Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 39, 2019 - Issue 2
921
Views
44
CrossRef citations to date
0
Altmetric
Review Articles

Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development

&

References

  • Bavykin, D.V.; Walsh, F. C. Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem. 2009, 8, 977–997. DOI: 10.1002/ejic.200801122.
  • Bavykin, D. V.; Walsh, F. C., eds.. Titanate and Titania Nanotubes: Synthesis, Properties and Applications; RSC: Cambridge, UK, 2010.
  • Liu, L.; Chen X. Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 2014, 114, 9890–9918. DOI: 10.1021/cr400624r.
  • von Bichowsky, F. Titanium white - A new method for its preparation. Ind. Eng. Chem. 1929, 21(11), 1061–1063. DOI: 10.1021/ie50239a021.
  • Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238, 37–378.
  • Schrauzer, G. N.; Guth, T. D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am. Chem. Soc.. 1977, 99(22), 7189–7193. DOI: 10.1021/ja00464a015.
  • Shimura, K.; Yoshida, H. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci.. 2011, 4, 2467–2481. DOI: 10.1039/c1ee01120k.
  • Chen, X.; Li, C.; Graetzel, M.; Kostecki, R.; Mao, S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev.. 2012, 41, 7909–7937. DOI: 10.1039/c2cs35230c.
  • Sasikala, R.; Bharadwaj, S. Photocatalytic hydrogen generation from water using solar radiation. BARC News Lett. 2012, 325, 10–15.
  • Tentu, R. M,; Basu, S. Photocatalytic water splitting for hydrogen production. Curr. Opin. Electrochem. 2017, 5, 56–62. DOI: 10.1016/j.coelec.2017.10.019.
  • Meng-Yu, X.; Kang-Yang, S.; Xin-Yuan, P.; Ren-Jang, W.; Murthy, C.; Wei-Chen, C. Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2-ZnO under visible light. J. Taiwan Inst. Chem. E. 2017, 70, 161–167. DOI: 10.1016/j.jtice.2016.10.034.
  • Saadetnejad, D.; Yıldırım, R. Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. App. Cat. B. Environ. 2018, 43(2), 1116–1122.
  • Wang, X.; Li, X. Y. Concurrent photocatalytic hydrogen production and organic degradation by a composite catalyst film in a two-chamber photo-reactor. Water Sci. Technol. 2013, 67(12), 2845–2849. DOI: 10.2166/wst.2013.197.
  • Wang, X.; Xiao-Yan, L. Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst. Mater. Sci. Eng. B. 2014, 181, 86–92. DOI: 10.1016/j.mseb.2013.11.015.
  • Guayaquil-Sosa, Fabricio J. Photocatalytic hydrogen production using a mesoporous TiO2 doped with Pt: Semiconductor synthesis, oxidation-reduction network and quantum efficiencies. Electronic thesis and dissertation repository. 2018; 5191. https://ir.lib.uwo.ca/etd/5191.
  • Sadanandam G, Zhang L, Scurrell MS. Enhanced photocatalytic hydrogen formation over Fe-loaded TiO2 and g-C3N4 composites from mixed glycerol and water by solar irradiation. J. Renew. Sust. Energy. 2018, 10, 034703. DOI: 10.1063/1.5021350.
  • Rhydderch, S. In situ EPR studies of reaction pathways in titania photocatalyst-promoted alkylation of alkenes. Molecules, Basel, Switzerland, 2015.
  • Mills, A. O’Rourke, C. Photocatalytic organic synthesis in an NMR tube: C-C coupling of phenoxyacetic acid and acrylamide. Catal. Today. 2014, 230, 256–264. DOI: 10.1016/j.cattod.2013.10.083.
  • Ahmad, S.; Nazir, A.; Hussain, T. Photocatalytic degradation of organics by using nanocrystalline titania. J. Chem. 2017, 1–5. DOI:10.1155/2017/7408972.
