Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 38, 2018 - Issue 6
1,045
Views
23
CrossRef citations to date
0
Altmetric
Review Articles

Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy

, , , , , , & show all

References

  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 3–31. DOI: 10.3322/caac.21442.
  • Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X.; Childs, C.; Sibata, C. H., Photosensitizers in Clinical PDT. Photodiagnosis Photodyn. Ther. 2004, 1, 27–42. DOI: 10.1016/S1572-1000(04)00007-9.
  • Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392.
  • Maeda, H.;, The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting. Adv. Enzyme Regul. 2001, 41, 189–207. DOI: 10.1016/S0065-2571(00)00013-3.
  • Maeda, H.; Matsuura, Y. Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit. Rev. Ther. Drug Carrier Syst. 1989, 6, 193–210.
  • Oku, N.; Tokudome, Y.; Tsukada, H.; Okada, S., Real-Time Analysis of Liposomal Trafficking in Tumor-Bearing Mice by Use of Positron Emission Tomography. Biochim. Biophys. Acta. 1995, 1238, 86–90. DOI: 10.1016/0005-2736(95)00106-D.
  • Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; K, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; et al., Accumulation of Sub-100 Nm Polymeric Micelles in Poorly Permeable Tumours Depends on Size. Nat. Nanotech. 2011, 6, 815–823. DOI: 10.1038/nnano.2011.166.
  • Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C., Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. ACS Nano. 2014, 8, 5696–5706. DOI: 10.1021/nn500299p.
  • Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L., Active Targeting Schemes for Nanoparticle Systems in Cancer Therapeutics. Adv. Drug. Deliv. Rev. 2008, 60, 1615–1626. DOI: 10.1016/j.addr.2008.08.005.
  • Sharman, W. M.; Allen, C. M.; van Lier, J. E., Photodynamic Therapeutics: Basic Principles and Clinical Applications. Drug Discov. Today. 1999, 4, 507–517. DOI: 10.1016/S1359-6446(99)01412-9.
  • Ashur, I.; Goldschmidt, R.; Pinkas, I.; Salomon, Y.; Szewczyk, G.; Sarna, T.; Scherz, A., Photocatalytic Generation of Oxygen Radicals by the Water-Soluble Bacteriochlorophyll Derivative WST11, Noncovalently Bound to Serum Albumin. J. Phys. Chem. 2009, 113, 8027–8037. DOI: 10.1021/jp900580e.
  • Mroz, P.; Tegos, G. P.; Gali, H.; Wharton, T.; Sarna, T.; Hamblin, M. R., Photodynamic Therapy with Fullerenes. Photochem. Photobio Sci. 2007, 6, 1139–1149. DOI: 10.1039/b711141j.
  • Yang, Y.; Bazhin, A. V.; Werner, J.; Karakhanova, S., Reactive Oxygen Species in the Immune System. Int. Rev. Immunol. 2013, 32, 249–270. DOI: 10.3109/08830185.2012.755176.
  • Chen, X.; Song, M.; Zhang, B.; Zhang, Y., Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment. Oxid. Med. Cell Longev. 2016, 1–10. DOI: 10.1155/2016/1580967.
  • Lee, S. H.; Almutairi, S.; Ali, A. K. Reactive Oxygen Species Modulate Immune Cell Effector Function.J.Immunol.2017,198 URL: http://www.jimmunol.org/content/198/1_Supplement/222.20.
  • Lucky, S. S.; Soo, K. C.; Zhang, Y., Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. DOI: 10.1021/cr5004198.
  • Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K., The Role of Porphyrin Chemistry in Tumor Imaging and Photodynamic Therapy. Chem. Soc. Rev. 2011, 40, 340–362. DOI: 10.1039/b915149b.
  • Mehraban, N.; Freeman, H. S., Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxgyen Production. Materials. 2015, 8, 4421–4456. DOI: 10.3390/ma8074421.
  • Vatansever, F.; Chandran, R.; Sadasivam, M.; Chiang, L.-Y.; Hamblin, M.-R. Multi-Functionality in Theranostic Nanoparticles: Is More Always Better. J. Nanomed. Nanotechol. 2012, 3. DOI: 10.4172/2157-7439.1000e120.
  • Tran, S.; DeGiovanni, P.-J.; Piel, B.; Rai, P., Cancer Nanomedicine: A Review of Recent Success in Drug Delivery. Clin. Trans. Med. 2017, 6, 556–562. DOI: 10.1186/s40169-017-0175-0.
  • Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Func. Mater. 2017, 27. DOI: 10.1002/adfm.201606314.
  • Tseng, S.-H.; Chou, M.-Y.; Chu, I.-M., Cetuximab-Conjugated Iron Oxide Nanoparticles for Cancer Imaging and Therapy. Int. J. Nanomedicine. 2015, 10, 3663–3685. DOI: 10.2147/IJN.S80134.
  • Cao, J.; Chen, Z.; Chi, J.; Sun, Y.; Sun, Y. Recent Progress in Synergistic Chemotherapy Andphototherapy by Targeted Drug Delivery Systemsfor Cancer Treatment. Artif. Cells, Nanomedicine, Biotechnol. 2018, 1–14. DOI: 10.1080/21691401.2018.1436553.
  • Liu, T.; Jia, T.; Yuan, X.; Liu, C.; Sun, J.; Ni, Z.; Xu, J.; Wang, X.; Yuan, Y., Development of Octreotide-Conjugated Polymeric Prodrug of Bufalin for Targeted Delivery to Somatostatin Receptor 2 Overexpressing Breast Cancer in Vitro and in Vivo. Int. J. Nanomedicine. 2016, 11, 2235–2250. DOI: 10.2147/IJN.S100404.
  • Park, J. H.; Lee, S.; Kim, J.-H.; Park, K.; Kim, K.; Kwon, I. C., Polymeric Nanomedicine for Cancer Therapy. Prog. Polymer. Sci. 2008, 33, 113–137. DOI: doi:10.1016/j.progpolymsci.2007.09.003.
  • Liu, R.; Yu, T.; Shi, Z.; Wang, Z., The Preparation of Metal-Organic Frameworks and Their Biomedical Application. Int. J. Nanomedicine. 2016, 11, 1187–1200. DOI: 10.2147/IJN.S100877.
  • He, L.; Brasino, M.; Mao, C.; Cho, S.; Park, W.; Goodwin, A. P.; Cha, J. N. DNA-Assembled Core-Satellite Upconverting-Metal–Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small. 2017, 13. DOI: 10.1002/smll.201700504.
  • Liu, Y.; Hou, W.; Xia, L.; Cui, C.; Wan, S.; Jiang, Y.; Yang, Y.; Wi, Q.; Qui, L.; Tan, W. ZrMOF Nanoparticles as Quenchers to conjugate DNA Aptamers for Target-Induced Bioimaging and Photodynamic Therapy. Chem. Sci. 2018. DOI: 10.1039/c8sc02210k.
  • Park, J.; Jian, Q.; Feng, D.; Mao, L.; Zhou, H. C., Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionailzation for Targeted Photodynamic Therapy. J. Am Chem. Soc. 2016, 138, 3518–3525. DOI: 10.1021/jacs.6b00007.
  • Zhang, L.; Lei, J.; Ma, F.; Ling, P.; Lie, J.; Ju, H., A Porphyrin Photosensitized Metal–Organic Framework for Cancer Cell Apoptosis and Caspaseresponsive Theranostics. Chem. Commun. 2015, 51, 10831–10834. DOI: 10.1039/c5cc03028e.
  • Liu, J.; Zhang, L.; Lei, J.; Shen, H.; Ju, X., Multifunctional Metal–Organic Framework Nanoprobe for Cathepsin B‑Activated Cancer Cell Imaging and Chemo-Photodynamic Therapy. ACS Appl Mater Interfaces. 2017, 9, 2150–2158. DOI: 10.1021/acsami.6b14446.
  • Li, S.-Y.; Cheng, H.; Xiw, B.-R.; Qui, W.-X.; Zeng, J.-Y.; Li, C.-X.; Wan, -S.-S.; Zhang, L.; Liu, W.-L.; Zhang, W.-Z., Cancer Cell Membrane Camouflaged Cascade Bioreactor for Cancer Targeted Starvation and Photodynamic Therapy. ACS Nano. 2017, 11, 7006–7018. DOI: 10.1021/acsnano.7b02533.
  • Li, S.-Y.; Cheng, H.; Qui, W.-X.; Zhang, L.; Wan, -S.-S.; Zeng, J.-Y.; Zhang, X.-Z., Cancer Cell Membrane-Coated Biomimetic Platform for Tumor Targeted Photodynamic Therapy and Hypoxia-Amplified Bioreductive Therapy. Biomaterials. 2017, 142, 149–161. DOI: 10.1016/j.biomaterials.2017.07.026.
  • Jia, J.; Zhang, Y.; Zheng, M.; Shan, C.; Yan, H.; Wu, W.; Gao, X.; Cheng, B.; Liu, W.; Tang, Y., Functionalized Eu(III)-Based Nanoscale Metal–Organic Framework to Achieve Near-IR-Triggered and -Targeted Two-Photon Absorption Photodynamic Therapy. Inorg. Chem. 2018, 57, 300–310. DOI: 10.1021/acs.inorgchem.7b02475.
  • Liu, W.; Wang, Y.-M.; Li, Y.-H.; Cai, S.-J.; Yin, X.-B.; He, X.-W.; Zhang, Y.-K. Fluorescent Imaging-Guided Chemotherapy-and-Photodynamic Dual Therapy with Nanoscale Porphyrin Metal–Organic Framework. Small. 2017, 13. DOI: 10.1002/smll.201603459.
  • Cai, H.-J.; Shen, -T.-T.; Zhang, J.; Shan, C.-F.; Jia, J.-G.; Li, X.; Liua, W.-S.; Tang, Y., A Core–Shell metal–Organic-framework(MOF)-based Smart Nanocomposite for efficient NIR/H2O2-responsive Photodynamic Therapy against Hypoxic Tumor Cells. J. Mater. Chem. B. 2017, 5, 2390–2394. DOI: 10.1039/c7tb00314e.
  • Guan, Q.; Zhou, -L.-L.; Li, Y.-A.; Dong, Y.-B., Diiodo-Bodipy-Encapsulated Nanoscale Metal-Organic Framework for pH-Driven Selective and Mitochondria Targetd Photodynamic Therapy. Inorg. Chem. 2018, 57, 10137–10145. DOI: 10.1021/acs.inorgchem.8b01316.
  • Song, M.-R.; Li, D.-Y.; Nian, F.-Y.; Xue, J., .-P.; Chen, -J.-J., Zeolitic Imidazolate Metal Organic Framework-8 as an Efficient pH-controlled Delivery Vehicle for Zincphthalocyanine in Photodynamic Therapy. J. Mater. Sci. 2017, 53, 2351–2361. DOI: 10.1007/s10853-017-1716-z.
  • Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; et al., Nanoscale Metal-Organic Frameworks for Combined Photodynamic & Radiation Therapy in Cancer Treatment. Biomaterials. 2016, 97, 1–9. DOI: 10.1016/j.biomaterials.2016.04.034.
  • Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Weichselbaum, R. R.; Li, W., Chlorin-Based Nanoscale Metal–Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapyand Checkpoint Blockade Immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502–12510. DOI: 10.1021/jacs.6b06663.
  • Chen, R.; Zhang, J.; Chelora, J.; Xiong, Y.; Kershaw, S. V.; Li, K. F.; Lo, P.-K.; Cheah, K. W.; Rogach, A. L.; Zapien, J. A.; et al., Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces. 2017, 9, 5699–5708. DOI: 10.1021/acsami.6b12469.
  • Kan, J.-L.; Jiang, Y.; Xue, A.; Yu, Y.-H.; Wang, Q.; Zhou, Y.; Dong, Y.-B., Surface Decorated Porphyrinic Nanoscale Metal-Organic Framework for Photodynamic Therapy. Inorg. Chem. 2018, 57, 5420–5428. DOI: 10.1021/acs.inorgchem.8b00384.
  • Zheng, X.; Wang, L.; Pei, Q.; He, S.; Liu, S.; Xie, Z., Metal–Organic Framework@Porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chem. Mater. 2017, 29, 2374–2381. DOI: 10.1021/acs.chemmater.7b00228.
  • Park, J.; Jian, Q.; Feng, D.; Zhou, H. C., Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 7188–7193. DOI: 10.1002/anie.201602417.
  • Park, J.; Feng, D.; Yuan, S.; Zhou, H.-C., Photochromic Metal-Organic Frameworks: Reversible Control of Singley Oxygen Generation. Angew. Chem. 2015, 127, 440–445. DOI: 10.1002/ange.201408862.
  • Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang, C., 3D Porphyrin-Based Covalent Organic Framework. J. Am Chem. Soc. 2017, 139, 8705–8709. DOI: 10.1021/jacs.7b04141.
  • Zhang, W.; Lu, J.; Gao, X.; Li, P.; Zhang, W.; Ma, Y.; Wang, H.; Tang, B., Enhanced Photodynamic Therapy by Reduced Levels of Intracellular Glutathione Obtained by Employing a Nano-MOF with CuII as the Active Center. Angew. Chem. Int. Ed. Engl. 2018, 57, 4891–4896. DOI: 10.1002/anie.201710800.
  • Lu, K.; He, C.; Lin, W., Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer. J. Am Chem. Soc. 2014, 136, 16712–16715. DOI: 10.1021/ja508679h.
  • Lu, K.; He, C.; Lin, W., A Chlorin-Based Nanoscale Metal–Organic Framework for Photodynamic Therapy of Colon Cancers. J. Am. Chem. Soc. 2015, 137, 7600–7603. DOI: 10.1021/jacs.5b04069.
  • Zhang, Y.; Wang, F.; Liu, C.; Wang, Z.; Kang, L.; Huang, Y.; Dong, K.; Ren, J.; Qu, X., Nanozyme Decorated Metal–Organic Frameworks for Enhanced Photodynamic Therapy. ACS Nano. 2017, 12, 651–661. DOI: 10.1021/acsnano.7b07746.
  • Wang, W.; Wang, L.; Li, Z.; Xie, Z., BODIPY-containing nanoscale Metal-Organic Frameworks for Photodynamic Therapy. Chem. Commun. 2013, 52, 5402–5405. DOI: 10.1039/C6CC01048B.
  • Zhou, -L.-L.; Guan, Q.; L, Y.-A.; Zhou, Y.; Xin, Y.-B.; Dong, Y.-B., One-Pot Synthetic Approach toward Porphyrinatozinc and Heavy-Atom Involved Zr-NMOF and Its Application in Photodynamic Therapy. Inorg. Chem. 2018, 57, 3169–3176. DOI: 10.1021/acs.inorgchem.7b03204.
  • Cheplakova, A. M.; Solovieva, A. O.; Pozmogova, T. N.; Vorotnikov, Y. A.; Brylev, K. A.; Vorotnikova, N. A.; Vorontsova, E. V.; Mironov, Y. V.; Poveschenko, A. F.; Kovalenko, K. A.; et al., Nanosized Mesoporous Metal–Organic Framework MIL-101 as Ananocarrier for Photoactive Hexamolybdenum Cluster Compounds. J. Inorg. Biochem. 2017, 166, 100–107. DOI: 10.1016/j.jinorgbio.2016.11.014.
  • Hu, F.; Mao, D.; Wang, Y.; Wu, W.; Zhao, D.; Kong, D.; Liu, B. Metal–Organic Framework as a Simple and General Inert Nanocarrier for Photosensitizers to Implement Activatable Photodynamic Therapy. Adv. Func. Mater. 2018, 28. DOI: 10.1002/adfm.201707519.
  • Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, S., Reactive Oxygen Species Produced by Irradiation of Some Phthalocyanine Derivatives. J. Photochem. Photobiology: Chem. 2010, 210, 82–88. DOI: 10.1016/j.jphotochem.2009.11.016.
  • Hamblin, M. R.; Abrahamse, H., New Photosensitizers for Photodynamic Therapy. Biochem. J. 2016, 473, 347–364. DOI: 10.1042/BJ20150942.
  • Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T., Photophysics and Photochemistry of Photodynamic Therapy: Fundamental Aspects. Lasers Med. Sci. 2009, 24, 259–268. DOI: 10.1007/s10103-008-0539-1.
  • Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; et al., Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. DOI: 10.3322/caac.20114.
  • Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in Photodynamic Therapy: Part One-Photosensitizers, Photochemistry and Cellular Localization. Photodiagnosis Photodyn. Ther. 2004, 1, 279–293. DOI: 10.1016/S1572-1000(05)00007-4.
  • Urbanski, N. K.; Beresewicz, A. Generation of *OH Initiated by Interaction of Fe2+ and Cu+ with Dioxygen; Comparison with the Fenton Chemistry. Acta Biochimca, Polonic. 2000, 47, 951–962.
  • Lushchak, V. I.;, Classification of Oxidative Stress Based on Its Intensity. Excli J. 2014, 13, 1611–2156. DOI: 10.17877/DE290R-7035.
  • Benov, L.;, Photodynamic Therapy: Current Status and Future Directions. Med. Princp. Pract. 2015, 24, 14–28. DOI: 10.1159/000362416.
  • Mroz, P.; Yaroslavsky, A.; Kharkwa, G. B.; Hamblin, M. R., Cell Death Pathways in Photodynamic Therapy of Cancer. Cancers. 2011, 3, 2516–2539. DOI: 10.3390/cancers3022516.
  • Niedre, M.; Patterson, M. S.; Wilson, B. C., Direct Near-Infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells in Vitro and Tissues in Vivo. J. Photochem. Photobiol. 2002, 75, 382–391. DOI: 10.1562/0031-8655(2002)075<0382:DNILDO>2.0.CO;2.
  • Moan, J.; Berg, K., The Photodegradation of Porphyrins in Cells Can Be Used to Estimate the Lifetime of Singlet Oxygen. J. Photochem. Photobiol. 1991, 53, 549–553. DOI: 10.1111/j.1751-1097.1991.tb03669.x.
  • Poddutoori, P. K.; Bregles, L. P.; Lim, G. N.; Boland, P.; Kerr, R. G.; D’Souza, F., Modulation of Energy Transfer into Sequential Electron Transferupon Axial Coordination of Tetrathiafulvalene in an Aluminum(III)Porphyrin–Free-Base Porphyrin Dyad. Inorg. Chem. 2015, 54, 8482–8494. DOI: 10.1021/acs.inorgchem.5b01190.
  • Abels, C.;, Targeting of the Vascular System of Solid Tumours by Photodynamic Therapy (PDT). Photochem. Photobiol. Sci. 2004, 3, 765–771. DOI: 10.1039/B314241H.
  • Bhuvaneswari, R.; Gan, Y. Y., The Effect of Photodynamic Therapy on Tumor Angiogenesis. Cell. Mol. Life Sci. 2009, 66, 2275–2283. DOI: 10.1007/s00018-009-0016-4.
  • Ferrario, A.; von Tiehl, K. F.; Rucker, N.; Schwarz, M. A.; Gill, P. S.; Gomer, C. J. Antiangiogenic Treatment Enhances Photodynamic Therapy Responsiveness in a Mouse Mammery Carcinoma. Cancer Res. 2000, 60, 4066–4096.
  • Maeding, N.; Verwanger, T.; Krammer, B., Boosting Tumor-Specific Immunity Using PDT. Cancers. 2016, 8, 91–115. DOI: 10.3390/cancers8100091.
  • van Duijinhoven, F. H.; Aalbers, R. I.; Rovers, J. P.; Terpstra, O. T.; Kuppen, P. J., The Immunological Consequences of Photodynamic Treatment of Cancer, a Literature Review. Immunobiology. 2003, 207, 105–113. DOI: 10.1078/0171-2985-00221.
  • Breskey, J. D.; Lacey, S. E.; Vesper, B. J.; Paradise, W. A.; Radosevich, J. A.; Colvard, M. D., Photodynamic Therapy: Occupational Hazards and Preventative Recommendations for Clinical Administration by Healthcare Providers. Photochem. Laser Surg. 2013, 31, 398–407. DOI: 10.1089/pho.2013.3496.
  • Senge, M. O.;, Stirring the Porphyrin Alphabet Soup—Functionalization Reactions for Porphyrins. Chem. Commun. 2011, 47, 1943–1960. DOI: 10.1039/c0cc03984e.
  • Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: Second Window for in Vivo Imaging. Nat. Nanotech. 2009, 4, 410–411. DOI: 10.1038/nnano.2009.326.
  • Caliixto, G. M.; Bernegossi, J.; de Freitas, L. M.; Fontana, C. R.; Chlorilli, M., Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules. 2016, 21, 342–360. DOI: 10.3390/molecules21030342.
  • Seyfried, T. N.; Huysentruyt, L. C. On the Origin of Cancer Metastasis. Crit, Rev, Oncog. 2013, 18, 43–73.
  • Brown, J. M.;, Tumor Hypoxia in Cancer Therapy. Meth. Enzymol. 2007, 435, 297–321. DOI: 10.1016/S0076-6879(07)35015-5.
  • Haung, Z.; Xu, H.; Meyers, A. D.; Musani, A. I.; Wang, L.; Tagg, R.; Barqawi, A. B.; Chen, Y. K., Photodynamic Therapy for Treatment of Solid Tumors — Potential and Technical Challenges. Technol. Cancer Res. Treat. 2008, 7, 309–320. DOI: 10.1177/153303460800700405.
  • Woodhams, J. H.; Macrobert, A. J.; Bown, S. G., The Role of Oxygen Monitoring during Photodynamic Therapy and Its Potential for Treatment Dosimetry. J. Photochem. Photobiol. 2007, 6, 1246–1256. DOI: 10.1039/b709644e.
  • Woodhams, J. H.; Kunz, L.; Bown, S. G.; MacRobert, A. J., Correlation of Real-Time Haemoglobin Oxygen Saturation Monitoring during Photodynamic Therapy with Microvascular Effects and Tissue Necrosis in Normal Rat Liver. Brit. J. Can. 2004, 91, 788–794. DOI: 10.1038/sj.bjc.6602036.
  • Lucky, S. S.; Soo, K. C.; Zhang, Y., Nanoparticles in Photodynamic Therapy. Chem. Rev. 2014, 115, 1990–2042. DOI: 10.1021/cr5004198.
  • Zhu, T. C.; Finlay, J. C., The Role of Photodynamic Therapy (PDT) Physics. Med. Phys. 2008, 35, 3127–3136. DOI: 10.1118/1.2937440.
  • Looft, A.; Pfitzner, M.; Preuß, A.; Röder, B., In Vivo Singlet Molecular Oxygen Measurements: Sensitive to Changes in Oxygen Saturation during PDT. Photodiagnosis Photodyn. Ther. 2018, 23, 325–330. DOI: 10.1016/j.pdpdt.2018.07.006.
  • Wu, H.; Song, Q.; Ran, G.; Lu, X.; Xu, B., Recent Developments in the Detection of Singlet Oxygen with Molecular Spectroscopic Methods. Trends Analyt. Chem. 2011, 30, 133–141. DOI: 10.1016/j.trac.2010.08.009.
  • Boso, G.; Ke, D.; Korzh, B.; Bouilloux, J.; Lange, N.; Zbinden, H., Time-Resolved Singlet-Oxygen Luminescence Detection with an Efficient and Practical Semiconductor Single-Photon Detector. Biomed. Opt. Express. 2016, 7, 211–224. DOI: 10.1364/BOE.7.000211.
  • Gemmel, N. R.; McCarthy, A.; Liu, B.; Tanner, M. G.; Dorenbos, S. D.; Zwiller, V.; Patterson, M. S.; Buller, G. S.; Wilson, B.; Hadfeild, R. H., Singlet Oxygen Luminescence Detection with a Fiber-Coupled Superconducting Nanowire Single-Photon Detector. Opt. Express. 2013, 21, 5005–5013. DOI: 10.1364/OE.21.005005.
  • Finlay, J. C.; Conover, D. L.; Hull, E. L.; Foster, T. H., Porphyrin Bleaching and PDT-induced Spectral Changes are Irradiance Dependent in ALA-sensitized Normal Rat Skin in Vivo. J. Photochem. Photobiol. 2001, 73, 54–63. DOI: 10.1562/0031-8655(2001)073<0054:PBAPIS>2.0.CO;2.
  • Giovannetti, R.;. The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. In Macro to Nano Spectroscopy, Jamal Uddin, InTechOpen: London, 2012; pp 87–108.
  • Rio, Y.; Rodriguez-Morgade, S.; Torres, T., Modulating the Electronic Properties of Porphyrinoids: A Voyage from the Violet to the Infrared Regions of the Electromagnetic Spectrum. Org. Biomol. Chem. 2008, 6, 1877–1894. DOI: 10.1039/b800617b.
  • Huang, Z.;, A Review of Progress in Clinical Photodynamic Therapy. Technol. Cancer Res. Treat. 2005, 4, 283–293. DOI: 10.1177/153303460500400308.
  • Josefsen, L. B.; Boyle, R. W. Photodynamic Therapy and the Development of Metal-Based Photosensitisers. Met. Based. Drugs. 2008, 4. DOI: 10.1155/2008/276109.
  • Detty, M. R.; Gibson, S. L.; Wagner, S. J., Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. J. Med. Chem. 2004, 47, 3897–3915. DOI: 10.1021/jm040074b.
  • Garcia, G.; Hammerer, F.; Poyer, F.; Achelle, S.; Teulade-Fichou, M.-P.; Maillard, P., Carbohydrate-Conjugated Porphyrin Dimers: Synthesis and Photobiological evaluation for a Potential Application in One-Photon and Two-Photonphotodynamic Therapy. Bioorg. Med. Chem. 2013, 21, 153–156. DOI: 10.1016/j.bmc.2012.10.042.
  • Furuyama, T.; Satoh, K.; Kushiya, T.; Kobayashi, N., Design, Synthesis, and Properties of Phthalocyanine Complexes with Main-Group Elements Showing Main Absorption and Fluorescencebeyond 1000 Nm. J. Am Chem. Soc. 2013, 136, 765–776. DOI: 10.1021/ja411016f|.
  • Cramers, P.; Ruevekamp, M.; Oppelaar, O.; Baas, P.; Stewart, F. A., Foscan® Uptake and Tissue Distribution in Relation to Photodynamic Efficacy. Brit. J. Can. 2003, 88, 283–290. DOI: 10.1038/sj.bjc.6600682.
  • Senge, M. O.; Brandt, J. C., Temoporfin (Foscan®, 5,10,15,20-Tetra(M-Hydroxyphenyl)Chlorin)–A Second-Generation Photosensitizer. J. Photochem. Photobiol. 2011, 87, 1240–1296. DOI: 10.1111/j.1751-1097.2011.00986.x.
  • Hudson, R.; Carcenac, M.; Smith, K. A.; Boyle, R. W., The Development and Characterisation of Porphyrin Isothiocyanate-Monoclonal Antibody Conjugates for Photoimmunotherapy. Brit. J. Can. 2005, 92, 1442–1449. DOI: 10.1038/sj.bjc.6602517.
  • Staneloudi, C.; Smith, K. A.; Hudson, R.; Maletesti, N.; Savoie, H.; Boyle, R.; Greenman, J., Development and Characterization of Novel Photosensitizer: ScFv Conjugates for Use in Photodynamic Therapy of Cancer. J. Immunol. 2007, 120, 512–517. DOI: 10.1111/j.1365-2567.2006.02522.x.
  • Kaščáková, S.; Hofland, L. J.; De Bruijin, H. S.; Ye, Y.; Achilefu, S.; van der Wansem, K.; Ploeg-van Den Heuvel, A.; van Koetsveld, P. M.; Brugts, M. P.; van der Lelij, A.; et al. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy. PLOS ONE. 2014, 9. DOI: 10.1371/journal.pone.0104448.
  • Kataoka, H.; Nishie, H.; Hayashi, N.; Tanaka, M.; Nomoto, A.; Yano, S.; Joh, T., New Photodynamic Therapy with Next-Generation Photosensitizers. Ann. Transl Med. 2017, 5, 183. DOI: 10.21037/atm.2017.03.59.
  • Hayashi, N.; Kataoka, H.; Yano, S.; Tanaka, M.; Moriwaki, K.; Akashi, H.; Suzuki, S.; Mori, Y.; Kubota, E.; Tanida, S.; et al., A Novel Photodynamic Therapy Targeting Cancer Cells and Tumor-Associated Macrophages. Mol. Cancer Ther. 2014, 14, 452–460. DOI: 10.1158/1535-7163.MCT-14-0348.
  • Ol’shevskay, V. A.; Nikitina, R. G.; Savchenko, A. N.; Malshakova, M. V.; Vinogradov, A. M.; Golovina, G. V.; Belykh, D. V.; Kutchin, A. V.; Kaplan, M. A.; Kalinin, V. N.; et al., Novel Boronated Chlorin E6-Based Photosensitizers: Synthesis, Bindingto Albumin and Antitumour Efficacy. Bioorg. Med. Chem. 2009, 17, 1297–1306. DOI: 10.1021/jm011010t.
  • Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W.; Wang, L. V.; Zheng, G. Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents. Nat. Mater. 2011, 10, 324. DOI: 10.1038/nmat2986.
  • Liu, K.; Xing, R.; Zou, Q.; Ma, G.; Möhwald, H.; Yan, X. Simple Peptide-Tuned Self-Assembly of Photosensitizers Towards Anticancer Photodynamic Therapy. Angewandte Chemie. 2016, 55(9), 3036–3039. DOI: doi:10.1002/anie.201509810.
  • Zhang, N.; Zhao, F.; Zou, Q.; Li, Y.; Ma, G.; Yan, X. Drug Delivery: Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation (Small 43/2016). Small. 2016, 12(43), 5935. DOI: doi:10.1002/smll.201670224.
  • Yang, X.; Fei, J.; Li, Q.; Li, J. Covalently Assembled Dipeptide Nanospheres as Intrinsic Photosensitizers for Efficient Photodynamic Therapy in Vitro. Chem. Eur. J. 2016, 22(19), 6477–6481. DOI: doi:10.1002/chem.201600536.
  • Allison, R. R.; Bagnato, V. S.; Sibata, C. H., Future of Oncologic Photodynamic Therapy. Future Oncol. 2010, 6, 929–940. DOI: 10.2217/fon.10.51.
  • Chatterjee, D. K.; Fong, L. S.; Zhang, Y., Nanoparticles in Photodynamic Therapy: An Emerging Paradigm. Adv. Drug Deliv. Rev. 2008, 60, 1627–1637. DOI: 10.1016/j.addr.2008.08.003.
  • Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J., Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Controlled Release. 2015, 200, 138–157. DOI: 10.1016/j.jconrel.2014.12.030.
  • Bechet, D.; Coulaud, P.; Frochot, C.; Viriot, M. L.; Guillemin, F.; Barberi-Hyob, M., Nanoparticles as Vehicles for Delivery of Photodynamic Therapy Agents. Trends Biotechnol. 2008, 26, 612–621. DOI: 10.1016/j.tibtech.2008.07.007.
  • Jain, K. K.;, Recent Advances in Nanooncology. Technol. Cancer Res. Treat. 2008, 7, 1–13. DOI: 10.1177/153303460800700101.
  • Obaid, G.; Broekgaarden, M.; Bulin, A.; Huang, H.; Kuriakose, J.; Hasan, T., Photonanomedicine: A Convergence of Photodynamic Therapy and Nanotechnology. Nanoscale. 2016, 8, 12471–12503. DOI: 10.1039/c5nr08691d.
  • Huang, K. K.; Sharma, S. K.; Dai, T.; Chung, H.; Yaroslavsky, A.; Garcia-Diaz, M.; Chang, J.; Chiang, L. Y.; Hamblin, M. R., Can Nanotechnology Potentiate Photodynamic Therapy. Nanotechnol. Rev. 2012, 1, 111–146. DOI: 10.1515/ntrev-2011-0005.
  • Chen, G.; Roy, I.; Yang, C.; Prasad, P. N., Nanochemistry and Nanomedicine for Nanoparticle-Based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826. DOI: 10.1021/acs.chemrev.5b00148.
  • Chouikrat, R.; Seve, A.; Vanderesse, R.; Benachour, H.; Barberi-Heyob, M.; Richeter, S.; Raehm, L.; Durang, J. O.; Verelst, M.; Frochot, C., Non Polymeric Nanoparticles for Photodynamic Therapy Applications: Recent Developments. Curr. Med. Chem. 2012, 19, 781–792. DOI: 10.2174/092986712799034897.
  • Yin, Z. F.; Wu, L.; Yang, H. G.; Su, Y. H., Recent Progress in Biomedical Applications of Titanium Dioxide. Phys. Chem. Chem. Phys. 2013, 15, 4844–4858. DOI: 10.1039/C3CP43938K.
  • Juzenas, P.; Chen, W.; Sun, Y. P.; Coelho, M. A.; Generalov, R.; Generalova, N.; Christensen, I. L., Quantum Dots and Nanoparticles for Photodynamic and Radiation Therapies of Cancer. Adv. Drug Deliv. Rev. 2008, 60, 1600–1614. DOI: 10.1016/j.addr.2008.08.004.
  • Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V., Nanomaterials Formulations for Photothermal and Photodynamic Therapy of Cancer. J. Photochem. Photobiol. C. 2013, 15, 53–72. DOI: 10.1016/j.jphotochemrev.2012.09.004.
  • Rasmussen, J. W.; Martinez, E.; Louka, P.; Wingett, D. G. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert. Opin. Drug Deliv. 2010, 9, 1063–1077. DOI: 10.1517/17425247.2010.502560.
  • Matsumura, Y. M. H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392.
  • Liu, D.; Mori, A.; Huang, L., Role of Liposome Size and RES Blockade in Controlling Biodistribution and Tumor Uptake of GM1-containing Liposomes. Biochim. Biophys. Acta. 1992, 1104, 95–101. DOI: 10.1016/0005-2736(92)90136-A.
  • Thandu, M.; Rapozzi, V.; Xodo, L.; Albericio, F.; Comuzzi, C.; Cavalli, S., “Clicking” Porphyrins to Magnetic Nanoparticles for Phtodynamic Therpay. ChemPlusChem. 2013, 79, 90–98. DOI: 10.1002/cplu.201300276.
  • Witjes, A.; Douglass, J., The Role of Hexaminolevulinate Fluorescence Cystoscopy in Bladder Cancer. Nat. Clin. Pract. Urol. 2007, 4, 542–549. DOI: 10.1038/ncpuro0917.
  • Krieg, R. C.; Messmann, H.; Rauch, J.; Seeger, S.; Knuechel, R., Metabolic Characterization of Tumor Cell-Specific Protoporphyrin IX Accumulation after Exposure to 5-Aminolevulinic Acid in Human Colonic Cells. J. Photochem. Photobiol. 2002, 76, 518–525. DOI: 10.1562/0031-8655(2002)0760518MCOTCS2.0.CO2.
