Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 39, 2019 - Issue 1
563
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Cooperative Heterobimetallic Catalysts in Coordination Insertion Polymerization

, & ORCID Icon

REFERENCES

  • Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Functional Analogues of Cytochrome c Oxidase, Myoglobin, and Hemoglobin. Chem. Rev. 2004, 104, 561–588. DOI: 10.1021/cr0206059.
  • Jedrzejas, M. J.; Setlow, P. Comparison of the Binuclear Metalloenzymes Diphosphoglycerate-Independent Phosphoglycerate Mutase and Alkaline Phosphatase: their Mechanism of Catalysis via a Phosphoserine Intermediate. Chem. Rev. 2001, 101, 607–618.
  • Berto, T. C.; Speelman, A. L.; Zheng, S.; Lehnert, N. Mono- and Dinuclear Non-Heme Iron–Nitrosyl Complexes: Models for Key Intermediates in Bacterial Nitric Oxide Reductases. Coord. Chem. Rev. 2013, 257, 244–259. DOI: 10.1016/j.ccr.2012.05.007.
  • Collman, J. P.; Schwenninger, R.; Rapta, M.; Bröring, M.; Fu, L. New 1,4,7-Triazacyclononane-Based Functional Analogues of the Fe/Cu Active Site of Cytochrome c Oxidase: Structure, Spectroscopy and Electrocatalytic Reduction of Oxygen. Chem. Commun. 1999, 137–138. doi:10.1039/a807598k.
  • Dong, H. T.; White, C. J.; Zhang, B.; Krebs, C.; Lehnert, N. Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight into Flavodiiron NO Reductases. J. Am. Chem. Soc. 2018, 140, 13429–13440. DOI: 10.1021/jacs.8b08567.
  • Das, D.; Mohapatra, S. S.; Roy, S. Recent Advances in Heterobimetallic Catalysis Across a “Transition Metal–Sin” Motif. Chem. Soc. Rev.. 2015, 44, 3666–3690. DOI: 10.1039/c4cs00523f.
  • Haak, R. M.; Wezenberg, S. J.; Kleij, A. W. Cooperative Multimetallic Catalysis Using Metallosalens. Chem. Commun. 2010, 46, 2713–2723. DOI: 10.1039/c001392g.
  • Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Recent Progress in Asymmetric Bifunctional Catalysis Using Multimetallic Systems. Acc. Chem. Res. 2009, 42, 1117–1127. DOI: 10.1021/ar9000108.
  • Cammarota, R. C.; Lu, C. C. Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. J. Am. Chem. Soc. 2015, 137, 12486–12489. DOI: 10.1021/jacs.5b08313.
  • Cammarota, R. C.; Vollmer, M. V.; Xie, J.; Ye, J.; Linehan, J. C.; Burgess, S. A.; Appel, A. M.; Gagliardi, L.; Lu, C. C. A Bimetallic Nickel-Gallium Complex Catalyzes CO2 Hydrogenation via the Intermediacy of an Anionic d10 Nickel Hydride. J. Am. Chem. Soc. 2017, 139, 14244–14250. DOI: 10.1021/jacs.7b07911.
  • Chantarojsiri, T.; Ziller, J. W.; Yang, J. Y. Incorporation of Redox-Inactive Cations Promotes Iron Catalyzed Aerobic C-H Oxidation at Mild Potentials. Chem. Sci. 2018, 9, 2567–2574. DOI: 10.1039/c7sc04486k.
  • Kita, M. R.; Miller, A. J. M. Cation-Modulated Reactivity of Iridium Hydride Pincer-Crown Ether Complexes. J. Am. Chem. Soc. 2014, 136, 14519–14529. DOI: 10.1021/ja507324s.
  • Kita, M. R.; Miller, A. J. M. An Ion-Responsive Pincer-Crown Ether Catalyst System for Rapid and Switchable Olefin Isomerization. Angew. Chem. Int. Ed. 2017, 56, 5498–5502. DOI: 10.1002/anie.201701006.
  • Delferro, M.; Marks, T. J. Multinuclear Olefin Polymerization Catalysts. Chem. Rev. 2011, 111, 2450–2485. DOI: 10.1021/cr1003634.
