Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 39, 2019 - Issue 2
686
Views
16
CrossRef citations to date
0
Altmetric
Comments

Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries

, ORCID Icon & ORCID Icon
Pages 51-89 | Received 02 Nov 2018, Accepted 04 Feb 2019, Published online: 11 Apr 2019

References

  • U.S. Department of Energy. International Energy Outlook 2018; U.S. Energy Information Administration: Washington, DC, 2018.
  • Global Energy & CO2 Status Report 2017; International Energy Agency & the U.S. Organisation for Economic Cooperation and Development:  Paris, France, 2018.
  • Reidmiller, D. R.; Avery, C. W.; Easterling, D. R.; Kunkel, K. E.; Lewis, K. L. M.; Maycock, T. K.; Stewart, B. C., eds.. Fourth National Climate Assessment, Volume II. Impacts, Risks, and Adaptation in the United States; U.S. Global Change Research Program: Washington, DC, 2018.
  • Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111(5), 3577–3613. DOI: 10.1021/cr100290v.
  • Braff, W. A.; Mueller, J. M.; Trancik, J. E. Value of Storage Technologies for Wind and Solar Energy. Nat. Clim. Change. 2016, 6, 964. DOI: 10.1038/nclimate3045.
  • Renewable & Alternative Fuels; U.S. Energy Information Administration: Washington, DC, 2018.
  • Gyuk, I.; Johnson, M.; Vetrano, J.; Lynn, K.; Parks, W.; Hnada, R.; Kannberg, L.; Hearne, S.; Waldrip, K.; Braccio., R. Grid Energy Storage; Energy, U.S. Dept. of Energy: Washington DC, 2013.
  • Armand, M.; Tarascon, J. M. Building Better Batteries. Nature. 2008, 451, 652. DOI: 10.1038/451652a.
  • Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci.. 2009, 19(3), 291–312. DOI: 10.1016/j.pnsc.2008.07.014.
  • Obama, B.;. The Irreversible Momentum of Clean Energy. Science. 2017, 355(6321), 126–129. DOI: 10.1126/science.aam6284.
  • Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 2011, 334(6058), 928. DOI: 10.1126/science.1212741.
  • U.S. Grid Energy Storage Factsheet; Center for Sustainable Systems, University of Michigan: 2018.
  • Electric Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits; Electric Power Research Institute: Palo Alto, CA, 2010; p 1020676.
  • Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Introduction: Batteries and Fuel Cells. Chem. Rev.. 2004, 104(10), 4243–4244.
  • Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater.. 2010, 22(3), 587–603. DOI: 10.1021/cm901452z.
  • Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy Environ. Sci.. 2011, 4(9), 3243–3262. DOI: 10.1039/c1ee01598b.
  • Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature. 2001, 414, 359. DOI: 10.1038/35104644.
  • Sivaram, V.;. Unlocking Clean Energy. Issues Sci. Technol.. Winter 2017, 33, 2.
  • Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety Focused Modeling of Lithium-Ion Batteries: A Review. J. Power Sources. 2016, 306, 178–192. DOI: 10.1016/j.jpowsour.2015.11.100.
  • Lisbona, D.; Snee, T. A Review of Hazards Associated with Primary Lithium and Lithium-Ion Batteries. Process Saf. Environ. Prot.. 2011, 89(6), 434–442. DOI: 10.1016/j.psep.2011.06.022.
  • VanGelder, L. E.; Kosswattaarachchi, A. M.; Forrestel, P. L.; Cook, T. R.; Matson, E. M. Polyoxovanadate-Alkoxide Clusters as Multi-Electron Charge Carriers for Symmetric Non-Aqueous Redox Flow Batteries. Chem. Sci.. 2018, 9(6), 1692–1699. DOI: 10.1039/c7sc05295b.
  • Soloveichik, G. L.;. Flow Batteries: Current Status and Trends. Chem. Rev.. 2015, 115(20), 11533–11558. DOI: 10.1021/cr500720t.
  • Huang, Q.; Wang, Q. Next-Generation, High-Energy-Density Redox Flow Batteries. ChemPlusChem. 2015, 80(2), 312–322. DOI: 10.1002/cplu.201402099.