  • D’Cruz, A. K.; Robinson, M. H.; Biel, M. A., Mthpc-Mediated Photodynamic Therapy in Patients with Advanced, Incurable Head and Neck Cancer: A Multicenter Study of 128 Patients. Head and Neck. 2004, 26, 232–240. DOI: 10.1002/hed.10372.
  • Wolfsen, H. C.; Hemminger, L. L.; Wallace, M. B.; Devault, K. R., Clinical Experience of Patients Undergoing Photodynamic Therapy for Barrett’s Dysplasia or Cancer. Aliment. Pharmacol. Ther. 2004, 20, 1125–1131. DOI: 10.1111/j.1365-2036.2004.02209.x.
  • Corti, L.; Skarlatos, J.; Boso, C.; Cardin, F.; Kosma, L.; Koukourakis, M. I.; Giatromanolaki, A.; Norberto, L.; Shaffer, M.; Beroukas, K., Outcome of Patients Receiving Photodynamic Therapy for Early Esophageal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 419–424. DOI: 10.1016/S0360-3016(00)00450-8.
  • Trachtenberg, J.; Weersink, R. A.; Davidson, S. R.; Haider, M. A.; Bogaards, A.; Gertner, M. R.; Evans, A.; Scherz, A.; Savard, J.; Chin, J. L.; et al., Vascular-Targeted Photodynamic Therapy (Padoporfin, WST09) for Recurrent Prostate Cancer after Failure of External Beam Radiotherapy: A Study of Escalating Light Doses. BJU Int. 2008, 102, 556–562. DOI: 10.1111/j.1464-410X.2008.07753.x.
  • Furuse, L.; Fukuoka, M.; Kato, H.; Horai, T.; Kubota, K.; Kodama, N.; Kusunkoi, Y.; Takifuji, N.; Okunaka, T.; Konaka, C. J., A Prospective Phase II Study on Photodynamic Therapy with Photofrin II for Centrally Located Early-Stage Lung Cancer. J. Clin. Oncol. 1993, 11, 1852–1857. DOI: 10.1200/JCO.1993.11.10.1852.
  • Yaghi, O. M.; Li, H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am Chem. Soc. 1995, 117, 10401–10402. DOI: 10.1021/ja00146a033.
  • Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M., Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature. 1995, 402, 276–277. DOI: 10.1038/46248.
  • Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. O.; Hupp, J. T., Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. J. Am Chem. Soc. 2012, 134, 15016–15021. DOI: 10.1021/ja3055639.
  • Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of A Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chem. Mater. 2017, 2618–2652. DOI: 10.1021/acs.chemmater.7b00441.
  • Doonan, C. J.; Morris, W.; Furukawa, H.; Yaghi, O. M., Isoreticular Metalation of Metal–Organic Frameworks. J. Am Chem. Soc. 2009, 131, 9492–9493. DOI: 10.1021/ja903251e.
  • Eddaudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. sci. 2002, 295, 469–472. DOI: 10.1126/science.1067208.
  • Huang, H.; Li, J. R.; Wang, K.; Han, T.; Tong, M.; Li, L.; Xie, Y.; Yang, Q.; Liu, D.; Zhong, C. An in Situ Self-Assembly Template Strategy for the Preparation of Hierarchical-Pore Metal-Organic Frameworks. Nat, Commun. 2015, 6. DOI: 10.1038/ncomms9847.
  • Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A Facil Synthesis of UiO-66, UiO-67 and Their Derivatives. Chem. Commun. 2013, 49, 9499. DOI: 10.1039/C3CC46105J.
  • Allendorg, M. D.; Stavila, V., Crystal Engineering, Structure–Function Relationships, and the Future of Metal–Organic Frameworks. Cryst. Eng. Comm. 2014, 17, 229–246. DOI: 10.1039/C4CE01693A.
  • Seoane, B.; Castellanos, S.; Dikhtiarenko, A.; Kapteijn, F.; Gascon, J., Multi-Scale Crystal Engineering of Metal Organic Frameworks. Coord. Chem. Rev. 2016, 307, 147–187. DOI: 10.1016/j.ccr.2015.06.008.
  • Li, J. R.; Kuppler, R. J.; Zhou, H. C., Selective Gas Adsorption and Separation in Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. DOI: 10.1039/B802426J.
  • Farha, O. K.; Özgür Yazaydın, A.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T., De Novo Synthesis of a Metal–Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nat. Chem. 2010, 2, 944–948. DOI: 10.1021/ja3055639.
  • Tan, K.; Zuluaga, S.; Fuentes, E.; Mattson, E. C.; Veyan, J. F.; Wang, H.; Li, J.; Thonhauser, T.; Chabal, Y. J., Trapping Gases in Metal-Organic Frameworks with a Selective Surface Molecular Barrier Layer. Nat, Commun. 2016, 7, 13871. DOI: 10.1038/ncomms13871.
  • Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R., Multifunctional Metal–Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chem. Soc. Rev. 2016, 46, 126–157. DOI: 10.1039/c6cs00250a.
  • Beyzavi, M. H.; Vermeulen, N. A.; Howarth, A. J.; Tussupbayev, S.; League, A. B.; Schweitzer, N. M.; Gallagher, J. R.; Platero-Prats, A. E.; Hafezi, N.; Sargeant, A. A.; et al., A Hafnium-Based Metal–Organic Framework as A Nature-Inspired Tandem Reaction Catalyst. J. Am Chem. Soc. 2015, 137, 13624–13631. DOI: 10.1021/jacs.5b08440.
  • Liu, H.; Xi, F. G.; Sun, W.; Yang, N. N.; Gao, E. Q., Amino- and Sulfo-Bifunctionalized Metal–Organic Frameworks: One-Pot Tandem Catalysis and the Catalytic Sites. Inorg. Chem. 2016, 55, 5753–5755. DOI: 10.1021/acs.inorgchem.6b01057.
  • Shekak, O.; Liu, J.; Fischer, R. A.; Wöll, C., MOF Thin Films: Existing and Future Applications. Chem. Soc. Rev. 2011, 40, 1081–1106. DOI: 10.1039/C0CS00147C.
  • Gliemann, H.; Wöll, C., Epitaxially Grown Metal-Organic Frameworks. Mater. Today Chem. 2012, 15, 110–116. DOI: 10.1016/S1369-7021(12)70046-9.
  • Virmani, E.; Rotter, J. M.; Mähringer, A.; von Zons, T.; Godt, A.; Bein, T.; Wuttke, S.; Medina, D. D., On-Surface Synthesis of Highly Oriented Thin Metal-Organic Framework Films through Vapor-Assisted Conversion. J. Am Chem. Soc. 2018, 140, 4812–4819. DOI: 10.1021/jacs.7b08174.
  • Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J., Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chem. Mater. 2012, 24, 3153–3167. DOI: 10.1021/cm301427w.
  • King, S. C.; Wang, H.; Arman, H. D.; Chen, B., A Two-Dimensional Metal-Organic Framework Composed of Paddle-Wheel Cobalt Clusters with Permanent Porosity. Inorg. Chem. Commun. 2016, 74, 98–101. DOI: 10.1016/j.inoche.2016.11.004.
  • Lee, J.; Kwak, J. H.; Choe, W. Evolution of Form in Metal–Organic Frameworks. Nat. Comm. 2017, 8. DOI: 10.1038/ncomms14070.
  • Yuan, S.; Qin, J. S.; Lollar, C. T.; Zhou, H. C., Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent. Sci. 2018, 4, 440–450. DOI: 10.1021/acscentsci.8b00073.
  • Burtch, N. C.; Jasuja, H.; Walton, K. S., Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. DOI: 10.1021/cr5002589.
  • Bosch, M.; Zhang, M.; Zhou, H. C., Increasing the Stability of Metal-Organic Frameworks. Adv. Chem. 2014, 2014, 8. DOI: 10.1155/2014/182327.
  • Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lambert, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. DOI: 10.1021/ja8057953.
  • Chen, T. H.; Popoz, I.; Kaveevivitchai, W.; Miljani, O. S., Metal–Organic Frameworks: Rise of the Ligands. Chem. Mater. 2014, 26, 4322–4325. DOI: 10.1021/cm501657d.
  • Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T.; et al., Tuning the Structure and Function of Metal–Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43, 5561–5593. DOI: 10.1039/c4cs00003j.
  • Forgan, R. S.; Smaldone, R. A.; Gassensmith, J. J.; Furukawai, H.; Cordes, D. B.; Li, Q.; Wilmer, C. E.; Botros, Y. Y.; Snurr, R. Q.; Slawin, A. M. Z.; et al., Nanoporous Carbohydrate Metal–Organic Frameworks. J. Am Chem. Soc. 2012, 134, 406–417. DOI: 10.1021/ja208224f.
  • Kosal, M. E.; Chou, J.-H.; Wilson, S. R.; Suslick, K. S., A Functional Zeolite Analogue Assembled from Metalloporphyrins. Nat. Mater. 2002, 1, 118–121. DOI: 10.1038/nmat730.
  • Zou, C.; Wu, C.-D., Functional Porphyrinic Metal–Organic Frameworks: Crystal Engineering and Applications. Dalton Trans. 2011, 41, 3879–3888. DOI: 10.1039/c2dt11989g.
  • Huh, S.; Kim, S. J.; Kim, Y., Porphyrinic Metal–Organic Frameworks from Custom-Designed Porphyrins. Cryst. Eng. Comm. 2015, 18, 345–368. DOI: 10.1039/C5CE02106E.
  • Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal–Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. DOI: 10.1039/b807080f.
  • Zhao, M.; Ou, S.; Wu, C.-D., Porous Metal-Organic Frameworks for Heterogeneous Biomimetic Catalysis. Acc. Chem. Res. 2014, 47, 1199–1207. DOI: 10.1021/ar400265x.
  • Nakagaki, S.; Ferreira, G. K. B.; Ucoski, G. M.; Freitas Castro, K. A. D., Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks. Molecules. 2013, 18, 7279–7308. DOI: 10.3390/molecules18067279.
  • Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T., Light-Harvesting Metal–Organic Frameworks (Mofs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs. J. Am. Chem. Soc. 2011, 133, 15858–15861. DOI: 10.1021/ja206029a.
  • Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W., Light Harvesting in Microscale Metal–Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching. J. Am. Chem. Soc. 2011, 133, 12940–12943. DOI: 10.1021/ja204214t.
  • Son, H. J.; Jin, S.; Patwardhan, S.; Wezenberg, S. J.; Jeong, N. C.; So, M.; Wilmer, C. E.; Sarjeant, A. A.; Schatz, G. C.; Snurr, R. Q.; et al., Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 862–869. DOI: 10.1021/ja310596a.
  • Wang, Z.; Cohen, S. M., Modulating Metal-Organic Frameworks to Breathe: A Postsynthetic Covalent Modification Approach. J. Am. Chem. Soc. 2009, 131, 16675–16677. DOI: 10.1021/ja907742z.
  • Sun, X.; Guo, X.; Zhang, Z. Y.; Qiu, S.; Su, X., Versatile Tailoring of NH2‐Containing Metal–Organic Frameworks with Paddle-Wheel Units. Chem. Eur. J. 2017, 23, 17727–17733. DOI: 10.1002/chem.201703126.
  • Burrows, A. D.; Frost, C. G.; Mahon, M. F.; Richardson, C., Post-Synthetic Modification of Tagged Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2008, 120, 8610–8614. DOI: 10.1002/ange.200802908.
  • Tanabe, K. K.; Cohen, S. M., Postsynthetic Modification of Metal–Organic Frameworks—A Progress Report. Chem. Soc. Rev. 2010, 40, 498–519. DOI: 10.1039/c0cs00031k.
  • Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J. T.; Farha, O. K., Transmetalation: Routes to Metal Exchange within Metal–Organic Frameworks. J. Mater. Chem. A. 2013, 1, 5453–5468. DOI: 10.1039/C3TA10784A.
  • Kahr, J.; Morris, R. E.; Wright, P. A., Post-Synthetic Incorporation of Nickel into CPO-27(Mg) to Give Materials with Enhanced Permanent Porosity. Cryst. Eng. Comm. 2013, 15, 9779–9786. DOI: 10.1039/C3CE41228H.
  • Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K., Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-In-MOF and Metal-Exchange Approach. Chem. Mater. 2016, 28, 1213–1219. DOI: 10.1021/acs.chemmater.5b04887.
  • Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M., Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088. DOI: 10.1021/ja3079219.
  • Deria, P.; Bury, W.; Hod, I.; Kung, C. W.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K., MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates Vs Carboxylates. Inorg. Chem. 2015, 54, 2185–2192. DOI: 10.1021/ic502639v.
  • Lalonde, M. B.; Mondloch, J. E.; Deria, P.; Sarjeant, A. A.; Juaid, S. S.; Osman, O. I.; Farha, O. K.; Hupp, J. T., Selective Solvent-Assisted Linker Exchange (SALE) in a Series of Zeolitic Imidazolate Frameworks. Inorg. Chem. 2015, 54, 7142–7144. DOI: 10.1021/acs.inorgchem.5b01231.
  • Yuan, S.; Chen, Y. P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T.-F.; Lian, X.; Zhou, H.-C., Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Andew. Chem. 2015, 127, 14909–14913. DOI: 10.1002/ange.201505625.
  • Della Rocca, J.; Liu, D.; Lin, W., Nanoscale Metal Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957–968. DOI: 10.1021/ar200028a.
  • Xu, R.; Wang, Y.; Duan, X.; Lu, K.; Micheroni, D.; Hu, A.; Lin, W., Nanoscale Metal–Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells. J. Am Chem. Soc. 2016, 138, 2158–2161. DOI: 10.1021/jacs.5b13458.
  • Taylor, K. M. L.; Rieter, W. J.; Lin, W. Manganese-Based Nanoscale Metal–Organic Frameworks for Magnetic Resonance Imaging. J. Am Chem. Soc. 2008, 130, 14358–14359. 0.1021/ja803777x.
  • Zhang, Y.; Liu, C.; Wang, F.; Liu, Z.; Ren, J.; Qu, X., Metal–Organic-Framework-Supported Immunostimulatory Oligonucleotides for Enhanced Immune Response and Imaging. Chem. Commun. 2017, 53, 1840–1843. DOI: 10.1039/C6CC09280B.
  • Wang, L.; Zheng, M.; Xie, Z., Nanoscale Metal-Organic Frameworks for Drug Delivery: A Conventional Platform with New Promise. J. Mater. Chem. B. 2017, 6, 707–717. DOI: 10.1039/C7TB02970E.
  • Ibrahim, M.; Sabouni, R.; Husseine, G. A., Anti-Cancer Drug Delivery Using Metal Organic Frameworks (Mofs). Curr. Med. Chem. 2017, 24, 193–214. DOI: 10.2174/0929867323666160926151216.
  • Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eurbank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172–178. DOI: 10.1038/nmat2608.
  • Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D., Nanoscal Metal-Organic Materials. Chem. Soc. Rev. 2011, 40, 291–305. DOI: 10.1039/C0CS00042F.
  • Wang, X.-G.; Cheng, Q.; Yu, Y.; Zhang, X.-Z., Controlled Nucleation and Controlled Growth for Size Predicable Synthesis of Nanoscale Metal-Organic Frameworks (Mofs): A General and Scalable Approach. Angew. Chem. 2018, 130, 7836–7840. DOI: 10.1002/anie.201803766.
  • Kim, S.; Ohulchanskyy, T. Y.; Bharali, D.; Chen, Y.; Pandey, R.; Prasad, P. N., Organically Modified Silica Nanoparticles with Intraparticle Heavy-Atom Effect on the Encapsulated Photosensitizer for Enhanced Efficacy of Photodynamic Therapy. J. Phys. Chem. C. 2009, 113, 12641–12644. DOI: 10.1021/jp900573s.
  • Birks, J. B.;. Photophysics of Aromatic Molecules. Wilcy. 1970, 4, 704.
  • Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher, W. M.; O’Shea, D. F., In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy. J. Am Chem. Soc. 2004, 126, 10619–10631. DOI: 10.1021/ja047649e.
  • Valeur, B.;. Molecular Fluorescence: Principles and Applications, Wiley: Weinheim, 2001.
  • Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C., Metal Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. DOI: 10.1021/cr200256v.
  • Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the Folate Receptor for Active Targeting of Cancer Nanotherapeutics. Nano. Rev. 2012, 3. DOI: 10.3402/nano.v3i0.18496.
  • Xia, W.; Low, P. S., Folate-Targeted Therapies for Cancer. J. Med. Chem. 2010, 53, 6811–6824. DOI: 10.1021/jm100509v.
  • Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron. 2008, 64, 8553–8557. DOI: 10.1016/j.tet.2008.06.036.
  • Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N., High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(III) Aminoterephthalate Solvothermal System. Inorg. Chem. 2008, 47, 7568–7576. DOI: 10.1021/ic800538r.
  • Feng, D.; Chung, W. C.; Wei, Z.; Gu, Z. Y.; Jiang, H. L.; Chen, Y. P.; Darensbourg, D. J.; Zhou, H. C., Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. J. Am Chem. Soc. 2013, 135, 17105–17110. DOI: 10.1021/ja408084j.
  • Reddy, S. B.; Williamson, S. K., Tirapazamine: A Novel Agent Targeting Hypoxic Tumor Cells. Expert. Opin. Drug Deliv. 2009, 18, 77–87. DOI: 10.1517/13543780802567250.
  • Probodh, I.; Cramb, D. T. Two-Photon Excitation Photodynamic Therapy: Working toward a New Treatment for Wet Age-Related Macular Degeneration. In Age Related Macular Degeneration; Y, G.-S., Ed.; IntechOpen: London, 2012; pp 213–226.
  • Starkey, J. R.; Rebane, A. K.; Drobizhev, M. A.; Meng, F.; Gong, A.; Elliott, A.; McInnerney, K.; Spangler, C., New Two-Photon Activated Photodynamic Therapy Sensitizers Induce Xenograft Tumor Regressions after Near-IR Laser Treatment through the Body of the Host Mouse. Clin. Can. Res. 2008, 14, 6564–6573. DOI: 10.1158/1078-0432.CCR-07-4162.
  • Reinke, M.; Canakis, C.; Husain, D.; Michaud, M.; Flotte, T. J.; Gragoudas, E. S.; Miller, J. W., Verteporfin Photodynamic Therapy Retreatment of Normal Retina and Choroid in the Cynomolgus Monkey. Ophthalmology. 1999, 106, 1915–1923. DOI: 10.1016/S0161-6420(99)90401-3.
  • Midoux, P.; Pichon, C.; Yaouanc, -J.-J.; Jaffrès, J. A., Chemical Vectors for Gene Delivery: A Current Review on Polymers, Peptides and Lipids Containing Histidine or Imidazole as Nucleic Acids Carriers. Br. J. Pharmacol. 2009, 152, 166–178. DOI: 10.1111/j.1476-5381.2009.00288.x.
  • Maggioni, D.; Galli, M.; D’Alfonso, L.; Invers, D.; Dozzi, M. V.; Sironi, L.; Iannacone, M.; Collini, M.; Ferruti, P.; Ranucci, E.; et al., A Luminescent Poly(amidoamine)–Iridium Complex as A New Singlet-Oxygen Sensitizer for Photodynamic Therapy. Inorg. Chem. 2015, 54, 544–553. DOI: 10.1021/ic502378z.
  • Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks a Materials Platfrom for Structural and Functional Designs. Nat. Rev. 2016, 1. DOI: 10.1038/natrevmats.2016.68.
  • Ma, T.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L. H.; Wang, Y.; Su, J.; Li, J.; et al., Single-Crystal X-Ray Diffraction Structures of Covalent Organic Frameworks. Science. 2018, 361, 48–52. DOI: 10.1126/science.aat7679.
  • Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M. O.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. Science. 2005, 310, 1166–1171. DOI: 10.1126/science.1120411.
  • Wang, D.; Zhou, J.; Shi, R.; Wu, H.; Chen, R.; Duan, B.; Xia, G.; Xu, P.; Wang, H.; Zhou, S.; et al., Biodegradable Core-Shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics. 2017, 7, 4605–4617. DOI: 10.7150/thno.20363.
  • Zhang, Y.; Lovell, J. F., Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics. 2012, 2, 905–914. DOI: 10.7150/thno.4908.
  • Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Yonggang, L.; Lu, G.; Chen, M.; et al., Nanoscale Metal–Organic Particles with RapidClearance for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Nano. 2016, 10, 2774–2781. DOI: 10.1021/acsnano.5b07882.
  • Faulknet, A.-S.; Rousseau, J. A.; Langlois, R.; Berard, V.; Lecomte, R.; Bénard, F.; van Lier, J. E. Copper-64 Labeled Sulfophthalocyanines for Positron Emis-Sion Tomography (PET) Imaging in Tumor-Bearing Rats. J. Porphyr Phthalocyanines. 2008, 12, 49–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.