  • McInnis, J. P.; Delferro, M.; Marks, T. J. Multinuclear Group 4 Catalysis: Olefin Polymerization Pathways Modified by Strong Metal-Metal Cooperative Effects. Acc. Chem. Res. 2014, 47, 2545–2557. DOI: 10.1021/ar5001633.
  • Wu, J.; Yu, T.-L.; Chen, C.-T.; Lin, C.-C. Recent Developments in Main Group Metal Complexes Catalyzed/Initiated Polymerization of Lactides and Related Cyclic Esters. Coord. Chem. Rev. 2006, 250, 602–626. DOI: 10.1016/j.ccr.2005.07.010.
  • Redshaw, C.;. Metallocalixarene Catalysts: α-Olefin Polymerization and ROP of Cyclic Esters. Dalton Trans. 2016, 45, 9018–9030. DOI: 10.1039/c6dt01529h.
  • Kember, M. R.; Buchard, A.; Williams, C. K. Catalysts for CO2/Epoxide Copolymerisation. Chem. Commun. 2011, 47, 141–163. DOI: 10.1039/C0CC02207A.
  • Mandal, S. K.; Roesky, H. W. Assembling Heterometals through Oxygen: An Efficient Way to Design Homogeneous Catalysts. Acc. Chem. Res. 2010, 43, 248–259. DOI: 10.1021/ar9001729.
  • Guillaume, S. M.; Kirillov, E.; Sarazin, Y.; Carpentier, J.-F. Beyond Stereoselectivity, Switchable Catalysis: Some of the Last Frontier Challenges in Ring-Opening Polymerization of Cyclic Esters. Chem. Eur. J. 2015, 21, 7988–8003. DOI: 10.1002/chem.201500613.
  • Suo, H.; Solan, G. A.; Ma, Y.; Sun, W.-H. Developments in Compartmentalized Bimetallic Transition Metal Ethylene Polymerization Catalysts. Coord. Chem. Rev. 2018, 372, 101–116. DOI: 10.1016/j.ccr.2018.06.006.
  • Childers, M. I.; Longo, J. M.; Van Zee, N. J.; LaPointe, A. M.; Coates, G. W. Stereoselective Epoxide Polymerization and Copolymerization. Chem. Rev. 2014, 114, 8129–8152. DOI: 10.1021/cr400725x.
  • Kozak, C. M.; Ambrose, K.; Anderson, T. S. Copolymerization of Carbon Dioxide and Epoxides by Metal Coordination Complexes. Coord. Chem. Rev. 2018, 376, 565–587. DOI: 10.1016/j.ccr.2018.08.019.
  • Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of Carbon Dioxide and Epoxide. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 287–292. DOI: 10.1002/pol.1969.110070408.
  • Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Catalytic Reactions Involving C1 Feedstocks: New High-Activity Zn(II)-Based Catalysts for the Alternating Copolymerization of Carbon Dioxide and Epoxides. J. Am. Chem. Soc. 1998, 120, 11018–11019. DOI: 10.1021/ja982601k.
  • Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W. Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2: Active and Selective Catalysts for Polycarbonate Synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484–5487. DOI: 10.1002/anie.200352605
  • Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R. Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Acc. Chem. Res. 2004, 37, 836–844. DOI: 10.1021/ar030240u.
  • Liu, Y.; Ren, W.-M.; Liu, J.; Lu, X.-B. Asymmetric Copolymerization of CO2 with meso-Epoxides Mediated by Dinuclear Cobalt(III) Complexes: Unprecedented Enantioselectivity and Activity. Angew. Chem. Int. Ed. 2013, 52, 11594–11598. DOI: 10.1002/anie.201305154.
  • Liu, Y.; Ren, W.-M.; Zhang, W.-P.; Zhao, -R.-R.; Lu, X.-B. Crystalline CO2-based Polycarbonates Prepared from Racemic Catalyst Through Intramolecularly Interlocked Assembly. Nat. Commun. 2015, 6, 8594. DOI: 10.1038/ncomms9594.