  • Nguyen, T.; Savinell, R. F. Flow Batteries. Electrochem. Soc. Interface. 2010, 19(3), 54–56. DOI: 10.1149/2.F06103if.
  • Perry, M. L.; Weber, A. Z. Advanced Redox-Flow Batteries: A Perspective. J. Electrochem. Soc.. 2016, 163(1), A5064–A5067. DOI: 10.1149/2.0101601jes.
  • Kosswattaarachchi, A. M.; Cook, T. R. Mixed-Component Catholyte and Anolyte Solutions for High-Energy Density Non-Aqueous Redox Flow Batteries. J. Electrochem. Soc.. 2018, 165(2), A194–A200. DOI: 10.1149/2.0751802jes.
  • Cabrera, P. J.; Yang, X.; Suttil, J. A.; Hawthorne, K. L.; Brooner, R. E. M.; Sanford, M. S.; Thompson, L. T. Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries. J. Phys. Chem. C. 2015, 119(28), 15882–15889. DOI: 10.1021/acs.jpcc.5b03582.
  • Takenaka, K.; Shimizu, A.; Yoshida, J.-I. Highly Soluble Quinones as Active Materials for Nonaqueous Redox Flow Batteries. Meeting Abstr.. 2016, MA2016-02(45), 3289.
  • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.; Cabrera, P. J.; James, B. R.; Savinell, R. F.; Sanford, M. S.; Thompson, L. T. Metal Acetylacetonate Complexes for High Energy Density Non-Aqueous Redox Flow Batteries. J. Mater. Chem. A. 2015, 3(15), 7929–7938. DOI: 10.1039/C4TA06622G.
  • Laramie, S. M.; Milshtein, J. D.; Breault, T. M.; Brushett, F. R.; Thompson, L. T. Performance and Cost Characteristics of Multi-Electron Transfer, Common Ion Exchange Non-Aqueous Redox Flow Batteries. J. Power Sources. 2016, 327, 681–692. DOI: 10.1016/j.jpowsour.2016.07.015.
  • Gong, K.; Fang, Q.; Gu, S.; Li, S. F. Y.; Yan, Y. Nonaqueous Redox-Flow Batteries: Organic Solvents, Supporting Electrolytes, and Redox Pairs. Energy Environ. Sci.. 2015, 8(12), 3515–3530. DOI: 10.1039/C5EE02341F.
  • Bamgbopa, M. O.; Shao-Horn, Y.; Almheiri, S. The Potential of Non-Aqueous Redox Flow Batteries as Fast-Charging Capable Energy Storage Solutions: Demonstration with an Iron–Chromium Acetylacetonate Chemistry. J. Mater. Chem. A. 2017, 5(26), 13457–13468. DOI: 10.1039/C7TA02022H.
  • Parker, A. J.;. Solvation of Ions. Applications to Minerals and Energy. Pure Appl. Chem.. 1981, 53(p), 1437. DOI: 10.1351/pac198153071437.
  • Singh, P.;. Application of Non-Aqueous Solvents to Batteries. J. Power Sources. 1984, 11(1), 135–142. DOI: 10.1016/0378-7753(84)80079-8.
  • Parker, A. J.;. The Effects of Solvation on the Properties of Anions in Dipolar Aprotic Solvents. Q. Rev. Chem. Soc.. 1962, 16(2), 163–187. DOI: 10.1039/qr9621600163.
  • Parker, A. J.;. Protic-Dipolar Aprotic Solvent Effects on Rates of Bimolecular Reactions. Chem. Rev.. 1969, 69(1), 1–32. DOI: 10.1021/cr60257a001.
  • Darling, R. M.; Gallagher, K. G.; Kowalski, J. A.; Ha, S.; Brushett, F. R. Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries. Energy Environ. Sci.. 2014, 7(11), 3459–3477. DOI: 10.1039/C4EE02158D.
  • Liu, Q.; Sleightholme, A. E. S.; Shinkle, A. A.; Li, Y.; Thompson, L. T. Non-Aqueous Vanadium Acetylacetonate Electrolyte for Redox Flow Batteries. Electrochem. Commun.. 2009, 11(12), 2312–2315. DOI: 10.1016/j.elecom.2009.10.006.