  • Lavand, A. B.; Bhatu, M. N.; Malghe, Y. S. Visible light photocatalytic degradation of malachite green using modified titania. J. Mater. Res. Technol. (In press). 2018. DOI: 10.1016/j.jmrt.2017.05.019.
  • Payan, A.; Fattahi, M.; Roozbehani, B. Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution. J. Environ. Health Sci. Eng. 2018, 16(295), 41–54. DOI: 10.1007/s40201-018-0295-5.
  • Yang, H.; Yang, J. Photocatalytic degradation of Rhodamine B catalyzed by TiO2 films on a capillary column. RSC Adv. 2018, 8, 11921–11929. DOI: 10.1039/C8RA00471D.
  • Cendrowski, K. Titania/mesoporous silica nanotubes with efficient photocatalytic properties. Polish J. Chem. Technol. 2018, 20(1), 103–108. DOI: 10.2478/pjct-2018-0015.
  • Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043. DOI: 10.1021/cr500008u.
  • Sorcar, S.; Hwang, Y.; Grimes, C. A. Su-II In. Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4. Mater. Today. 2017, 20(9), 507–515. DOI: 10.1016/j.mattod.2017.09.005.
  • Julian, M.; de Souza, P.; Ciotti, L.; Vaz, Z. M.; Spinace, E. V. Preparation of Au/TiO2 catalyst by a liquid-phase reduction method for preferential oxidation of carbon monoxide in a hydrogen rich-stream (CO-PROX reaction). Mater. Res. 2017, 21(2), e20170756.
  • Byranvand, M. M.; Kharat, A. N.; Bazargan, M. H. Titania nanostructures for dye-sensitized solar cells. Nano-Micro. Lett. 2012, 4(4), 253–266. DOI: 10.1007/BF03353723.
  • Nair, R. G.; Kumar, M.; Samdarshi, S. K. Performance engineering of dye sensitized solar cells (DSSC) using Ag modified titania as photoanode. Presented at IOP Science Conference Series, Material Science & Engineering, 2018, 303, 012001.
  • Bhattacharya, S.; Datta, J. CdTe nanoparticles decorated titania for dye sensitized solar cell: A novel co-sensitizer approach towards highly efficient energy conversion. New J. Chem. 2017, 41, 8663–8672. DOI: 10.1039/C7NJ00737J.
  • Bauer, D.; Roberts, A. J.; Matsumi, N.; Darr J. A. Nano-sized Mo- and Nb-doped TiO2 as anode materials for high energy and high power hybrid Li-ion capacitors. Nanotechnol. 2017, 28, 195403. DOI: 10.1088/1361-6528/aa69df.
  • Xei, K.; Li, J.; Lai, Y.; Zhang, Z.; Liu, Y.; Zhang, G.; Huang, H. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale. 2011, 3(5), 2202–2207. DOI: 10.1039/c0nr00899k.
  • Sowmya, N.; Bykkam, S.; Rao, K. V. Synthesis and characterization of ceria-titania (CeO2-TiO2) core-shell nanoparticles for enzymatic bio sensing application. Curr. Nanomater. 2016, 1(2), 132–138. DOI: 10.2174/2468187306666160722152916.
  • Moom, S. A.; Addai-Mensah, J.; Losic, D. Multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 2012, 48(27), 3348–3350. DOI: 10.1039/c2cc17690d.
  • Evdokimova, O. L.; Svensson, F. G.; Agafonov, A. V.; Hakansson, S.; Seisenbaeva, G. A.; Kessler, V. G. Hybrid drug delivery patches based on spherical cellulose nanocrystals and colloid titania-synthesis and antibacterial properties. Nanomater. 2018, 8(4), 228–229. DOI: 10.3390/nano8040228.
  • Mohamed, M. S.; Torabi, A.; Paulose, M.; Kumar, D. S.; Varghese, O. K. Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Sci. Rep. 2017, 7, 41844. DOI: 10.1038/srep41844.