  • Huang, L.-S.; Tsai, C.-Y.; Chuang, H.-J.; Ko, B.-T. Copolymerization of Carbon Dioxide with Epoxides Catalyzed by Structurally Well-Characterized Dinickel Bis(benzotriazole iminophenolate) Complexes: Influence of Carboxylate Ligands on the Catalytic Performance. Inorg. Chem. 2017, 56, 6141–6151. DOI: 10.1021/acs.inorgchem.7b00090.
  • Breyfogle, L. E.; Williams, C. K.; Young, V. G., Jr.; Hillmyer, M. A.; Tolman, W. B. Comparison of Structurally Analogous Zn2, Co2, and Mg2 Catalysts for the Polymerization of Cyclic Esters. Dalton Trans. 2006, 928–936. doi:10.1039/B507014G.
  • Saini, P. K.; Romain, C.; Williams, C. K. Dinuclear Metal Catalysts: Improved Performance of Heterodinuclear Mixed Catalysts for CO2–Epoxide Copolymerization. Chem. Commun. 2014, 50, 4164–4167. DOI: 10.1039/C3CC49158G.
  • Garden, J. A.; Saini, P. K.; Williams, C. K. Greater than the Sum of Its Parts: A Heterodinuclear Polymerization Catalyst. J. Am. Chem. Soc. 2015, 137, 15078–15081. DOI: 10.1021/jacs.5b09913.
  • Garden, J. A.; White, A. J. P.; Williams, C. K. Heterodinuclear Titanium/Zinc Catalysis: Synthesis, Characterization and Activity for CO2/Epoxide Copolymerization and Cyclic Ester Polymerization. Dalton Trans. 2017, 46, 2532–2541. DOI: 10.1039/c6dt04193k.
  • Jutz, F.; Buchard, A.; Kember, M. R.; Fredriksen, S. B.; Williams, C. K. Mechanistic Investigation and Reaction Kinetics of the Low-Pressure Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by a Dizinc Complex. J. Am. Chem. Soc. 2011, 133, 17395–17405. DOI: 10.1021/ja206352x.
  • O’Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. Polymerization of Lactide and Related Cyclic Esters by Discrete Metal Complexes. J. Chem. Soc. Dalton Trans. 2001, 2215–2224. doi:10.1039/b104197p.
  • Thomas, C. M. Stereocontrolled Ring-Opening Polymerization of Cyclic Esters: Synthesis of New Polyester Microstructures. Chem. Soc. Rev. 2010, 39, 165–173. DOI: 10.1039/b810065a.
  • Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic Metal-Based Systems for Controlled Statistical Copolymerisation of Lactide with a Lactone. Polym. Chem. 2018, 9, 2517–2531. DOI: 10.1039/C8PY00310F.
  • Arbaoui, A.; Redshaw, C. Metal Catalysts for ε-Caprolactone Polymerisation. Polym. Chem. 2010, 1, 801–826. DOI: 10.1039/b9py00334g.
  • Dijkstra, P. J.; Du, H.; Feijen, J. Single Site Catalysts for Stereoselective Ring-Opening Polymerization of Lactides. Polym. Chem. 2011, 2, 520–527. DOI: 10.1039/C0PY00204F.
  • Hollingsworth, T. S.; Hollingsworth, R. L.; Rosen, T.; Groysman, S. Zinc Bimetallics Supported by a Xanthene-Bridged Dinucleating Ligand: Synthesis, Characterization, and Lactide Polymerization Studies. RSC Adv. 2017, 7, 41819–41829. DOI: 10.1039/C7RA09207E.
  • Bhattacharjee, J.; Harinath, A.; Nayek, H. P.; Sarkar, A.; Panda, T. K. Highly Active and Iso-Selective Catalysts for the Ring-Opening Polymerization of Cyclic Esters using Group 2 Metal Initiators. Chem. Eur. J. 2017, 23, 9319–9331. DOI: 10.1002/chem.201700672.
  • Sheng, H.; Shi, J.; Feng, Y.; Wang, H.; Jiao, Y.; Sheng, H.; Zhang, Y.; Shen, Q. Remarkable Effect of Alkali Metal on Polymerization of Cyclic Esters Catalyzed by Samarium-Alkali Metal Multinuclear Alkoxide Clusters. Dalton Trans. 2012, 41, 9232–9240. DOI: 10.1039/c2dt30677h.