  • Liu, Q.; Shinkle, A. A.; Li, Y.; Monroe, C. W.; Thompson, L. T.; Sleightholme, A. E. S. Non-Aqueous Chromium Acetylacetonate Electrolyte for Redox Flow Batteries. Electrochem. Commun.. 2010, 12(11), 1634–1637. DOI: 10.1016/j.elecom.2010.09.013.
  • Sleightholme, A. E. S.; Shinkle, A. A.; Qinghua, L.; Yongdan, L.; Monroe, C. W.; Thompson, L. T. Non-Aqueous Manganese Acetylacetonate Electrolyte for Redox Flow Batteries. J. Power Sources. 2011, 196, 5742–5745. DOI: 10.1016/j.jpowsour.2011.02.020.
  • Sevov, C. S.; Fisher, S. L.; Thompson, L. T.; Sanford, M. S. Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc.. 2016, 138(47), 15378–15384. DOI: 10.1021/jacs.6b07638.
  • Zhang, D.; Lan, H.; Li, Y. The Application of a Non-Aqueous Bis(Acetylacetone)Ethylenediamine Cobalt Electrolyte in Redox Flow Battery. J. Power Sources. 2012, 217, 199–203. DOI: 10.1016/j.jpowsour.2012.06.038.
  • Yamamura, T.; Shiokawa, Y.; Yamana, H.; Moriyama, H. Electrochemical Investigation of Uranium β-diketonates for All-Uranium Redox Flow Battery. Electrochim. Acta. 2002, 48(1), 43–50. DOI: 10.1016/S0013-4686(02)00546-7.
  • Xing, X.; Zhang, D.; Li, Y. A Non-Aqueous All-Cobalt Redox flow Battery Using 1,10-Phenanthrolinecobalt(Ii) Hexafluorophosphate as Active Species. J. Power Sources. 2015, 279, 205–209. DOI: 10.1016/j.jpowsour.2015.01.011.
  • Chakrabarti, M. H.; Dryfe, R. A. W.; Roberts, E. P. L. Evaluation of Electrolytes for Redox Flow Battery Applications. Electrochim. Acta. 2007, 52(5), 2189–2195. DOI: 10.1016/j.electacta.2006.08.052.
  • Sevov, C. S.; Brooner, R. E. M.; Chénard, E.; Assary, R. S.; Moore, J. S.; Rodríguez-López, J.; Sanford, M. S. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc.. 2015, 137(45), 14465–14472. DOI: 10.1021/jacs.5b09572.
  • Kosswattaarachchi, A. M.; Friedman, A. E.; Cook, T. R. Characterization of a BODIPY Dye as an Active Species for Redox Flow Batteries. ChemSusChem. 2016, 9(23), 3317–3323. DOI: 10.1002/cssc.201601104.
  • Kaur, A. P.; Holubowitch, N. E.; Ergun, S.; Elliott, C. F.; Odom, S. A. A Highly Soluble Organic Catholyte for Non‐Aqueous Redox Flow Batteries. Energy Technol.. 2015, 3(5), 476–480. DOI: 10.1002/ente.v3.5.
  • Milshtein, J. D.; Kaur, A. P.; Casselman, M. D.; Kowalski, J. A.; Modekrutti, S.; Zhang, P. L.; Harsha Attanayake, N.; Elliott, C. F.; Parkin, S. R.; Risko, C.; et al. High Current Density, Long Duration Cycling of Soluble Organic Active Species for Non-Aqueous Redox Flow Batteries. Energy Environ. Sci.. 2016, 9(11), 3531–3543. DOI: 10.1039/C6EE02027E.
  • Milton, M.; Cheng, Q.; Yang, Y.; Nuckolls, C.; Hernández Sánchez, R.; Sisto, T. J. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Nano Lett.. 2017, 17(12), 7859–7863. DOI: 10.1021/acs.nanolett.7b04131.
  • Modrzynski, C.; Burger, P. Energy Storage Inspired by Nature – Ionic Liquid Iron–Sulfur Clusters as Electrolytes for Redox Flow Batteries. Dalton Trans.. 2019. DOI: 10.1039/C8DT03776K.