  • Schneider, J.; Anpo, M.; Matsuoka, M.; Takeuchi, M.; Bahnemann, D. W.; Zhang, J.; Horiuchi, Y. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114(19), 9919–9986. DOI: 10.1021/cr5001892.
  • Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852. DOI: 10.1021/cr5000738.
  • Dahl, M.; Liu, Y.; Yin, Y. Composite titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9853–9889. DOI: 10.1021/cr400634p.
  • Phonsy, P. D.; Yesodharan, S.; Yesodharan, E. P. Enhancement of semiconductor mediated photocatalytic removal of polyethylene plastic wastes from the environment by oxidizers. Res. J. Recent Sci. 2015, 4(10), 105–112.
  • Nasir, M.; Lei, J.; Iqbal, W.; Zhang, J. Study of synergistic effect of Sc and C co-doping on the enhancement of visible light photo-catalytic activity of TiO2. Appl. Surf. Sci. 2016, 364, 446–454. DOI: 10.1016/j.apsusc.2015.12.166.
  • Liu, L.; Chen, X. Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 2014, 114, 9890–9918. DOI: 10.1021/cr400624r.
  • Hernandez-Martinez, A. R.; Estevez, M.; Vargas, S.; Rodriguez, R. New polyurethane-anatase titania porous hybrid composite for the degradation of azo-compounds wastes. Composites B: Eng. 2013, 44(1), 686–691. DOI: 10.1016/j.compositesb.2012.01.076.
  • Behnajady, M. A.; Eskandarloo, H.; Modirshahla, N.; Shokri, M. Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity. Photochem. Photobio. 2011, 87(5), 1002–1008. DOI: 10.1111/j.1751-1097.2011.00954.x.
  • Behnajady, M. A.; Eskandarloo, H.; Modirshahla, N.; Shokri, M. Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination. 2011, 278(1), 10–17. DOI: 10.1016/j.desal.2011.04.019.
  • Behnajady, M. A.; Eskandarloo, H. Preparation of TiO2 nanoparticles by the sol-gel method under different pH conditions and modeling of photocatalytic activity by artificial neural network. Res. Chem. Intermed. 2015, 41, 2001–2017. DOI: 10.1007/s11164-013-1327-5.
  • Zaleska, A. Doped-TiO2: A review. Rec. Patents Eng. 2008, 2, 157–164. DOI: 10.2174/187221208786306289.
  • Yadav, S.; Jaiswar, G. Review on undoped/doped TiO2 nanomaterial: Synthesis and photocatalytic and antimicrobial activity. J. Chin. Chem. Soc. 2017, 64(1), 103–116. DOI: 10.1002/jccs.201600735.
  • Sulaiman, S. N. A.; Noh, M. Z.; Adnan, N. N.; Bidin, N.; Ab Razak, S. N. Effects of photocatalytic activity of metal and non-metal doped TiO2 for hydrogen production enhancement - A review. Presented at Journal Physics, IOP Science Conference Series, 2018. 10.1088/1742-6596/1027/1/012006
  • Eskandarloo, H.; Badiei, A. Photocatalytic application of titania nanoparticles for degradation of organic pollutants In Nanotechnology for optics and sensors; Aliofkhazraei, M., Ed.; Tehran, 2014.
  • Wilke, K.; Breuer, H. D. The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A Chem. 1999, 121(1), 49–53. DOI: 10.1016/S1010-6030(98)00452-3.
  • Wilke, K.; Breuer, H. D. Transition metal doped titania: physical properties and photocatalytic behaviour. J. Phys. Chem. 1999, 213, 135–140.
  • Banerjee, A. N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011, 4, 35–65. DOI: 10.2147/NSA.S9040.
  • Singh, I.; Birajdar, B. Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nanopowder prepared via a solvent-controlled nonaqueous sol-gel route. RSC Adv. 2017, 7, 54053–54062. DOI: 10.1039/C7RA10108B.
  • Segne, T. A.; Tirukkovalluri, S. R.; Challapalli, S. Studies on characterization and photocatalytic activities of visible light sensitive TiO2 nano catalysts Co-doped with magnesium and copper. Int. Res. J. Pure Appl. Chem. 2011, 1(3), 84–103. DOI: 10.9734/IRJPAC/2011/453.
  • Avasarala, B. A.; Tirukkovalluri, S. R.; Bojja, S. Synthesis, characterization and photocatalytic activity of alkaline earth metal doped titania. Ind. J Chem. A. 2010, 49, 1189–1196.
  • Scarsella, M.; Bracciale, M. P.; de Caprariis, B.; De Filippis, P.; Petrullo, A.; Pronti, L.; Santarelli, M. L. Improved photocatalytic properties of doped titanium-based nanometric oxides. Chem. Eng. Trans. 2017, 60, 133–139.
  • Liu, S.; Min, Z.; Hu, D.; Liu, Y. Synthesis of calcium doped TiO2 nanomaterials and their visible light degradation property. Presented at the International Conference on Material and Environmental Engineering, 2014, Atlantis Press.
  • Primo, A.; Corma, A.; Garcia, H. Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886–910. DOI: 10.1039/c0cp00917b.
  • Yang, D.; Sun, Y.; Tong, Z.; Tian, Y.; Li, Y.; Jiang, Z. Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J. Phys. Chem. C. 2015, 119(11), 5827–5835. DOI: 10.1021/jp511948p.
  • Kulkarni, R. M.; Malladi, R. S.; Hanagadakar, M. S.; Doddamani, M. R.; Bhat, U. K. Ag-TiO2 nanoparticles for photocatalytic degradation of lomefloxacin Des. Wat. Treat. 2015, 1–8.
  • Tobaldi, D. M.; Skapin, A. S.; Pullar, R. C.; Seabra, M. P.; Labrincha, J. A. Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, photocatalytic activity. Ceram. Int. 2013, 39, 2619–2629. DOI: 10.1016/j.ceramint.2012.09.027.
  • Tobaldi, D. M.; Piccirillo, C.; Pullar, R. C.; Gualtieri, A. F.; Seabra, M. P.; Castro, P. M. L.; Labrincha, J. A. Silver-modified nano-titania as an antibacterial agent and photocatalyst. J Phys. Chem. C. 2014, 118, 4751–4766. DOI: 10.1021/jp411997k.
  • Teodoro, V.; Silva Junior, E.; Nogueira, M.V.; Zaghete, M. A.; Longo, E.; Perazolli, L. A. Photocatalytic activity of Cu-doped TiO2 films deposited by electrophoresis. Sci. Revs. Chem. Commun. 2017, 7(3), 112.
  • Roy, N.; Sohn Y.; Leung, K. T.; Pradhan, D. Engineered electronic states of transition metal doped TiO2 nanocrystals for low over potential oxygen evolution reaction. J. Phys. Chem. C. 2014, 118, 29499–29506. DOI: 10.1021/jp508445t.
  • Tahir, B.; Tahir, M.; Amin, N. A. S. Photocatalytic CO2-hydrogen conversion via RWGSR over Ni/TiO2 nanocatalyst dispersed in layered MMT nanoclay. Chem. Eng. Trans. 2018, 63, 115–120.
  • Sood, S.; Umar, A.; Mehta, S. K.; Kansal, S. K. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible light driven photocatalytic degradation of toxic organic compounds. J. Colloid. Interf. Sci. 2015, 450, 213–223. DOI: 10.1016/j.jcis.2015.03.018.
  • Mozia, S.; Kulagowska, A.; Morawski, A. W. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions. Molecules. 2014, 19, 19633–19647. DOI: 10.3390/molecules191219633.
  • Butler, E. B. Ching-Cheng, C.; Yung-Tse, H.; Al Ahmad, M. S.; Yen-Pei, F. Effect of Fe-doped TiO2 photocatalysts on the degradation of Acid Orange 7. Integr. Ferroelectr. 2018, 168(1), 1–9. DOI: 10.1080/10584587.2016.1157779.
  • Singla, P.; Pandey, O. P.; Singh, K. Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. Int. J. Environ. Sci. Technol. 2016, 13, 849–856. DOI: 10.1007/s13762-015-0909-8.
  • Liang, J.; Hao, C.; Yu, K.; Li, Y. Excellent photocatalytic performance of cobalt-doped titanium dioxide nanotubes under ultraviolet light. Nanomater. Nanotechnol. 2016, 6, 1–5. DOI: 10.1177/1847980416680808.
  • Ismail, A. A.; Bahnemann, D. W. Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J. Phys. Chem. C. 2011, 115, 5784–5791. DOI: 10.1021/jp110959b.
  • Musalikunta, C.; Reddy, B. P.; Mallikarjuna, K.; Shanmugam, G.; Chang-Hoi, A.; Park, S-Y. Synthesis, characterization, and analysis of enhanced photocatalytic activity of Zr-doped TiO2 nanostructured powders under UV light. Mater. Res. Express. 2018, 5, 015024. DOI: 10.1088/2053-1591/aaa21e.
  • Nogueira, M. V.; Filho, E. V. M.; Lustosa, G. M. M.M.; Zaghete, M. A.; Kobayakawa, K.; Kogler, W.; Ruiz, M.; Perazolli, L. A. Nb-doped TiO2 photocatalysts used to reduction of CO2 to methanol. Adv. Mater. Sci. Eng. 2018, 1–8. DOI:10.1155/2018/7326240.
  • Shojaie A, Fattahi M, Jorf S, Ghasemi B. Synthesis and evaluations of Fe3O4-TiO2-Ag nanocomposite for photocatalytic degradation of 4-chlorophenol (4-CP): effect of Ag and Fe compositions. Int. J Ind. Chem. 2018, 9, 141–151. DOI: 10.1007/s40090-018-0145-4.
  • Ghorai, T. K. Synthesis of spherical mesoporous titania modified iron-niobate nanoclusters for photocatalytic reduction of 4-nitrophenol. J. Mater. Res. Technol. 2015, 4(2), 133–143. DOI: 10.1016/j.jmrt.2014.11.005.
  • Lecante, P.; Shotika, C.; Phiyanalinmat, S. Studies on SnCl2-doped TiO2 photocatalyst for pyrocatechol photodegradation. Eng. J. 2013, 18(3), 11–22. DOI: 10.4186/ej.2014.18.3.11.
  • Tahir, M.; Amin, N. S. Indium doped TiO2 nanoparticles for photocatalytic CO2 reduction. Appl. Catal. B. Environ. 2015, 162, 98–109. DOI: 10.1016/j.apcatb.2014.06.037.
  • Zhu, X.; Liu, Z.; Fang, J.; Wu, S. Synthesis and characterization of mesoporous Bi/TiO2 nanoparticles with high photocatalytic activity under visible light. J. Mater. Res. 2013, 28(10), 1334–1342. DOI: 10.1557/jmr.2013.92.
  • Myilsamy, M.; Nallasivam, S.; Murugesan, V.; Mani, M. Mesoporous Ga-TiO2: Role of oxygen vacancies for the photocatalytic degradation under visible light. J. Nanosci. Nanotechnol. 2018, 18(2), 925–935. DOI: 10.1166/jnn.2018.14207.
  • Zhu, F.; Li, C.; Ha, M. N.; Liu, Z.; Guo, Q.; Zhao, Z. Molten-salt synthesis of Cu-SrTiO3/TiO2 nanotube heterostructures for photocatalytic water splitting. J. Mater.Sci. 2016, 51(9), 4639–4649. DOI: 10.1007/s10853-016-9779-9.
  • Mu, J.; Chen, B.; Zhang, M.; Guo, Z.; Zhang, P.; Zhang, Z.; Sun, Y.; Shao, C.; Liu, Y. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. Appl. Mater. Interfaces. 2012, 4, 424–430. DOI: 10.1021/am201499r.
  • Leong, K. H.; Aciz, A. A.; Sim, L. C.; Saravanan, P.; Jang, M.; Bahnemann, D. Mechanistic insights into Plasmonic photocatalysts in utilizing visible light. Beilstein J. Nanotechnol. 2018, 9, 628–648. DOI: 10.3762/bjnano.9.59.
  • Verbruggen, S. W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Tendeloo, G. V.; Lacombe, S.; Martense, J. A.; Lenaerts, S. Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity. Appl. Catal. B. Environ. 2014, 156-157, 116–121. DOI: 10.1016/j.apcatb.2014.03.027.
  • Paul, K. K.; Giri, P. K. Role of surface Plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible light. J. Phys. Chem. C. 2017, 121, 20016–20030. DOI: 10.1021/acs.jpcc.7b05328.
  • Fang, J.; Cao, S.; Wang, Z.; Shahjamli, M. M.; Loo, S. C. J.; Barber, J.; Xue, C. Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int. J. Hydrogen Energy. 2012, 37(23), 17853–17861. DOI: 10.1016/j.ijhydene.2012.09.023.
  • Kim, J.; Son, H. Y.; Nam, Y. S. Multilayered plasmonic heterostructure of gold and titania nanoparticles for solar fuel production. Sci. Rep. 2018, 8(10464), 1–14. DOI: 10.1038/s41598-017-17765-5.
  • Li, H.; Liu, E.; Fan, J.; Hu, X.; Wan, J.; Sun, L.; Hu, Y. Fabrication of Plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities. Appl. Opt. 2016, 55(2), 221–227. DOI: 10.1364/AO.55.000221.
  • Sun, H.; Zeng, S.; He, Q.; She, P.; Xu, K.; Liu, Z. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity. Dalton Trans. 2017, 46, 3887–3894. DOI: 10.1039/c7dt00345e.
  • Singh, J.; Satpati, B.; Mohapatra S. Structural, optical and Plasmonic properties of Ag-TiO2 hybrid Plasmonic nanostructures with enhanced photocatalytic activity. Plasmonic. 2017, 12(3), 877–888. DOI: 10.1007/s11468-016-0339-6.
  • Rather, R. A.; Singh, S.; Pal, B. Photocatalytic degradation of methylene blue by Plasmonic metal-TiO2 nanocatalysts under visible light irradiation. J. Nanosci. Nanotechnol. 2017, 17, 1210–1216.
  • Leong, K. H.; Gan, B. L.; Ibrahim, S.; Sarvanan, P. Synthesis of surface Plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Appl. Surf. Sci. 2014, 319, 128–135. DOI: 10.1016/j.apsusc.2014.06.153.
  • Leong, K. H.; Gan, B. L.; Ibrahim, S.; Sarvanan, P. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface Plasmon resonance-stimulated, visible-light-driven photocatalytic activity. Beilstein J. Nanotechnol. 2015, 6, 428–437. DOI: 10.3762/bjnano.6.43.
  • Lacerda, A.; Larrosa, I.; Dunn, S. Highly efficient Plasmonic palladium-titanium dioxide co-catalyst in the photodegradation of Rhodamine b dye. Adv. Sci. Technol. 2014, 93, 184–189. DOI: 10.4028/www.scientific.net/AST.93.184.
  • Zhang, S.; Peng, B.; Yang, S.; Wang H.; Yu, H.; Fang, Y.; Peng, F. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with Plasmon-enhanced photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy. 2015, 40, 303–310. DOI: 10.1016/j.ijhydene.2014.10.122.
  • Yu, J.; Zhou, L.; Wang, Y.; Tan, Y.; Wang, Z.; Zhu, S.; Zhu, J. Three-dimensional TiO2/Au nanoparticles for Plasmon enhanced photocatalysis. J. Opt. 2018, 20, 034005. DOI: 10.1088/2040-8986/aaa9f4.
  • Zhao, Z.-J.; Hwang, S. H.; Jeon, S.; Hwang, B.; Jung, J.-Y.; Lee, J.; Park, S.-U.; Jeong, J.-H. Three-dimensional plasmonic Ag/TiO2 nanocomposite architectures on flexible substrates for visible-light photocatalytic activity. Sci. Rep. 2017, 7, 8915. DOI: 10.1038/s41598-017-09401-z.
  • Mishra, A.; Mehta, A.; Kainth, S.; Basu, S. Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light. Appl. Clay Sci. 2018, 153, 144–153. DOI: 10.1016/j.clay.2017.11.040.
  • Zhou, M.; Zhang, J.; Cheng, B.; Yu, H. Enhancement of visible-light photocatalytic nanocomposites by surface Plasmon resonance activity of mesoporous Au-TiO2. Int. J. Photoenergy. 2012, 532843.
  • Wang, J.; Barbosa, E. C. M.; Fang, Z.; Parussulo, A. L. A; Dos Reis, F. V. E.; Ando, R. A.; Araki, K.; Toma, H. E.; Camargo, P. H. C. On the effect of TiO2 nanocrystallites over the Plasmonic photodegradation by Au nanoparticles. J. Raman Spectrosc. 2018, 49(12), 1953–1960. DOI: 10.1002/jrs.5492.
  • Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics. 2014, 8, 95–103. DOI: 10.1038/nphoton.2013.238.
  • Zhnag, X.; Chen, Y. L.; Liu, R.-S.; Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. DOI: 10.1088/0034-4885/76/4/046401.
  • Wang, T.; Zhi-Yong, X.; Li-Guang, W.; Bing-Rui, L.; Mei-Xi, C.; Shi-Yi, X.; Yi-Chen, Z.; Cai, J. Enhanced photocatalytic activity for degrading phenol in seawater by TiO2-based catalysts under weak light irradiation. RSC Adv. 2017, 7, 31921–31929. DOI: 10.1039/C7RA04732K.
  • Dogu, D.; Karakas, G. photocatalytic properties and characterization of praseodymium-doped titanium dioxide. J. Adv. Oxid. Technol. 2018, 21(1), 1–12.
  • Song, L.; Zhao, X.; Cao, L.; Moon, J.-W.; Gu, B.; Wang, W. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation. Nanoscale. 2015, 7, 16695–16703. DOI: 10.1039/c5nr03537f.
  • Narayan, H.; Alemu, H.; Setofolo, L.; Macheli, L. Visible light photocatalysis with rare earth ion-doped TiO2 nanocomposites. Int. Scholarly Res. Network. 2012, 1–9.
  • Wang, G.; Feng, H.; Hu, L.; Jin, W.; Hao, Q.; Gao, A.; Peng, X.; Li, W.; Wong, K-Y.; Wang, H.; Li, Z.; Chu, P. K. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging. Nat. Commun. 2018, 9, 2055. DOI: 10.1038/s41467-018-04317-2.
  • Wu, Z.; Dong, F.; Zhao, W.; Wang, H.; Liu, Y.; Guan, B. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnol. 2009, 20, 235701. DOI: 10.1088/0957-4484/20/23/235701.
  • Xie, C.; Ynag, S.; Shi, J.; Niu, C. Highly crystallized C-doped mesoporous anatase TiO2 with visible light photocatalytic activity. Catal. 2016, 6(8), 117. DOI: 10.3390/catal6080117.
  • Chinnusamy, S.; Kaur, R.; Bokare, A.; Erogbogbo, F. Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Commu. 2018, 8, 137–144. DOI: 10.1557/mrc.2018.7.
  • Zhang, J.; Liu, F.; Gao, J.; Chen, Y.; Hao, X. Ordered mesoporous TiO2/activated carbon for adsorption and photocatalysis of Acid Red 18 solution. Bio. Resources. 2017, 12(4), 9086–9102.
  • Yang, Y.; Ni, D.; Yaho, Y.; Zhong, Y.; Ma, Y.; Yaho, J. High photocatalytic activity of carbon doped TiO2 prepared by fast combustion of organic capping ligands. RSC Adv. 2015, 5, 93635–93643. DOI: 10.1039/C5RA19058D.
  • Wu, X.; Yin, S.; Dong, Q.; Guo, C.; Li, H.; Kimura, T.; Sato, T. Synthesis of high visible light active carbon doped TiO2photocatalyst by a facile calcination assisted solvothermal method. Appl. Catal. B. Environ. 2013, (142–143), 450–457. DOI: 10.1016/j.apcatb.2013.05.052.
  • Yen, Y.-C.; Lin, C.-C.; Chen, P.-Y.; Ko, W.-Y.; Tien, T.-R.; Lin, K.-J. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent. R. Soc. Open Sci. 2017, 4, 161051–161058. DOI: 10.1098/rsos.161051.
  • Haghani, L.; Faghihian, H. Combined oxidative-adsorptive method for elimination of dibenzothiophene; Degradation by TiO2-CMK-8 photocatalyst, adsorption by CMK-8 and SBA-15. Der Chemica Sinica. 2018, 9(1), 570–580.
  • Rahmawati, F.; Fadillah, I.; Mudjijono, M. Composite of nano-TiO2 with cellulose acetate membrane from Nata de Coco (Nano-TiO2/CA(NDC)) for methyl orange degradation. J. Mater. Environ. Sci. 2017, 8(2), 389–397.
  • Sullivan, J. A.; Neville, E. M.; Herron, R.; Thampi, K. R.; MacElroy, J. M. D. Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors. Photochem. Photobio. 2014, 289, 60–65. DOI: 10.1016/j.jphotochem.2014.05.009.
  • Shao, J.; Sheng, W.; Wang, M.; Li, S.; Chen, J.; Zhang, Y.; Cao, S. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl. Catal. B. Environ. 2017, 209, 311–319. DOI: 10.1016/j.apcatb.2017.03.008.
  • Rajamanickam, A. T., Thirunavukkarasu, P.; Dhanakod, K. A simple route to synthesis of carbon doped TiO2 nanostructured thin film for enhanced visible-light photocatalytic activity. J. Mater Sci: Mater Electron. 2015, 26, 4038–4045.
  • Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B. Environ. 2009, 91, 355–361. DOI: 10.1016/j.apcatb.2009.06.001.
  • Mani, A. D.; Reddy, P. M. K.; Shrinivas, M.; Ghosal, P.; Xanthopoulos, N.; Subrahmanyam, Ch. Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI). Mater. Res. Bull. 2014, 61, 391–399. DOI: 10.1016/j.materresbull.2014.10.051.
  • Lavand, A. B.; Malghe, Y. S. Nano sized C-doped TiO2 as a visible-light photocatalyst for the degradation of 2,4,6-trichlorophenol. Adv. Mater. Lett. 2015, 6(8), 695–700. DOI: 10.5185/amlett.2015.5800.
  • Liu, J.; Wang, S.; Zhang, Q.; Yang, J.; Ma, H.; Tade, M. O.; Liu, J. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 2014, 50, 13971–13974. DOI: 10.1039/C4CC05544F.
  • Ji, L.; Zhnag, Y.; Miao, S.; Gong, M.; Liu, X. In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon. 2017, 125, 544–550. DOI: 10.1016/j.carbon.2017.09.094.
  • Halimi, S. U.; Abd Hashib, Abu Bakar, N. F.; Ismail, S. N.; Naim, M. N.; Abd Rahman, N.; Krishnan, J. