2005 . Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: Further insight into the mechanism of tyrosinase . J. Am. Chem. Soc. , 127 , 18031 – 18036 .
  • Itoh , S. 2004 . In Comprehensive Coordination Chemistry II , McCleverty , J. A. and T. J. Meyer (eds.), vol. 8 , pp. 369 – 393 , Elsevier , Amsterdam .
  • Hatcher , L. Q. and K. D. Karlin , 2004 . Oxidant types in copper-dioxygen chemistry: The ligand coordination defines the Cu(n)-O2 structure and subsequent reactivity . J. Biol. Inorg. Chem. , 9 , 669 – 683 .
  • Mirica , L. M. , M. Vance , D. J. Rudd , B. Hedman , K. O. Hodgson , E. I. Solomon , and T. D. P. Stack , 2002 . A stabilized µ-η 2:η 2-peroxodicopper(II) complex with a secondary diamine ligand and its tyrosinase-like reactivity . J. Am. Chem. Soc. , 124 , 9332 – 9333 .
  • Pidcock , E. , H. V. Obias , C. X. Zhang , K. D. Karlin , and E. I. Solomon , 1998 . Investigation of the reactive oxygen intermediate in an arene hydroxylation reaction performed by xylyl-bridged binuclear copper complexes . J. Am. Chem. Soc. , 120 , 7841 – 7847 .
  • Holland , P. L. , K. R. Rogers , and W. B. Tolman , 1999. Is the bis(µ-oxo)dicopper core capable of hydroxylating an arene? Angew. Chem. Int. Ed. , 38, 1139–1142.
  • Wray , J. W. and R. H. Abeles , 1993 . A bacterial enzyme that catalyzes the formation of carbon monoxide . J. Biol. Chem. , 268 , 21466 – 21469 .
  • Myers , R. W. , J. W. Wray , S. Fish , and R. H. Abeles , 1993 . Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae . J. Biol. Chem. , 268 , 24785 – 24791 .
  • Wray , J. W. and R. H. Abeles , 1995 . The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases . J. Biol. Chem. , 270 , 3147 – 3153 .
  • Dai , Y. , P. C. Wensink , and R. H. Abeles , 1999 . One protein, two enzymes . J. Biol. Chem. , 274 , 1193 – 1195 .
  • Dai , Y. , T. C. Pochapsky , and R. H. Abeles , 2001 . Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumoniae . Biochemistry , 40 , 6379 – 6387 .
  • Al-Mjeni , F. , T. Ju , T. C. Pochapsky , and M. J. Maroney , 2002 . XAS investigation of the structure and function of Ni in acireductone dioxygenase . Biochemistry , 41 , 6761 – 6769 .
  • Pochapsky , T. C. , S. S. Pochapsky , T. Ju , H. Mo , F. Al-Mjeni , and M. J. Maroney , 2002 . Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae . Nat. Struct. Biol. , 9 , 966 – 972 .
  • Pochapsky , T. C. , S. S. Pochapsky , T. Ju , C. Hoefler , and J. Liang , 2006 . A refined model for the structure of acireductone dioxygenase from Klebsiella ATCC 8724 incorporating residual dipolar couplings . J. Biomol. NMR. , 34 , 117 – 127 .
  • Ju , T. , R. B. Goldsmith , S. C. Chai , M. J. Maroney , S. S. Pochapsky , and T. C. Pochapsky , 2006 . One protein, two enzymes revisited: A structural entropy switch interconverts the two isoforms of acireductone dioxygenase . J. Mol. Biol. , 363 , 823 – 834 .
  • Pochapsky , T. C. , T. Ju , M. Dang , R. Beaulieu , G. M. Pagini , and B. OuYang , 2007 . In Nickel and Its Surprising Impact in Nature: Metal Ions in Life Sciences , Sigel , A. , H. Sigel , and R. K. O. Sigel (eds.), vol. 2 , Wiley , Chichester, UK .
  • Marmion , C. J. , D. Griffith , and K. B. Nolan , 2004 . Hydroxamic acids—an intriguing family of enzyme inhibitors and biomedical ligands . Eur. J. Inorg. Chem. , 3003 – 3016 .
  • Dixon , N. E. , C. Gazzola , J. J. Watters , R. l. Blakeley , and B. Zerner , 1975 . Inhibition of jack bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. Equivalent weight for urease . J. Am. Chem. Soc. , 97 , 4130 – 4131 .
  • Dixon , N. E. , J. A. Hinds , A. K. Fihelly , C. Gazzola , D. J. Winzor , R. L. Blakeley , and B. Zerner , 1980. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Can. J. Biochem. , 58, 1323–1334.
  • Mobley , H. L. T. and R. P. Hausinger , 1989 . Microbial ureases: Significance, regulation, and molecular characterization . Microbiol. Rev. , 53 , 85 – 108 .
  • Mobley , H. L. T. , M. D. Island , and R. P. Hausinger , 1995 . Molecular biology of microbial ureases . Microbiol. Rev. , 59 , 451 – 480 .
  • Todd , M. J. and R. P. Hausinger , 1989 . Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site . J. Biol. Chem. , 264 , 15835 – 15842 .
  • Pearson , M. A. , L. O. Michel , R. P. Hausinger , and P. A. Karplus , 1997 . Structures of cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease . Biochemistry , 36 , 8164 – 8172 .
  • Benini , S. , W. R. Rypniewski , K. S. Wilson , S. Miletti , S. Ciurli , and S. Mangani , 2000 . The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution . J. Biol. Inorg. Chem. , 5 , 110 – 118 .
  • Stemmler , A. J. , J. W. Kampf , M. L. Kirk , and V. L. Pecoraro , 1995 . A model for the inhibition of urease by hydroxamates . J. Am. Chem. Soc. , 117 , 6368 – 6369 .
  • Arnold , M. , D. A. Brown , O. Deeg , W. Errington , W. Haase , K. Herlihy , T. J. Kemp , H. Nimir , and R. Werner , 1998 . Hydroxamate-bridged dinuclear nickel complexes as models for urease inhibition . Inorg. Chem. , 37 , 2920 – 2925 .
  • Thornalley , P. J. 1990 . The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life . Biochem. J. , 269 , 1 – 11 .
  • Clugston , S. L. , J. F. J. Barnard , R. Kinach , D. Miedema , R. Ruman , E. Daub , and J. F. Honek , 1998 . Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: Evidence for optimal activation by nickel ions . Biochemistry , 37 , 8754 – 8763 .
  • Clugston , S. L. , R. Yajima , and J. F. Honek , 2004 . Investigation of metal binding and activation of Escherichia coli glyoxalase I: Kinetic, thermodynamic and mutagenesis studies . Biochem. J. , 377 , 309 – 316 .
  • Vickers , T. J. , N. Greig , and A. H. Fairlamb , 2004 . A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major . Proc. Natl. Acad. Sci. , 101 , 13186 – 13191 .
  • He , M. M. , S. L. Clugston , J. F. Honek , and B. W. Matthews , 2000 . Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation . Biochemistry , 39 , 8719 – 8727 .
  • Klinker , E. J. , T. A. Jackson , M. P. Jensen , A. Stubna , G. Juhasz , E. L. Bominaar , E. Munck , and L. Que , Jr. , 2006. A tosylimido analogue of a nonheme oxoiron(IV) complex. Angew. Chem. Int. Ed. , 45, 7394–7397.
  • Straganz , G. D. and B. Nidetzky , 2006 . Variations of the 2-his-1-carboxylate theme in mononuclear non-heme FeII oxygenases . Chembiochem. , 7 , 1536 – 1548 .
  • Dunwell , J. M. , A. Purvis , and S. Khuri , 2004 . Cupins: The most functionally diverse protein superfamily? Phytochemistry , 65 , 7 – 17 .
  • Dunwell , J. M. , A. Culham , C. E. Carter , C. R. Sosa-Aguirre , and P. W. Goodenough , 2001 . Evolution of functional diversity in the cupin superfamily . Trends Biochem. Sci. , 26 , 740 – 746 .
  • Reinhardt , L. A. , D. Svedruzic , C. H. Chang , W. W. Cleland , and N. G. J. Richards , 2003 . Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis . J. Am. Chem. Soc. , 125 , 1244 – 1252 .
  • Zhang , Y. , M. H. Heinsen , M. Kostic , G. M. Pagani , T. V. Riera , I. Perovic , L. Hedstrom , B. B. Snider , and T. C. Pochapsky , 2004 . Analogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)pentane, an acyclic intermediate in the methionine salvage pathway: A new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca . Bioorg. Med. Chem. , 12 , 3847 – 3855 .
  • Fuller , A. L. 2005 . MS Thesis, Utah State University .
  • Fuller , A. L. , R. W. Watkins , K. R. Dunbar , A. V. Prosvirin , A. M. Arif , and L. M. Berreau , 2005 . Manganese(II) chemistry of a new N3O-donor chelate ligand: Synthesis, X-ray structures and magnetic properties of solvent- and oxalate-bound complexes . Dalton Trans. , 1891 – 1896 .
  • Glerup , J. , P. A. Goodson , D. J. Hodgson , and K. Michelsen , 1995 . Magnetic exchange through oxalate bridges: Synthesis and characterization of (µ-oxalato)dimetal(II) complexes of manganese, iron, cobalt, nickel, copper, and zinc . Inorg. Chem. , 34 , 6255 – 6264 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.