  • Freeman, M. B.; Wang, L.; Jones, D. S.; Bejger, C. M. A Cobalt Sulfide Cluster-Based Catholyte for Aqueous Flow Battery Applications. J. Mater. Chem. A. 2018, 6(44), 21927–21932. DOI: 10.1039/C8TA05788E.
  • Chu, T.; Popov, I.; Andrade, G. A.; Maurya, S.; Yang, P.; Batista, E.; Scott, B. L.; Mukundan, R.; Davis, B. Linked Picolinamide Nickel Complexes as Redox Carriers for Non-Aqueous Flow Batteries. Chem. Sus. Chem. DOI: 10.1002/cssc.201802985.
  • Rajpurohit, J.; Upadhyay, A.; Das, C.; Dubey, R.; Vaidya, S.; Krishnan, V.; Kumar, A.; Shanmugam, M. Unusual Methylenediolate Bridged Hexanuclear Ruthenium(III) Complexes: Syntheses and Their Application. Inorg. Chem.. 2018, 57(23), 14967–14982. DOI: 10.1021/acs.inorgchem.8b02780.
  • Sum, E.; Skyllas-Kazacos, M. A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications. J. Power Sources. 1985, 15(2), 179–190. DOI: 10.1016/0378-7753(85)80071-9.
  • Skyllas‐Kazacos, M.; Grossmith, F. Efficient Vanadium Redox Flow Cell. J. Electrochem. Soc.. 1987, 134(12), 2950–2953. DOI: 10.1149/1.2100321.
  • Matsuda, Y.; Tanaka, K.; Okada, M.; Takasu, Y.; Morita, M.; Matsumura-Inoue, T. A Rechargeable Redox Battery Utilizing Ruthenium Complexes with Non-Aqueous Organic Electrolyte. J. Appl. Electrochem.. 1988, 18(6), 909–914. DOI: 10.1007/BF01016050.
  • Armstrong, C. G.; Toghill, K. E. Cobalt(II) Complexes with Azole-Pyridine Type Ligands for Non-Aqueous Redox-Flow Batteries: Tunable Electrochemistry via Structural Modification. J. Power Sources. 2017, 349, 121–129. DOI: 10.1016/j.jpowsour.2017.03.034.
  • Duan, W.; Vemuri, R. S.; Milshtein, J. D.; Laramie, S.; Dmello, R. D.; Huang, J.; Zhang, L.; Hu, D.; Vijayakumar, M.; Wang, W.; et al. A Symmetric Organic-Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR. J. Mater. Chem. A. 2016, 4(15), 5448–5456. DOI: 10.1039/C6TA01177B.
  • Hagemann, T.; Winsberg, J.; Häupler, B.; Janoschka, T.; Gruber, J. J.; Wild, A.; Schubert, U. S. A Bipolar Nitronyl Nitroxide Small Molecule for an All-Organic Symmetric Redox-Flow Battery. NPG Asia Mater.. 2017, 9, e340. DOI: 10.1038/am.2016.195.
  • Dmello, R.; Milshtein, J. D.; Brushett, F. R.; Smith, K. C. Cost-Driven Materials Selection Criteria for Redox Flow Battery Electrolytes. J. Power Sources. 2016, 330, 261–272. DOI: 10.1016/j.jpowsour.2016.08.129.
  • VanGelder, L. E.; Brennessel, W. W.; Matson, E. M. Tuning the Redox Profiles of Polyoxovanadate-Alkoxide Clusters via Heterometal Installation: Toward Designer Redox Reagents. Dalton Trans.. 2018, 47(11), 3698–3704. DOI: 10.1039/c7dt04455k.
  • VanGelder, L. E.; Matson, E. M. Heterometal Functionalization Yields Improved Energy Density for Charge Carriers in Nonaqueous Redox Flow Batteries. J. Mater. Chem. A. 2018, 6(28), 13874–13882. DOI: 10.1039/C8TA03312A.
  • VanGelder, L. E.; Petel, B. E.; Nachtigall, O.; Martinez, G.; Brennessel, W. W.; Matson, E. M. Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries. ChemSusChem. 2018, 11(23), 4139–4149. DOI: 10.1002/cssc.201802029.
  • Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today. 2015, 18(5), 252–264. DOI: 10.1016/j.mattod.2014.10.040.