  • Carpentier, J.-F.;. Rare-Earth Complexes Supported by Tripodal Tetradentate Bis(phenolate) Ligands: A Privileged Class of Catalysts for Ring-Opening Polymerization of Cyclic Esters. Organometallics 2015, 34, 4175–4189. DOI: 10.1021/acs.organomet.5b00540.
  • Ovitt, T. M.; Coates, G. W. Stereochemistry of Lactide Polymerization with Chiral Catalysts: New Opportunities for Stereocontrol Using Polymer Exchange Mechanisms. J. Am. Chem. Soc. 2002, 124, 1316–1326. DOI: 10.1021/ja012052+.
  • Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Chiral Lanthanocene Derivatives Containing Two Linked Amido−Cyclopentadienyl Ligands: Heterobimetallic Structure and Lactone Polymerization Activity. Organometallics 1997, 16, 4845–4856. DOI: 10.1021/om9705867.
  • Beckerle, K.; Hultzsch, K. C.; Okuda, J. Ring-opening Polymerization of Lactides Using Heterobimetallic Yttrocene Complexes. Macromol. Chem. Phys. 1999, 200, 1702–1707. DOI: 10.1002/(SICI)1521-3935(19990701)200:7<1702::AID-MACP1702>3.0.CO;2-2.
  • Wang, L.; Roşca, S.-C.; Poirier, V.; Sinbandhit, S.; Dorcet, V.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. Stable Divalent Germanium, Tin and Lead Amino(Ether)-Phenolate Monomeric Complexes: Structural Features, Inclusion Heterobimetallic Complexes, and ROP Catalysis. Dalton Trans. 2014, 43, 4268–4286. DOI: 10.1039/c3dt51681d.
  • Maudoux, N.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. Aluminum, Indium, and Mixed Yttrium–Lithium Complexes Supported by a Chiral Binap-Based Fluorinated Dialkoxide: Structural Features and Heteroselective ROP of Lactide. Organometallics 2014, 33, 5740–5748. DOI: 10.1021/om500458g.
  • Chung, T. C. M.;. Functionalization of Polyolefins; Academic Press: San Diego, CA, 2002.
  • Hustad, P. D. Frontiers in Olefin Polymerization: Reinventing the World’s Most Common Synthetic Polymers. Science 2009, 325, 704–707. DOI: 10.1126/science.1174927.
  • Klosin, J.; Fontaine, P. P.; Figueroa, R. Development of Group IV Molecular Catalysts for High Temperature Ethylene-α-Olefin Copolymerization Reactions. Acc. Chem. Res. 2015, 48, 2004–2016. DOI: 10.1021/acs.accounts.5b00065.
  • Coates, G. W. Polymerization Catalysis at the Millennium: Frontiers in Stereoselective, Metal-Catalyzed Polymerization. J. Chem. Soc. Dalton Trans. 2002, 467–475. doi:10.1039/b111226k.
  • Chen, E. Y.-X.;. Coordination Polymerization of Polar Vinyl Monomers by Single-Site Metal Catalysts. Chem. Rev. 2009, 109, 5157–5214. DOI: 10.1021/cr9000258.
  • Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-Metal Catalysts For Ethylene Homo- and Copolymerization. Chem. Rev. 2000, 100, 1169–1203.
  • Liu, S.; Motta, A.; Mouat, A. R.; Delferro, M.; Marks, T. J. Very Large Cooperative Effects in Heterobimetallic Titanium-Chromium Catalysts for Ethylene Polymerization/Copolymerization. J. Am. Chem. Soc. 2014, 136, 10460–10469. DOI: 10.1021/ja5046742.
  • Nakamura, A.; Ito, S.; Nozaki, K. Coordination-Insertion Copolymerization of Fundamental Polar Monomers. Chem. Rev. 2009, 109, 5215–5244. DOI: 10.1021/cr900079r.
  • Carrow, B. P.; Nozaki, K. Transition-Metal-Catalyzed Functional Polyolefin Synthesis: Effecting Control through Chelating Ancillary Ligand Design and Mechanistic Insights. Macromolecules 2014, 47, 2541–2555. DOI: 10.1021/ma500034g.
  • Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z. Cyclophane-Based Highly Active Late-Transition-Metal Catalysts for Ethylene Polymerization. Angew. Chem. Int. Ed. 2004, 43, 1821–1825. DOI: -10.1002/anie.200353226.
  • Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O. Synthesis of Highly Branched Polyethylene Using “Sandwich”(8-P-Tolyl Naphthyl α-Diimine) Nickel (II) Catalysts. Organometallics. 2013, 32, 5136–5143. DOI: 10.1021/om400704h.
  • Rhinehart, J. L.; Mitchell, N. E.; Long, B. K. Enhancing α-Diimine Catalysts for High-Temperature Ethylene Polymerization. ACS Catal. 2014, 4, 2501–2504. DOI: 10.1021/cs500694m.
  • Stephenson, C. J.; McInnis, J. P.; Chen, C.; Weberski, M. P., Jr.; Motta, A.; Delferro, M.; Marks, T. J. Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. ACS Catal. 2014, 4, 999–1003. DOI: 10.1021/cs500114b.
  • Zhang, D.; Chen, C. Influence of Polyethylene Glycol Unit on Palladium- and Nickel-Catalyzed Ethylene Polymerization and Copolymerization. Angew. Chem. Int. Ed. 2017, 56, 14672–14676. DOI: 10.1002/anie.201708212.
  • Zhai, F.; Jordan, R. F. Hydrogen Bonding Behavior of Amide-Functionalized α-Diimine Palladium Complexes. Organometallics 2014, 33, 7176–7192. DOI: 10.1021/om500978n.
  • Weberski, M. P., Jr.; Chen, C.; Delferro, M.; Zuccaccia, C.; Macchioni, A.; Marks, T. J. Suppression of β-Hydride Chain Transfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak Fluorocarbon Ligand–Product Interactions. Organometallics 2012, 31, 3773–3789. DOI: 10.1021/om3002735.
  • Wang, J.; Yao, E.; Chen, Z.; Ma, Y. Fluorinated Nickel(II) Phenoxyiminato Catalysts: Exploring the Role of Fluorine Atoms in Controlling Polyethylene Productivities and Microstructures. Macromolecules 2015, 48, 5504–5510. DOI: 10.1021/acs.macromol.5b01090.
  • Liu, S.; Motta, A.; Delferro, M.; Marks, T. J. Synthesis, Characterization, and Heterobimetallic Cooperation in a Titanium-Chromium Catalyst for Highly Branched Polyethylenes. J. Am. Chem. Soc. 2013, 135, 8830–8833. DOI: 10.1021/ja4039505.
  • Tanabiki, M.; Tsuchiya, K.; Motoyama, Y.; Nagashima, H. Monometallic and Heterobimetallic Azanickellacycles as Ethylene Polymerization Catalysts. Chem. Commun. 2005, 3409–3411. doi:10.1039/b502942b.
  • Smith, A. J.; Kalkman, E. D.; Gilbert, Z. W.; Tonks, I. A. ZnCl2 Capture Promotes Ethylene Polymerization by a Salicylaldiminato Ni Complex Bearing a Pendent 2, 2′-Bipyridine Group. Organometallics 2016, 35, 2429–2432. DOI: 10.1021/acs.organomet.6b00485.
  • Xiao, D.; Do, L. H. Triazolecarboxamidate Donors as Supporting Ligands for Nickel Olefin Polymerization Catalysts. Organometallics 2018, 37, 254–260. DOI: 10.1021/acs.organomet.7b00807.
  • Xiao, D.; Do, L. H. In Situ Generated Heterometallic Nickel–Zinc Catalysts for Ethylene Polymerization. Organometallics 2018, 37, 3079–3085. DOI: 10.1021/acs.organomet.8b00454.
  • Hazari, A.; Labinger, J. A.; Bercaw, J. E. A Versatile Ligand Platform that Supports Lewis Acid Promoted Migratory Insertion. Angew. Chem. Int. Ed.. 2012, 51, 8268–8271. DOI: 10.1002/anie.201203264.
  • McLain, S. J.;. Organometallic Crown Ethers. 1. Metal-Acyl Binding to a Crown Ether-Held Cation. J. Am. Chem. Soc. 1983, 105, 6355–6357. DOI: 10.1021/ja00358a051.
