Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 38, 2018 - Issue 3
1,100
Views
37
CrossRef citations to date
0
Altmetric
Review Articles

Coordination Chemistry of Carborane Clusters: Metal-Boron Bonds in Carborane, Carboranyl, and Carboryne Complexes

& ORCID Icon

REFERENCES

  • Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science. 2000, 287, 1995–1997. DOI: 10.1126/science.287.5460.1995.
  • Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R. Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds. Science. 2002, 295, 305–308. DOI: 10.1126/science.1067074.
  • Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C−H Activation for the Construction of C−B Bonds. Chem. Rev. 2010, 110, 890–931. DOI: 10.1021/cr900206p.
  • Wang, G.; Xu, L.; Li, P. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation. J. Am. Chem. Soc. 2015, 137, 8058–8061. DOI: 10.1021/jacs.5b05252.
  • Smith, K. T.; Berritt, S.; González-Moreiras, M.; Ahn, S.; Smith, M. R.; Baik, M.-H.; Mindiola, D. J. Catalytic Borylation of Methane. Science. 2016, 351, 1424–1427. DOI: 10.1126/science.aad9730.
  • Hartwig, J. F.;. Evolution of C–H Bond Functionalization from Methane to Methodology. J. Am. Chem. Soc. 2016, 138, 2–24. DOI: 10.1021/jacs.5b08707.
  • Press, L. P.; Kosanovich, A. J.; McCulloch, B. J.; Ozerov, O. V. High-Turnover Aromatic C–H Borylation Catalyzed by POCOP-Type Pincer Complexes of Iridium. J. Am. Chem. Soc. 2016, 138, 9487–9497. DOI: 10.1021/jacs.6b03656.
  • Vidovic, D.; Pierce, G. A.; Aldridge, S. Transition Metal Borylene Complexes: Boron Analogues of Classical Organometallic Systems. Chem. Commun. 2009, 1157–1171. DOI: 10.1039/B816042B.
  • Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Electron-Precise Coordination Modes of Boron-Centered Ligands. Chem. Rev. 2010, 110, 3924–3957. DOI: 10.1021/cr900333n.
  • Braunschweig, H.; Shang, R. Reactivity of Transition-Metal Borylene Complexes: Recent Advances in B–C and B–B Bond Formation via Borylene Ligand Coupling. Inorg. Chem. 2015, 54, 3099–3106. DOI: 10.1021/acs.inorgchem.5b00091.
  • Amgoune, A.; Bourissou, D. σ-Acceptor, Z-Type Ligands for Transition Metals. Chem. Commun. 2010, 47, 859–871. DOI: 10.1039/C0CC04109B.
  • Braunschweig, H.; Dewhurst, R. D. Transition Metals as Lewis Bases: “Z-Type” Boron Ligands and Metal-To-Boron Dative Bonding. Dalton Trans. 2010, 40, 549–558. DOI: 10.1039/C0DT01181A.
  • Hill, A. F.; Lee, S. B.; Park, J.; Shang, R.; Willis, A. C. Analogies between Metallaboratranes, Triboronates, and Boron Pincer Ligand Complexes. Organometallics. 2010, 29, 5661–5669. DOI: 10.1021/om100557q.
  • Owen, G. R.;. Hydrogen Atom Storage upon Z-Class Borane Ligand Functions: An Alternative Approach to Ligand Cooperation. Chem. Soc. Rev. 2012, 41, 3535–3546. DOI: 10.1039/C2CS15346G.
  • Kameo, H.; Nakazawa, H. Recent Developments in the Coordination Chemistry of Multidentate Ligands Featuring a Boron Moiety. Chem. – Asian J. 2013, 8, 1720–1734. DOI: 10.1002/asia.201300184.
  • Yamashita, M.;. The Organometallic Chemistry of Boron-Containing Pincer Ligands Based on Diazaboroles and Carboranes. Bull. Chem. Soc. Jpn. 2015, 89, 269–281. DOI: 10.1246/bcsj.20150355.
  • Grimes, R. N.;. Carboranes, Third ed.; Academic Press: Amersterdam; Boston, 2016; ISBN 978-0-12-801894-1.
  • Grimes, R. N.;. Carboranes in the Chemist’s Toolbox. Dalton Trans. 2015, 44, 5939–5956. DOI: 10.1039/C5DT00231A.
  • Núñez, R.; Romero, I.; Teixidor, F.; Viñas, C. Icosahedral Boron Clusters: A Perfect Tool for the Enhancement of Polymer Features. Chem. Soc. Rev. 2016, 45, 5147–5173. DOI: 10.1039/C6CS00159A.
  • Dash, B. P.; Satapathy, R.; Maguire, J. A.; Hosmane, N. S. Polyhedral Boron Clusters in Materials Science. New J. Chem. 2011, 35, 1955–1972. DOI: 10.1039/C1NJ20228F.
  • Scholz, M.; Hey-Hawkins, E. Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chem. Rev. 2011, 111, 7035–7062. DOI: 10.1021/cr200038x.
  • Cerdán, L.; Braborec, J.; Garcia-Moreno, I.; Costela, A.; Londesborough, M. G. S. A Borane Laser. Nat. Commun. 2015, 6, ncomms6958. DOI: 10.1038/ncomms6958.
  • Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; De Biani, F. F.; Teixidor, F. Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chem. Rev. 2016, 116, 14307–14378. DOI: 10.1021/acs.chemrev.6b00198.
  • Hermansson, K.; Wójcik, M.; Sjöberg, S. O-,m-, and p-Carboranes and Their Anions: Ab Initio Calculations of Structures, Electron Affinities, and Acidities. Inorg. Chem. 1999, 38, 6039–6048. DOI: 10.1021/ic990381l.
  • Spokoyny, A. M.; Machan, C. W.; Clingerman, D. J.; Rosen, M. S.; Wiester, M. J.; Kennedy, R. D.; Stern, C. L.; Sarjeant, A. A.; Mirkin, C. A. A Coordination Chemistry Dichotomy for Icosahedral Carborane-Based Ligands. Nat. Chem. 2011, 3, 590–596. DOI: 10.1038/nchem.1088.
  • Fabre, B.; Clark, J. C.; Vicente, M. G. H. Synthesis and Electrochemistry of Carboranylpyrroles. Toward the Preparation of Electrochemically and Thermally Resistant Conjugated Polymers. Macromolecules. 2006, 39, 112–119. DOI: 10.1021/ma051508v.
  • Karnahl, M.; Tschierlei, S.; Erdem, Ö. F.; Pullen, S.; Santoni, M.-P.; Reijerse, E. J.; Lubitz, W.; Mixed-Valence, O. S. [Feifeii] Hydrogenase Active Site Model Complexes Stabilized by a Bidentate Carborane Bis-Phosphine Ligand. Dalton Trans. 2012, 41, 12468–12477. DOI: 10.1039/C2DT31192E.
  • Kalinin, V.; Ol’shevskaya, V. Some Aspects of the Chemical Behavior of Icosahedral Carboranes. Russ. Chem. Bull. 2008, 57, 815–836. DOI: 10.1007/s11172-008-0120-x.
  • Spokoyny, A. M.; Lewis, C. D.; Teverovskiy, G.; Buchwald, S. L. Extremely Electron-Rich, Boron-Functionalized, Icosahedral Carborane-Based Phosphinoboranes. Organometallics. 2012, 31, 8478–8481. DOI: 10.1021/om301116x.
  • Poater, J.; Solà, M.; Viñas, C.; Teixidor, F. π Aromaticity and Three-Dimensional Aromaticity: Two Sides of the Same Coin? Angew. Chem. Int. Ed. 2014, 53, 12191–12195. DOI: 10.1002/anie.201407359.
  • Spokoyny, A. M.;. New Ligand Platforms Featuring Boron-Rich Clusters as Organomimetic Substituents. Pure Appl. Chem. 2013, 85, 903–919. DOI: 10.1351/PAC-CON-13-01-13.
  • Frank, R.; Ahrens, V.; Boehnke, S.; Hofmann, S.; Kellert, M.; Saretz, S.; Pandey, S.; Sárosi, M.; Bartók, Á.; Beck-Sickinger, A. G.; Hey-Hawkins, E. Carbaboranes – More than Just Phenyl Mimetics. Pure Appl. Chem. 2015, 87, 163–171. DOI: 10.1515/pac-2014-1006.
  • Jin, G.-X.;. Advances in the Chemistry of Organometallic Complexes with 1,2-Dichalcogenolato-O-Carborane Ligands. Coord. Chem. Rev. 2004, 248, 587–602. DOI: 10.1016/j.ccr.2004.01.002.
  • Popescu, A. R.; Teixidor, F.; Viñas, C. Metal Promoted Charge and Hapticities of Phosphines: The Uniqueness of Carboranylphosphines. Coord. Chem. Rev. 2014, 269, 54–84. DOI: http://dx.doi.org/10.1016/j.ccr.2014.02.016.
  • Lavallo, V.; Wright, J. H.; Tham, F. S.; Quinlivan, S. Perhalogenated Carba-Closo-Dodecaborate Anions as Ligand Substituents: Applications in Gold Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3172–3176. DOI: 10.1002/anie.201209107.
  • Lugo, C. A.; Moore, C. E.; Rheingold, A. L.; Lavallo, V. Synthesis of a Hybrid m-Terphenyl/o-Carborane Building Block: Applications in Phosphine Ligand Design. Inorg. Chem. 2015, 54, 2094–2096. DOI: 10.1021/ic5030636.
  • Wong, Y. O.; Smith, M. D.; Peryshkov, D. V. Synthesis of the First Example of the 12-Vertex-Closo/12-Vertex-Nido Biscarborane Cluster by a Metal-Free B–H Activation at a Phosphorus(III) Center. Chem. – Eur. J. 2016, 22, 6764–6767. DOI: 10.1002/chem.201601194.
  • Holmes, J.; Pask, C. M.; Fox, M. A.; Willans, C. E. Tethered N-Heterocyclic carbene–Carboranes: Unique Ligands that Exhibit Unprecedented and Versatile Coordination Modes at Rhodium. Chem. Commun. 2016. DOI: 10.1039/C6CC01650B.
  • Zhu, J.; Lin, Z.; Marder, T. B. Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorg. Chem. 2005, 44, 9384–9390. DOI: 10.1021/ic0513641.
  • Maser, L.; Vondung, L.; Langer, R. The ABC in Pincer Chemistry – From Amine- to Borylene- and Carbon-Based Pincer-Ligands. Polyhedron. 2017. DOI: 10.1016/j.poly.2017.09.009.
  • Qiu, Z.; Ren, S.; Xie, Z. Transition Metal−Carboryne Complexes: Synthesis, Bonding, and Reactivity. Acc Chem Res. 2011, 44, 299–309. DOI: 10.1021/ar100156f.
  • Qiu, Z.; Xie, Z. Generation and Reactivity of O-Carborynes. Dalton Trans. 2014, 43, 4925–4934. DOI: 10.1039/C3DT52711E.
  • Ren, S.; Qiu, Z.; Xie, Z. Reaction of Zirconocene–Carboryne with Alkenes: Synthesis and Structure of Zirconacyclopentanes with a Carborane Auxiliary. Organometallics. 2012, 31, 4435–4441. DOI: 10.1021/om300202p.
  • Qiu, Z.; Xie, Z. Palladium/Nickel-Cocatalyzed Cycloaddition of 1,3-Dehydro-O-Carborane with Alkynes. Facile Synthesis of C,B-Substituted Carboranes. J. Am. Chem. Soc. 2010, 132, 16085–16093. DOI: 10.1021/ja1058789.