  • Su, H.; Jaffer, S.; Yu, H. Transition Metal Oxides for Sodium-Ion Batteries. Energy Storage Mater.. 2016, 5, 116–131. DOI: 10.1016/j.ensm.2016.06.005.
  • Wang, H.; Hamanaka, S.; Nishimoto, Y.; Irle, S.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. In Operando X-Ray Absorption Fine Structure Studies of Polyoxometalate Molecular Cluster Batteries: Polyoxometalates as Electron Sponges. J. Am. Chem. Soc.. 2012, 134(10), 4918–4924. DOI: 10.1021/ja2117206.
  • Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-Reduced Polyoxometalates: Excellent Molecular Cluster Battery Components and Semipermeable Molecular Capacitors. J. Am. Chem. Soc.. 2014, 136(25), 9042–9052. DOI: 10.1021/ja5032369.
  • Genovese, M.; Lian, K. Polyoxometalate Modified Inorganic–Organic Nanocomposite Materials for Energy Storage Applications: A Review. Curr. Opin. Solid State Mater. Sci.. 2015, 19(2), 126–137. DOI: 10.1016/j.cossms.2014.12.002.
  • Herrmann, S.; Ritchie, C.; Streb, C. Polyoxometalate – Conductive Polymer Composites for Energy Conversion, Energy Storage and Nanostructured Sensors. Dalton Trans.. 2015, 44(16), 7092–7104. DOI: 10.1039/c4dt03763d.
  • Giusti, A.; Charron, G.; Mazerat, S.; Compain, J.-D.; Mialane, P.; Dolbecq, A.; Rivière, E.; Wernsdorfer, W.; Ngo Biboum, R.; Keita, B.; et al. Magnetic Bistability of Individual Single-Molecule Magnets Grafted on Single-Wall Carbon Nanotubes. Angew. Chem. Int. Ed.. 2009, 48(27), 4949–4952. DOI: 10.1002/anie.200901806.
  • Cronin, L.; Müller, A., eds.. POM-themed Issue. Chem. Soc. Rev.. 2012, 41, 7325–7468.
  • Hill, C. L., ed.. POM-themed Issue. Chem. Rev.. 1998, 98, 1–387.
  • Yoshikawa, H.; Kazama, C.; Awaga, K.; Satoh, M.; Wada, J. Rechargeable Molecular Cluster Batteries. Chem. Commun.. 2007, 30, 3169–3170. DOI: 10.1039/b707189b.
  • Yoshikawa, H.; Hamanaka, S.; Miyoshi, Y.; Kondo, Y.; Shigematsu, S.; Akutagawa, N.; Sato, M.; Yokoyama, T.; Awaga, K. Rechargeable Batteries Driven by Redox Reactions of Mn12 Clusters with Structural Changes: XAFS Analyses of the Charging/Discharging Processes in Molecular Cluster Batteries. Inorg. Chem.. 2009, 48(19), 9057–9059. DOI: 10.1021/ic901288h.
  • Pope, M.;. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin Heidelberg, 1983.
  • Pope, M.; Müller, A. Polyoxometalate Chemistry from Topology via Self-Assembly to Applications; Springer: Netherlands, 2001.
  • Ueda, T.;. Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications. ChemElectroChem. 2018, 5(6), 823–838. DOI: 10.1002/celc.201701170.
  • Pratt, H. D.; Hudak, N. S.; Fang, X.; Anderson, T. M. A Polyoxometalate Flow Battery. J. Power Sources. 2013, 236, 259–264. DOI: 10.1016/j.jpowsour.2013.02.056.
  • Chen, J.-J.; Symes, M. D.; Cronin, L. Highly Reduced and Protonated Aqueous Solutions of [P2W18O62]6− for On-Demand Hydrogen Generation and Energy Storage. Nat. Chem.. 2018, 10, 1042–1047. DOI: 10.1038/s41557-018-0109-5.
  • Friedl, J.; Holland-Cunz, M. V.; Cording, F.; Pfanschilling, F. L.; Wills, C.; McFarlane, W.; Schricker, B.; Fleck, R.; Wolfschmidt, H.; Stimming, U. Asymmetric Polyoxometalate Electrolytes for Advanced Redox Flow Batteries. Energy Environ. Sci.. 2018, 11, 3010–3018. DOI: 10.1039/C8EE00422F.
  • Pratt, H. D.; Anderson, T. M. Mixed Addenda Polyoxometalate “Solutions” for Stationary Energy Storage. Dalton Trans.. 2013, 42(44), 15650–15655. DOI: 10.1039/c3dt51653a.
  • Pratt, H. D.; Pratt, W. R.; Fang, X.; Hudak, N. S.; Anderson, T. M. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery. Electrochim. Acta. 2014, 138, 210–214. DOI: 10.1016/j.electacta.2014.06.110.
  • Chen, J.-J.-J.; Barteau, M. A. Electrochemical Properties of Keggin-Structure Polyoxometalates in Acetonitrile: Effects of Countercation, Heteroatom, and Framework Metal Exchange. Ind. Eng. Chem. Res.. 2016, 55(37), 9857–9864. DOI: 10.1021/acs.iecr.6b02316.
  • Chen, J.-J.-J.; Barteau, M. A. Molybdenum Polyoxometalates as Active Species for Energy Storage in Non-Aqueous Media. J. Energy Storage. 2017, 13(Supplement C), 255–261. DOI: 10.1016/j.est.2017.07.017.
  • Spandl, J.; Daniel, C.; Brüdgam, I.; Hartl, H. Synthesis and Structural Characterization of Redox-Active Dodecamethoxoheptaoxohexavanadium Clusters. Angew. Chem. Int. Ed.. 2003, 42(10), 1163–1166. DOI: 10.1002/anie.200390306.
  • Daniel, C.; Hartl, H. Neutral and Cationic VIV/VV Mixed-Valence Alkoxo-Polyoxovanadium Clusters [V6o7(Or)12]N+ (R = −CH3, −C2H5): Structural, Cyclovoltammetric and IR-Spectroscopic Investigations on Mixed Valency in a Hexanuclear Core. J. Am. Chem. Soc.. 2005, 127(40), 13978–13987. DOI: 10.1021/ja052902b.
  • Daniel, C.; Hartl, H. A Mixed-Valence VIV/VV Alkoxo-Polyoxovanadium Cluster Series [V6o8(Och3)11]N+/−: Exploring the Influence of A μ-Oxo Ligand in A Spin Frustrated Structure. J. Am. Chem. Soc.. 2009, 131(14), 5101–5114. DOI: 10.1021/ja8073648.
  • Spandl, J.; Daniel, C.; Brudgam, I.; Hartl, H. Synthesis and Structural Characterization of Redox-Active Dodecamethoxoheptaoxohexavanadium Clusters. Angew. Chem., Int. Ed.. 2003, 42(10), 1163–1166. DOI: 10.1002/anie.200390306.
  • Escalante-García, I. L.; Wainright, J. S.; Thompson, L. T.; Savinell, R. F. Performance of a Non-Aqueous Vanadium Acetylacetonate Prototype Redox Flow Battery: Examination of Separators and Capacity Decay. J. Electrochem. Soc. 2015, 162(3), A363–A372. DOI: 10.1149/2.0471503jes.
  • Bamgbopa, M. O.; Almheiri, S. Influence of Solvents on Species Crossover and Capacity Decay in Non-Aqueous Vanadium Redox Flow Batteries: Characterization of Acetonitrile and 1, 3 Dioxolane Solvent Mixture. J. Power Sources. 2017, 342(p), 371–381.
  • Odom, S.;. Preventing Crossover in Redox Flow Batteries through Active Material Oligomerization. ACS Cent. Sci.. 2018, 4(2), 140–141. DOI: 10.1021/acscentsci.8b00099.
  • Nemani, V. P.; Smith, K. C. Analysis of Crossover-Induced Capacity Fade in Redox Flow Batteries with Non-Selective Separators. J. Electrochem. Soc.. 2018, 165(13), A3144–A3155. DOI: 10.1149/2.0701813jes.
  • Badrinarayanan, R.; In, Z. J. Investigation of Capacity Decay Due to Ion Diffusion in Vanadium Redox Flow Batteries. 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kowloon, Hong Kong, Dec 8-11, 2013; pp 1–5.
  • Hendriks, K. H.; Robinson, S. G.; Braten, M. N.; Sevov, C. S.; Helms, B. A.; Sigman, M. S.; Minteer, S. D.; Sanford, M. S. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. ACS Cent. Sci.. 2018, 4(2), 189–196. DOI: 10.1021/acscentsci.7b00544.
  • Doris, S. E.; Ward, A. L.; Baskin, A.; Frischmann, P. D.; Gavvalapalli, N.; Chénard, E.; Sevov, C. S.; Prendergast, D.; Moore, J. S.; Helms, B. A. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Angew. Chem. Int. Ed.. 2017, 56(6), 1595–1599. DOI: 10.1002/anie.201610582.
  • Sevov, C. S.; Samaroo, S. K.; Sanford, M. S. Cyclopropenium Salts as Cyclable, High-Potential Catholytes in Nonaqueous Media. Adv. Energy Mater.. 2017, 7(5), 1602027. DOI: 10.1002/aenm.201602027.
  • Milshtein, J. D.; Tenny, K. M.; Barton, J. L.; Drake, J.; Darling, R. M.; Brushett, F. R. Quantifying Mass Transfer Rates in Redox Flow Batteries. J. Electrochem. Soc.. 2017, 164(11), E3265–E3275. DOI: 10.1149/2.0201711jes.
  • Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L. Critical Transport Issues for Improving the Performance of Aqueous Redox Flow Batteries. J. Power Sources. 2017, 339, 1–12. DOI: 10.1016/j.jpowsour.2016.11.040.
  • Shah, A. A.; Watt-Smith, M. J.; Walsh, F. C. A Dynamic Performance Model for Redox-Flow Batteries Involving Soluble Species. Electrochim. Acta. 2008, 53(27), 8087–8100. DOI: 10.1016/j.electacta.2008.05.067.
  • VanGelder, L. E.; Petel, B. E.; Nachtigall, O.; Martinez, G.; Brennessel, W. W.; Matson, E. M. Organic Functionalization of Polyoxovanadate-Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries. ChemSusChem. 2018, 13, 4139–4149.
  • Ding, Y.; Zhao, Y.; Li, Y.; Goodenough, J. B.; Yu, G. A High-Performance All-Metallocene-Based, Non-Aqueous Redox Flow Battery. Energy Environ. Sci.. 2017, 10(2), 491–497. DOI: 10.1039/C6EE02057G.
  • Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials. Angew. Chem. Int. Ed. Engl.. 2017, 56(3), 686–711. DOI: 10.1002/anie.201604925.
  • Kosswattaarachchi, A. M.; Cook, T. R. Concentration-Dependent Charge-Discharge Characteristics of Non-Aqueous Redox Flow Battery Electrolyte Combinations. Electrochim. Acta. 2018, 261, 296–306. DOI: 10.1016/j.electacta.2017.12.131.
  • Chen, Q.; Goshorn, D. P.; Scholes, C. P.; Tan, X. L.; Zubieta, J. Coordination Compounds of Polyoxovanadates with a Hexametalate Core. Chemical and Structural Characterization of [VV6O13[(OCH2)3CR]2]2-, [VV6O11(OH)2[(OCH2)3CR]2], [VIV4VV2O9(OH)4[(OCH2)3CR]2]2-, and [VIV6O7(OH)6](OCH2)3CR]2]2. J. Am. Chem. Soc.. 1992, 114(12), 4667–4681. DOI: 10.1021/ja00038a033.
  • Nachtigall, O.; Spandl, J. Versatile Organic Chemistry on Vanadium-Based Multi-Electron Reservoirs. Chem. Eur. J.. 2018, 24(11), 2785–2789. DOI: 10.1002/chem.v24.11.
  • Hayashi, Y.; Ozawa, Y.; Isobe, K.; First, T. “Vanadate Hexamer” Capped by Four Pentamethylcyclopentadienyl-Rhodium or -Iridium Groups. Chem. Lett.. 1989, 18(3), 425–428. DOI: 10.1246/cl.1989.425.
  • Chae, H. K.; Klemperer, W. G.; Day, V. W. Organometal Hydroxide Route to [(C5me5)Rh]4(V6o19). Inorg. Chem.. 1989, 28(8), 1423–1424. DOI: 10.1021/ic00307a001.
  • Khan, M. I.; Chen, Q.; Hope, H.; Parkin, S.; O’Connor, C. J.; Zubieta, J. Hydrothermal Synthesis and Characterization of Hexavanadium Polyoxo Alkoxide Anion Clusters: Crystal Structures of the vanadium(IV) Species Ba[V6O7(OH)3{(OCH2)3CCH3}3].3H2O and Na2[V6O7{(OCH2)3CCH2CH3}4], of the Mixed-Valence Complex (Me3nh)[Viv5vvo7(Oh)3{(Och2)3cch3}3], and of the Fluoro Derivative Na[V6O6F(OH)3{(OCH2)3CCH3}3].3H2O. Inorg. Chem.. 1993, 32(13), 2929–2937.
  • Khan, M. I.; Chen, Q.; Zubieta, J.; Goshorn, D. P. Hexavanadium Polyoxoalkoxide Anion Clusters: Structures of the Mixed-Valence Species (Me3nh)[Viv5vvo7(Oh)3{Ch3c(Ch2o)3}3] and of the Reduced Complex Na2[VIV6O7{CH3CH2C(CH2O)3}4]. Inorg. Chem.. 1992, 31(9), 1556–1558. DOI: 10.1021/ic00035a007.
  • Müller, A.; Meyer, J.; Bögge, H.; Stammler, A.; Botar, A. Cis-/Trans-Isomerie bei Bis-(trisalkoxy)-hexavanadaten: Cis-Na2[V6IVO7(OH)6{(OCH2)3CCH2OH}2] · 8 H2O, cis-(CN3H6)3[VIVV 5VO13{(OCH2)3CCH2OH}2] · 4,5 H2O und trans-(CN3H6)2[V 6VO13{(OCH2)3CCH2OH}2] · H2O. Z. Anorg. Allg. Chem.. 1995, 621(11), 1818–1831. DOI: 10.1002/zaac.19956211103.
  • Han, J. W.; Hill, C. L. A Coordination Network That Catalyzes O2-Based Oxidations. J. Am. Chem. Soc.. 2007, 129(49), 15094–15095. DOI: 10.1021/ja069319v.
  • Han, J. W.; Hardcastle, K. I.; Hill, C. L. Redox-Active Coordination Polymers from Esterified Hexavanadate Units and Divalent Metal Cations. Eur. J. Inorg. Chem.. 2006, 13, 2598–2603. DOI: 10.1002/ejic.200600096.
  • Santoni, M.-P.; Pal, A. K.; Hanan, G. S.; Tang, M.-C.; Venne, K.; Furtos, A.; Menard-Tremblay, P.; Malveau, C.; Hasenknopf, B. Coordination-Driven Self-Assembly of Polyoxometalates into Discrete Supramolecular Triangles. Chem. Commun.. 2012, 48(2), 200–202. DOI: 10.1039/c1cc16155e.
  • Allain, C.; Favette, S.; Chamoreau, L.-M.; Vaissermann, J.; Ruhlmann, L.; Hasenknopf, B. Hybrid Organic–Inorganic Porphyrin–Polyoxometalate Complexes (Eur. J. Inorg. Chem. 22/2008). Eur. J. Inorg. Chem.. 2008, 22, 3391. DOI: 10.1002/ejic.200890059.
  • Hu, X.; Xiao, Z.; Huang, B.; Hu, X.; Cheng, M.; Lin, X.; Wu, P.; Wei, Y. Syntheses and Post-Functionalization of Tri-Substituted Polyalkoxohexavanadates Containing Tris(Alkoxo) Ligands. Dalton Trans.. 2017, 46(26), 8505–8513. DOI: 10.1039/c7dt01543g.
  • Li, F.; VanGelder, L. E.; Brennessel, W. W.; Matson, E. M. Self-Assembled, Iron-Functionalized Polyoxovanadate Alkoxide Clusters. Inorg. Chem.. 2016, 55(15), 7332–7334. DOI: 10.1021/acs.inorgchem.6b01349.
  • Meyer, R. L.; Brennessel, W. W.; Matson, E. M. Synthesis of a Gallium-Functionalized Polyoxovanadate-Alkoxide Cluster: Toward a General Route for Heterometal Installation. Polyhedron. 2018. DOI: 10.1016/j.poly.2018.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.