  • Takeuchi, D.; Chiba, Y.; Takano, S.; Osakada, K. Double-Decker-Type Dinuclear Nickel Catalyst for Olefin Polymerization: Efficient Incorporation of Functional Co-monomers. Angew. Chem. Int. Ed. 2013, 52, 12536–12540. DOI: 10.1002/anie.201307741.
  • Takeuchi, D.; Takano, S.; Takeuchi, Y.; Osakada, K. Ethylene Polymerization at High Temperatures Catalyzed by Double-Decker-Type Dinuclear Iron and Cobalt Complexes: Dimer Effect on Stability of the Catalyst and Polydispersity of the Product. Organometallics 2014, 33, 5316–5323. DOI: 10.1021/om500629a.
  • Cai, Z.; Xiao, D.; Do, L. H. Fine-Tuning Nickel Phenoxyimine Olefin Polymerization Catalysts: Performance Boosting by Alkali Cations. J. Am. Chem. Soc. 2015, 137, 15501–15510. DOI: 10.1021/jacs.5b10351.
  • Cai, Z.; Do, L. H. Customizing Polyolefin Morphology by Selective Pairing of Alkali Ions with Nickel Phenoxyimine-Polyethylene Glycol Catalysts. Organometallics 2017, 36, 4691–4698. DOI: 10.1021/acs.organomet.7b00516.
  • Radlauer, M. R.; Buckley, A. K.; Henling, L. M.; Agapie, T. Bimetallic Coordination Insertion Polymerization of Unprotected Polar Monomers: Copolymerization of Amino Olefins and Ethylene by Dinickel Bisphenoxyiminato Catalysts. J. Am. Chem. Soc. 2013, 135, 3784–3787. DOI: 10.1021/ja4004816.
  • Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Ortho-Phosphinobenzenesulfonate: A Superb Ligand for Palladium-Catalyzed Coordination-Insertion Copolymerization of Polar Vinyl Monomers. Acc. Chem. Res. 2013, 46, 1438–1449. DOI: 10.1021/ar300256h.
  • Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Copolymerization of Ethylene and Methyl Acrylate by Cationic Palladium Catalysts That Contain Phosphine-Diethyl Phosphonate Ancillary Ligands. Organometallics 2014, 33, 3546–3555. DOI: 10.1021/om5004489.
  • Cai, Z.; Do, L. H. Thermally Robust Heterobimetallic Palladium–Alkali Catalysts for Ethylene and Alkyl Acrylate Copolymerization. Organometallics 2018, 37, 3874–3882. DOI: 10.1021/acs.organomet.8b00561.
  • Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and α-Olefins with Methyl Acrylate. J. Am. Chem. Soc. 1998, 120, 888–899. DOI: 10.1021/ja964144i.
  • Nami, F.; Gast, P.; Groenen, E. J. J. Rapid Freeze-Quench EPR Spectroscopy: Improved Collection of Frozen Particles. Appl. Magn. Reson. 2016, 47, 643–653. DOI: 10.1007/s00723-016-0783-7.
  • Nelson, R. C.; Miller, J. T. An Introduction to X-Ray Absorption Spectroscopy and Its in Situ Application To Organometallic Compounds and Homogeneous Catalysts. Catal. Sci. Technol. 2012, 2, 461–470. DOI: 10.1039/C2CY00343K.
  • Pollock, C. J.; DeBeer, S. Valence-to-Core X-Ray Emission Spectroscopy: A Sensitive Probe of the Nature of a Bound Ligand. J. Am. Chem. Soc. 2011, 133, 5594–5601. DOI: 10.1021/ja200560z.
  • Woo, T. K.; Ziegler, T. The Influence of Electronic and Steric Factors on Chain Branching in Ethylene Polymerization by Brookhart-Type Ni(II) Diimine Catalysts: A Combined Density Functional Theory and Molecular Mechanics Study. J. Organomet. Chem. 1999, 591, 204–213. DOI: 10.1016/S0022-328X(99)00449-0.
  • Srebro, M.; Michalak, A. Handbook of Transition Metal Polymerization Catalysts; Eds., Hoff, R., Mathers, R. T.; John Wiley & Sons: New Jersey, 2010; 53–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.