  • Hoel, E. L.; Hawthorne, M. F. Preparation of B-σ-carboranyl Iridium Complexes by Oxidative Addition of Terminal Boron-Hydrogen Bonds to Iridium(I) Species. J. Am. Chem. Soc. 1975, 97, 6388–6395. DOI: 10.1021/ja00855a017.
  • Bregadze, V. I.; Usiatinsky, A. Y.; Godovikov, N. N. Thallation of Carboranes. J. Organomet. Chem. 1985, 292, 75–80. DOI: 10.1016/0022-328X(85)87322-8.
  • Bregadze, V. I.; Usyatinskii, A. Y.; Kampel’, V. T.; Go’lubinskaya, L. M.; Godovikov, N. N. Carboranyl Derivatives of Group III Non-Transition Metals. Bull. Acad. Sci. USSR Div. Chem. Sci. 1985, 34, 1113. DOI: 10.1007/BF01142819.
  • Bregadze, V. I.; Kampe, V. T.; Usiatinsky, A. Y.; Godovikov, N. N. Carboranyl Derivatives of Mercury and Thallium as Synthons for Boron-Substituted Carboranes. Pure Appl. Chem. 1991, 63, 357–360.
  • Mirabelli, M. G. L.; Sneddon, L. G. Transition-Metal-Promoted Reactions of Boron Hydrides. 9. Cp*Ir-catalyzed Reactions of Polyhedral Boranes and Acetylenes. J. Am. Chem. Soc. 1988, 110, 449–453. DOI: 10.1021/ja00210a023.
  • Adams, R. D.; Kiprotich, J.; Peryshkov, D. V.; Wong, Y. O. Cage Opening of a Carborane Ligand by Metal Cluster Complexes. Chem. – Eur. J. 2016, 22, 6501–6504. DOI: 10.1002/chem.201601075.
  • Marshall, W. J.; Young, R. J.; Grushin, V. V. Mechanistic Features of Boron−Iodine Bond Activation of B−Iodocarboranes. Organometallics. 2001, 20, 523–533. DOI: 10.1021/om0008575.
  • Viñas, C.; Barberà, G.; Teixidor, F. The B-I Activation in O-Carborane Clusters: Their Fate Towards B-H. Easy Synthesis of [7,10-C2B10H13]−. J. Organomet. Chem. 2002, 642, 16–19. DOI: 10.1016/S0022-328X(01)01108-1.
  • Saleh, L. M. A.; Dziedzic, R. M.; Khan, S. I.; Spokoyny, A. M. Forging Unsupported Metal–Boryl Bonds with Icosahedral Carboranes. Chem. – Eur.J. 2016, 22, 8466–8470. DOI: 10.1002/chem.201601292.
  • Adams, R. D.; Kiprotich, J.; Peryshkov, D. V.; Wong, Y. O. Opening of Carborane Cages by Metal Cluster Complexes: The Reaction of a Thiolate-Substituted Carborane with Triosmium Carbonyl Cluster Complexes. Inorg. Chem. 2016, 55, 8207–8213. DOI: 10.1021/acs.inorgchem.6b01403.
  • Manojlović-Muir, L.; Muir, K. W.; Solomun, T. Insertion of Platinum into an Ortho-Carboranyl boron–Hydrogen Bond. The Crystal and Molecular Structure of the Diphenyl(Ortho-Carboranyl)-Phosphine complex[PtCl(Ph2PC2B10H10)(Ph2PC2B10H11)]. J. Chem. Soc. Dalton Trans. 1980, 317–320. DOI: 10.1039/DT9800000317.
  • Fey, N.; Haddow, M. F.; Mistry, R.; Norman, N. C.; Orpen, A. G.; Reynolds, T. J.; Pringle, P. G. Regioselective B-Cyclometalation of a Bulky o-Carboranyl Phosphine and the Unexpected Formation of a Dirhodium(II) Complex. Organometallics. 2012, 31, 2907–2913. DOI: 10.1021/om201198s.
  • Prokhorov, A. M.; Slepukhin, P. A.; Rusinov, V. L.; Kalinin, V. N.; Kozhevnikov, D. N. 2,2′-Bipyridinyl Carboranes as B,N,N-ligands in Cyclometallated Complexes of platinum(II). Chem. Commun. 2011, 47, 7713. DOI: 10.1039/c1cc12230d.
  • Prokhorov, A. M.; Hofbeck, T.; Czerwieniec, R.; Suleymanova, A. F.; Kozhevnikov, D. N.; Yersin, H. Brightly Luminescent Pt(II) Pincer Complexes with A Sterically Demanding Carboranyl-Phenylpyridine Ligand: A New Material Class for Diverse Optoelectronic Applications. J. Am. Chem. Soc. 2014, 136, 9637–9642. DOI: 10.1021/ja503220w.
  • Yao, Z.-J.; Yu, W.-B.; Lin, Y.-J.; Huang, S.-L.; Li, Z.-H.; Jin, G.-X. Iridium-Mediated Regioselective B–H/C–H Activation of Carborane Cage: A Facile Synthetic Route to Metallacycles with A Carborane Backbone. J. Am. Chem. Soc. 2014, 136, 2825–2832. DOI: 10.1021/ja4115665.
  • Estrada, J.; Lee, S. E.; McArthur, S. G.; El-Hellani, A.; Tham, F. S.; Lavallo, V. Resisting B–H Oxidative Addition: The Divergent Reactivity of the O-Carborane and Carba-Closo-Dodecaborate Ligand Substituents. J. Organomet. Chem. 2015, 798, Part 1, 214–217. DOI: 10.1016/j.jorganchem.2015.05.008.
  • Yu, W.-B.; Cui, P.-F.; Gao, W.-X.; Jin, G.-X. BH Activation of Carboranes Induced by Late Transition Metals. Coord. Chem. Rev. 2017, 350, 300–319. DOI: 10.1016/j.ccr.2017.07.006.
  • Lyu, H.; Quan, Y.; Xie, Z. Palladium-Catalyzed Direct Dialkenylation of Cage B-H Bonds in o-Carboranes through Cross-Coupling Reactions. Angew. Chem. Int. Ed. 2015, 54, 10623–10626. DOI: 10.1002/anie.201504481.
  • Quan, Y.; Xie, Z. Palladium-Catalyzed Regioselective Intramolecular Coupling of o-Carborane with Aromatics via Direct Cage B–H Activation. J. Am. Chem. Soc. 2015, 137, 3502–3505. DOI: 10.1021/jacs.5b01169.
  • Zhang, Y.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Rhodium(III)-Catalyzed Alkenylation–Annulation of closo-Dodecaborate Anions through Double B−H Activation at Room Temperature. Angew. Chem. Int. Ed. 2016, 55, 15609–15614. DOI: 10.1002/anie.201607867.
  • Cheng, R.; Qiu, Z.; Xie, Z. Iridium-Catalysed Regioselective Borylation of Carboranes Via Direct B–H Activation. Nat. Commun. 2017, 8, 14827. DOI: 10.1038/ncomms14827.
  • Quan, Y.; Qiu, Z.; Xie, Z. Transition-Metal-Catalyzed Selective Cage B−H Functionalization of o-Carboranes. Chem. – Eur. J. 2018, 24, 2795–2805. DOI: 10.1002/chem.201704937.
  • Duttwyler, S.;. Recent Advances in B–H Functionalization of Icosahedral Carboranes and Boranes by Transition Metal Catalysis. Pure Appl. Chem. 2018. DOI: 10.1515/pac-2017-1202.
  • Zhang, X.; Yan, H. Transition Metal-Induced B–H Functionalization of O-Carborane. Coord. Chem. Rev. 2017. DOI: 10.1016/j.ccr.2017.11.006.
  • Lyu, H.; Quan, Y.; Xie, Z. Transition Metal Catalyzed Direct Amination of the Cage B(4)–H Bond in o-Carboranes: Synthesis of Tertiary, Secondary, and Primary o-Carboranyl Amines. J. Am. Chem. Soc. 2016, 138, 12727–12730. DOI: 10.1021/jacs.6b07086.
  • Shen, Y.; Pan, Y.; Liu, J.; Sattasathuchana, T.; Baldridge, K. K.; Duttwyler, S. Synthesis and Full Characterization of an Iridium B–H Activation Intermediate of the Monocarba-Closo-Dodecaborate Anion. Chem. Commun. 2016, 53, 176–179. DOI: 10.1039/C6CC08121E.
  • Quan, Y.; Tang, C.; Xie, Z. Palladium Catalyzed Regioselective B–C(sp) Coupling via Direct Cage B–H Activation: Synthesis of B(4)-Alkynylated O-Carboranes. Chem. Sci. 2016, 7, 5838–5845. DOI: 10.1039/C6SC00901H.
  • Quan, Y.; Xie, Z. Iridium Catalyzed Regioselective Cage Boron Alkenylation of o-Carboranes via Direct Cage B–H Activation. J. Am. Chem. Soc. 2014, 136, 15513–15516. DOI: 10.1021/ja509557j.
  • Zhang, X.; Zheng, H.; Li, J.; Xu, F.; Zhao, J.; Yan, H. Selective Catalytic B–H Arylation of o-Carboranyl Aldehydes by a Transient Directing Strategy. J. Am. Chem. Soc. 2017, 139, 14511–14517. DOI: 10.1021/jacs.7b07160.
  • Zhang, X.; Yan, H. Pd(II)-Catalyzed Synthesis of Bifunctionalized Carboranes via Cage B−H Activation of 1-CH2NH2-o-Carboranes. Chem. Sci. 2018. DOI: 10.1039/C8SC01154K.
  • Spokoyny, A. M.; Reuter, M. G.; Stern, C. L.; Ratner, M. A.; Seideman, T.; Mirkin, C. A. Carborane-Based Pincers: Synthesis and Structure of SeBSe and SBS Pd(II) Complexes. J Am Chem Soc. 2009, 131, 9482–9483. DOI: 10.1021/ja902526k.
  • Tsang, M. Y.; Viñas, C.; Teixidor, F.; Planas, J. G.; Conde, N.; SanMartin, R.; Herrero, M. T.; Domínguez, E.; Lledós, A.; Vidossich, P.; Choquesillo-Lazarte, D. Synthesis, Structure, and Catalytic Applications for Ortho- and meta-Carboranyl Based NBN Pincer-Pd Complexes. Inorg. Chem. 2014, 53, 9284–9295. DOI: 10.1021/ic5013999.
  • El-Zaria, M. E.; Arii, H.; Nakamura, H. m-Carborane-Based Chiral NBN Pincer-Metal Complexes: Synthesis, Structure, and Application in Asymmetric Catalysis. Inorg. Chem. 2011, 50, 4149–4161. DOI: 10.1021/ic2002095.
  • Eleazer, B. J.; Smith, M. D.; Peryshkov, D. V. Metal- and Ligand-Centered Reactivity of meta-Carboranyl-Backbone Pincer Complexes of Rhodium. Organometallics. 2016, 35, 106–112. DOI: 10.1021/acs.organomet.5b00807.
  • Morales-Morales, D.;. Recent Applications of Phosphinite POCOP Pincer Complexes Towards Organic Transformations. Mini-Rev. Org. Chem. 2008, 5, 141–152. DOI: 10.2174/157019308784223578.
  • Gatard, S.; Çelenligil-Çetin, R.; Guo, C.; Foxman, B. M.; Ozerov, O. V. Carbon–Halide Oxidative Addition and Carbon−Carbon Reductive Elimination at a (PNP)Rh Center. J. Am. Chem. Soc. 2006, 128, 2808–2809. DOI: 10.1021/ja057948j.
  • Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. Efficient Catalysis of Ammonia Borane Dehydrogenation. J. Am. Chem. Soc. 2006, 128, 12048–12049. DOI: 10.1021/ja062419g.
  • Adhikary, A.; Guan, H. Catalysis Involving Phosphinite-Based Metallacycles. ACS Catal. 2015, 5, 6858–6873. DOI: 10.1021/acscatal.5b01688.
  • Owen, G. R.;. Functional Group Migrations between Boron and Metal Centres within Transition Metal–Borane and –Boryl Complexes and Cleavage of H–H, E–H and E–E′ Bonds. Chem. Commun. 2016, 52, 10712–10726. DOI: 10.1039/C6CC03817D.
  • Shih, W.-C.; Gu, W.; MacInnis, M. C.; Timpa, S. D.; Bhuvanesh, N.; Zhou, J.; Ozerov, O. V. Facile Insertion of Rh and Ir into a Boron–Phenyl Bond, Leading to Boryl/Bis(phosphine) PBP Pincer Complexes. J. Am. Chem. Soc. 2016, 138, 2086–2089. DOI: 10.1021/jacs.5b11706.
  • Eleazer, B. J.; Smith, M. D.; Peryshkov, D. V. POBOP Pincer Complexes of Nickel(II): Synthesis and B–H Activation of the Carborane Ligand upon Oxidation with Iodine. J. Organomet. Chem. 2017, 829, 42–47. DOI: 10.1016/j.jorganchem.2016.10.040.
  • Behnken, P. E.; Knobler, C. B.; Hawthorne, M. F. Synthesis and Structure Determination of [(PEt3)RhC2B9H10]2− A Binuclear Rhodacarborane Containing Four Bonds Betweeen Two Icosahedra. Angew. Chem. Int. Ed. Engl. 1983, 22, 722–723. DOI: 10.1002/anie.198307221.
  • Behnken, P. E.; Marder, T. B.; Baker, R. T.; Knobler, C. B.; Thompson, M. R.; Hawthorne, M. F. Synthesis, Structural Characterization, and Stereospecificity in the Formation of Bimetallic Rhodacarborane Clusters Containing Rhodium-Hydrogen-Boron Bridge Interactions. J. Am. Chem. Soc. 1985, 107, 932–940. DOI: 10.1021/ja00290a031.
  • Long, J. A.; Marder, T. B.; Behnken, P. E.; Hawthorne, M. F. Metallacarboranes in Catalysis. 3. Synthesis and Reactivity of Exo-Nido-Phosphinerhodacarboranes. J. Am. Chem. Soc. 1984, 106, 2979–2989. DOI: 10.1021/ja00322a039.
  • Mhinzi, G. S.; Litster, S. A.; Redhouse, A. D.; Spencer, J. L. closo-Monocarbaboranes as Ligands for Transition Metals: Synthesis and Reactivity of Exo-Diphosphineplatinum-Closo-Monocarbaborane Complexes; Structure of [Pt{But2P(CH2)2PBut2}(closo-CB11H12)][CB11H12]. J. Chem. Soc. Dalton Trans. 1991. 2769–2776. DOI: 10.1039/DT9910002769.
  • Jelliss, P. A.; Stone, F. G. A. Non-Spectator Behavior of Carborane Ligands in Icosahedral Metallacarboranes. J. Organomet. Chem. 1995, 500, 307–323. DOI: 10.1016/0022-328X(95)00502-H.
  • Ellis, D. D.; Franken, A.; Jelliss, P. A.; Kautz, J. A.; Stone, F. G. A.; Yu, P.-Y. Contemporary Bimetallic Molecules: An Unusual Class of Exo-Closo Metallacarbaboranes Having No Metal–Metal Bonds. J. Chem. Soc. Dalton Trans. 2000. 2509–2520. DOI: 10.1039/B003766O.
  • Teixidor, F.; Flores, M. A.; Viñas, C.; Sillanpää, R.; Kivekäs, R. Exo-nido-Cyclooctadienerhodacarboranes: Synthesis, Reactivity, and Catalytic Properties in Alkene Hydrogenation. J. Am. Chem. Soc. 2000, 122, 1963–1973. DOI: 10.1021/ja992970w.
  • Weller, A.;. Carboranes, Including Their Metal Complexes. Organometallic Chemistry; Royal Society of Chemistry. 2001, 29, 115–126.
  • Moxham, G. L.; Douglas, T. M.; Brayshaw, S. K.; Kociok-Köhn, G.; Lowe, J. P.; Weller, A. S. The Role of Halogenated Carborane Monoanions in Olefin Hydrogenation Catalysed by Cationic Iridium Phosphine Complexes. Dalton Trans. 2006, 5492–5505. DOI: 10.1039/B612049K.
  • Zhang, X.; Zhou, Z.; Yan, H. Metal–Metal Redox Synergy in Selective B–H Activation of Ortho-Carborane-9,12-Dithiolate. Chem. Commun. 2014, 50, 13077–13080. DOI: 10.1039/C4CC06171C.
  • Avdeeva, V. V.; Malinina, E. A.; Sivaev, I. B.; Bregadze, V. I.; Kuznetsov, N. T. Silver and Copper Complexes with closo-Polyhedral Borane, Carborane and Metallacarborane Anions: Synthesis and X-Ray Structure. Crystals. 2016, 6, 60. DOI: 10.3390/cryst6050060.
  • Molinos, E.; Brayshaw, S. K.; Kociok-Köhn, G.; Weller, A. S. Cationic Rhodium Mono-Phosphine Fragments Partnered with Carborane Monoanions [closo-CB11H6X6]− (X = H, Br). Synthesis, Structures and Reactivity with Alkenes. Dalton Trans. 2007. 4829–4844. DOI: 10.1039/B711468K.
  • El-Hellani, A.; Kefalidis, C. E.; Tham, F. S.; Maron, L.; Lavallo, V. Structure and Bonding of a Zwitterionic Iridium Complex Supported by a Phosphine with the Parent Carba-Closo-Dodecaborate CB11H11– Ligand Substituent. Organometallics. 2013, 32, 6887–6890. DOI: 10.1021/om401001p.
  • Hawthorne, M. F.; Owen, D. A. Chelated Biscarborane Transition Metal Derivatives Formed through Carbon-Metal σ Bonds. J. Am. Chem. Soc. 1971, 93, 873–880. DOI: 10.1021/ja00733a012.
  • Love, R. A.; Bau, R. Crystal Structure of the Biscarborane Complex Co[B10C2H10]2)2-. J. Am. Chem. Soc. 1972, 94, 8274–8276. DOI: 10.1021/ja00778a080.
  • Riley, L. E.; Chan, A. P. Y.; Taylor, J.; Man, W. Y.; Ellis, D.; Rosair, G. M.; Welch, A. J.; Sivaev, I. B. Unprecedented Flexibility of the 1,1′-Bis(O-Carborane) Ligand: Catalytically-Active Species Stabilised by B-Agostic B–H⇀Ru Interactions. Dalton Trans. 2016, 45, 1127–1137. DOI: 10.1039/C5DT03417E.
  • Liu, D.; Dang, L.; Sun, Y.; Chan, H.-S.; Lin, Z.; Xie, Z. Hydrogen-Mediated Metal−Carbon to Metal−Boron Bond Conversion in Metal−Carboranyl Complexes. J. Am. Chem. Soc. 2008, 130, 16103–16110. DOI: 10.1021/ja8067098.
  • Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. Rapid Reversible Borane to Boryl Hydride Exchange by Metal Shuttling on the Carborane Cluster Surface. Chem. Sci. 2017, 8, 5399–5407. DOI: 10.1039/C7SC01846K.
  • Dziedzic, R. M.; Martin, J. L.; Axtell, J. C.; Saleh, L. M. A.; Ong, T.-C.; Yang, Y.-F.; Messina, M. S.; Rheingold, A. L.; Houk, K. N.; Spokoyny, A. M. Cage-Walking: Vertex Differentiation by Palladium-Catalyzed Isomerization of B(9)-Bromo-meta-Carborane. J. Am. Chem. Soc. 2017, 139, 7729–7732. DOI: 10.1021/jacs.7b04080.
  • Gruver, B. C.; Adams, J. J.; Warner, S. J.; Arulsamy, N.; Roddick, D. M. Acceptor Pincer Chemistry of Ruthenium: Catalytic Alkane Dehydrogenation by (CF3PCP)Ru(cod)(H). Organometallics. 2011, 30, 5133–5140. DOI: 10.1021/om200354y.
  • Zhang, Y.; Fang, H.; Yao, W.; Leng, X.; Huang, Z. Synthesis of Pincer Hydrido Ruthenium Olefin Complexes for Catalytic Alkane Dehydrogenation. Organometallics. 2016, 35, 181–188. DOI: 10.1021/acs.organomet.5b00912.
  • Buchwald, S. L.; Nielsen, R. B. Group 4 Metal Complexes of Benzynes, Cycloalkynes, Acyclic Alkynes, and Alkenes. Chem. Rev. 1988, 88, 1047–1058. DOI: 10.1021/cr00089a004.
  • Jones, W. M.; Klosin, J. Transition-Metal Complexes of Arynes, Strained Cyclic Alkynes, and Strained Cyclic Cumulenes. In Advances in Organometallic Chemistry; West, F. G. A. S. A. R. Ed; Academic Press: 1998; Vol. 42, pp 147–221.
  • McLain, S. J.; Schrock, R. R.; Sharp, P. R.; Churchill, M. R.; Youngs, W. J. Synthesis of Monomeric Niobium- and Tantalum-Benzyne Complexes and the Molecular Structure of Ta(η5-C5Me5)(C6H4)Me2. J. Am. Chem. Soc. 1979, 101, 263–265. DOI: 10.1021/ja00495a067.
  • Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. Structure, Synthesis, and Chemistry of Ruthenium Complex (PMe3)4Ru(η2-benzyne). Reactions with Arenes, Alkenes, and Heteroatom-Containing Organic Compounds. Synthesis and Structure of a Monomeric Hydroxide Complex. J. Am. Chem. Soc. 1991, 113, 3404–3418. DOI: 10.1021/ja00009a028.
  • Hughes, R. P.; Williamson, A.; Sommer, R. D.; Rheingold, A. L. The First Transition Metal Complex of Tetrafluorobenzyne: Ir(η5-C5Me5)(PMe3)(η2-C6F4). J. Am. Chem. Soc. 2001, 123, 7443–7444. DOI: 10.1021/ja010992o.
  • Retbøll, M.; Edwards, A. J.; Rae, A. D.; Willis, A. C.; Bennett, M. A.; Wenger, E. Preparation of Benzyne Complexes of Group 10 Metals by Intramolecular Suzuki Coupling of ortho-Metalated Phenylboronic Esters: Molecular Structure of the First Benzyne-Palladium(0) Complex. J. Am. Chem. Soc. 2002, 124, 8348–8360. DOI: 10.1021/ja0264091.
  • Seaman, L. A.; Pedrick, E. A.; Tsuchiya, T.; Wu, G.; Jakubikova, E.; Hayton, T. W. Comparison of the Reactivity of 2-Li-C6H4CH2NMe2 with MCl4 (M=Th, U): Isolation of a Thorium Aryl Complex or a Uranium Benzyne Complex. Angew. Chem. Int. Ed. 2013, 52, 10589–10592. DOI: 10.1002/anie.201303992.
  • Begum, R. A.; Sharp, P. R. Nickel and Platinum 1,2-Dibromoacenaphthylene Chemistry. Organometallics. 2005, 24, 2670–2678. DOI: 10.1021/om050164u.
  • Sayler, A. A.; Beall, H.; Sieckhaus, J. F. Unusual Chelated O-Carborane Transition Metal Complex. J. Am. Chem. Soc. 1973, 95, 5790–5792. DOI: 10.1021/ja00798a074.
  • Gingrich, H. L.; Ghosh, T.; Huang, Q.; Jones, M. 1,2-Dehydro-O-Carborane. J. Am. Chem. Soc. 1990, 112, 4082–4083. DOI: 10.1021/ja00166a080.
  • Ghosh, T.; Gingrich, H. L.; Kam, C. K.; Mobraaten, E. C.; Jones, M. Reactions of 1,2-Dehydro-O-Carborane with Dienes. J. Am. Chem. Soc. 1991, 113, 1313–1318. DOI: 10.1021/ja00004a036.
  • Wang, H.; Li, H.-W.; Huang, X.; Lin, Z.; Xie, Z. Synthesis, Structure, and Bonding of a Zirconocene–1,2-Dehydro-o-carborane Complex. Angew. Chem. Int. Ed. 2003, 42, 4347–4349. DOI: 10.1002/anie.200351892.
  • Ren, S.; Qiu, Z.; Xie, Z. Synthesis of Neutral Group 4 Metal–Carboryne Complexes and Their Reactivity toward Unsaturated Molecules. Organometallics. 2013, 32, 4292–4300. DOI: 10.1021/om400458r.
  • Qiu, Z.; Deng, L.; Chan, H.-S.; Xie, Z. Synthesis and Structural Characterization of Group 10 Metal−Carboryne Complexes. Organometallics. 2010, 29, 4541–4547. DOI: 10.1021/om100669x.
  • Deng, L.; Chan, H.-S.; Xie, Z. Nickel-Mediated Regioselective [2 + 2 + 2] Cycloaddition of Carboryne with Alkynes. J. Am. Chem. Soc. 2006, 128, 7728–7729. DOI: 10.1021/ja061605j.
  • Ren, S.; Qiu, Z.; Xie, Z. Three-Component [2+2+2] Cycloaddition of Carboryne, Unactivated Alkene, and Alkyne via Zirconacyclopentane Mediated by Nickel: One-Pot Synthesis of Dihydrobenzocarboranes. Angew. Chem. Int. Ed. 2012, 51, 1010–1013. DOI: 10.1002/anie.201106212.
  • Wang, S. R.; Qiu, Z.; Xie, Z. Regioselective Insertion of Carborynes into Ethereal C–H Bond: Facile Synthesis of α-Carboranylated Ethers. J. Am. Chem. Soc. 2011, 133, 5760–5763. DOI: 10.1021/ja201126h.
  • Zhao, D.; Zhang, J.; Xie, Z. Regioselective Insertion of o-Carborynes into the alpha-C-H Bond of Tertiary Amines: Synthesis of alpha-Carboranylated Amines. Angew. Chem.-Int. Ed. 2014, 53, 12902–12906. DOI: 10.1002/anie.201409141.
  • Zhao, D.; Zhang, J.; Xie, Z. An Unprecedented Formal [5 + 2] Cycloaddition of Nitrones with o-Carboryne via Tandem [3 + 2] Cycloaddition/Oxygen Migration/Aromatization Sequence. J. Am. Chem. Soc. 2015, 137, 13938–13942. DOI: 10.1021/jacs.5b09074.
  • Cheng, R.; Zhang, J.; Zhang, J.; Qiu, Z.; Xie, Z. Facile Synthesis of N-Carboranyl Amines through an ortho-Carboryne Intermediate. Angew. Chem.-Int. Ed. 2016, 55, 1751–1754.
  • Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. (BB)-Carboryne Complex of Ruthenium: Synthesis by Double B–H Activation at a Single Metal Center. J. Am. Chem. Soc. 2016, 138, 10531–10538. DOI: 10.1021/jacs.6b05172.
  • Cammarota, R. C.; Clouston, L. J.; Lu, C. C. Leveraging Molecular Metal–Support Interactions for H2 and N2 Activation. Coord. Chem. Rev. 2017, 334, 100–111. DOI: 10.1016/j.ccr.2016.06.014.
  • Powers, I. G.; Uyeda, C. Metal–Metal Bonds in Catalysis. ACS Catal. 2017, 7, 936–958. DOI: 10.1021/acscatal.6b02692.
  • Thomas, C. M.;. Metal-Metal Multiple Bonds in Early/Late Heterobimetallic Complexes: Applications toward Small Molecule Activation and Catalysis. Comments Inorg. Chem. 2011, 32, 14–38. DOI: 10.1080/02603594.2011.593213.
  • Adams, R. D.; Rassolov, V.; Wong, Y. O. Binuclear Aromatic C–H Bond Activation at a Dirhenium Site. Angew. Chem. Int. Ed. 2016, 55, 1324–1327. DOI: 10.1002/anie.201508540.
  • Pye, D. R.; Mankad, N. P. Bimetallic Catalysis for C–C and C–X Coupling Reactions. Chem. Sci. 2017, 8, 1705–1718. DOI: 10.1039/C6SC05556G.
  • Hodson, B. E.; McGrath, T. D.; Stone, F. G. A. Supraicosahedral and Icosahedral Nickelacarbaboranes Bearing Exopolyhedral Metal Fragments. Dalton Trans. 2004, 2570–2577. DOI: 10.1039/B406054G.
  • Jin, G.-X.; Wang, J.-Q.; Zhang, C.; Weng, L.-H.; Herberhold, M. Formation of Ir-Rh and Ir-Mo Bonds by Using an Ancillary ortho-Carborane-1,2-diselenolato Ligand. Angew. Chem. Int. Ed. 2005, 44, 259–262. DOI: 10.1002/anie.200461348.
  • Wang, J.-Q.; Cai, S.; Jin, G.-X.; Weng, L.-H.; Herberhold, M. Synthesis and Synthesis and Characterization of Heterometallic Clusters (Ir2RH, Ir2W, Rh3) Containing 1,2-Dicarba-Closo-Dodecaborane(12)-1,2-Dithiolate Chelate Ligands, [(B10H10)C2S2]2−. Chem. – Eur. J. 2005, 11, 7342–7350. DOI: 10.1002/chem.200401334.
  • Jin, G.-X.; Wang, J.-Q. Tetrametallic Clusters (Ir2Rh2) through an Ancillary Ortho -Carborane-1,2-Dichalcogenolato Ligands. Dalton Trans. 2006. 86–90. DOI: 10.1039/B512027F.
  • Cui, P.-F.; Lin, Y.-J.; Jin, G.-X. The Synthesis and Reactivity of 16-Electron Half-Sandwich Iridium Complexes Bearing a Carboranylthioamide Ligand. Dalton Trans. 2017, 46, 15535–15540. DOI: 10.1039/C7DT03529B.
  • Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. Expansion of the (BB)>;Ru Metallacycle with Coinage Metal Cations: Formation of B–M–Ru–B (M = Cu, Ag, Au) Dimetalacyclodiboryls. Chem. Sci. 2018, 9, 2601–2608. DOI: 10.1039/C8SC00190A.
  • Laitar, D. S.; Müller, P.; Sadighi, J. P. Efficient Homogeneous Catalysis in the Reduction of CO2 to CO. J. Am. Chem. Soc. 2005, 127, 17196–17197. DOI: 10.1021/ja0566679.
  • Segawa, Y.; Yamashita, M.; Nozaki, K. Boryl Anion Attacks Transition-Metal Chlorides to Form Boryl Complexes: Syntheses, Spectroscopic, and Structural Studies on Group 11 Borylmetal Complexes. Angew. Chem. Int. Ed. 2007, 46, 6710–6713. DOI: 10.1002/anie.200702369.
  • Kajiwara, T.; Terabayashi, T.; Yamashita, M.; Nozaki, K. Syntheses, Structures, and Reactivities of Borylcopper and -Zinc Compounds: 1,4-Silaboration of an α,β-Unsaturated Ketone to Form a γ-Siloxyallylborane. Angew. Chem. Int. Ed. 2008, 47, 6606–6610. DOI: 10.1002/anie.200801728.
  • Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Kramer, T.; Östreicher, S.; Radacki, K.; Vargas, A. Ditopic Ambiphilicity of an Anionic Dimetalloborylene Complex. J. Am. Chem. Soc. 2013, 135, 2313–2320. DOI: 10.1021/ja310895w.
  • Braunschweig, H.; Ewing, W. C.; Kramer, T.; Mattock, J. D.; Vargas, A.; Werner, C. Organometallic Probe for the Electronics of Base-Stabilized Group 11 Metal Cations. Chem. – Eur. J. 2015, 21, 12347–12356. DOI: 10.1002/chem.201500788.
  • Wang, B.; Li, Y.; Ganguly, R.; Hirao, H.; Kinjo, R. Ambiphilic Boron in 1,4,2,5-Diazadiborinine. Nat. Commun. 2016, 7, 11871. DOI: 10.1038/ncomms11871.
  • Stone, F. G. A.;. Metal-Carbon and Metal-Metal Multiple Bonds as Ligands in Transition-Metal Chemistry: The Isolobal Connection. Angew. Chem. Int. Ed. Engl. 1984, 23, 89–99. DOI: 10.1002/anie.198400893.
  • Liu, H.-J.; Raynaud, C.; Eisenstein, O.; Tilley, T. D. Cyclometalated N-Heterocyclic Carbene Complexes of Ruthenium for Access to Electron-Rich Silylene Complexes that Bind the Lewis Acids CuOTf and AgOTf. J. Am. Chem. Soc. 2014, 136, 11473–11482. DOI: 10.1021/ja5054237.
  • Braunschweig, H.; Radacki, K.; Shang, R. σ-Coordination of metal–Boryl Bonds to gold(I). Chem. Commun. 2013, 49, 9905–9907. DOI: 10.1039/C3CC45455J.
  • Braunschweig, H.; Radacki, K.; Shang, R. Side-On Coordination of Boryl and Borylene Complexes to Cationic Coinage Metal Fragments. Chem. Sci. 2015, 6, 2989–2996. DOI: 10.1039/C5SC00211G.
  • Baya, M.; Belío, Ú.; Fernández, I.; Fuertes, S.; Martín, A. Unusual Metal–Metal Bonding in a Dinuclear Pt–Au Complex: Snapshot of a Transmetalation Process. Angew. Chem. Int. Ed. 2016, 55, 6978–6982. DOI: 10.1002/anie.201602081.
  • Zhong, Q.; Kong, L.; Gou, J.; Li, W.; Sheng, S.; Yang, S.; Cheng, P.; Li, H.; Wu, K.; Chen, L. Synthesis of Borophene Nanoribbons on Ag(110) Surface. Phys. Rev. Mater. 2017, 1, 021001. DOI: 10.1103/PhysRevMaterials.1.021001.
  • Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P. Synthesis of Borophenes: Anisotropic,Two-Dimensional Boron Polymorphs. Science. 2015, 350, 1513–1516. DOI: 10.1126/science.aad1080.
  • Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental Realization of Two-Dimensional Boron Sheets. Nat. Chem. 2016, 8, 563–568. DOI: 10.1038/nchem.2491.
  • Ren, S.; Deng, L.; Chan, H.-S.; Xie, Z. Synthesis and Structural Characterization of Zirconium−Carboryne Complexes. Organometallics. 2009, 28, 5749–5756. DOI: 10.1021/om900504g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.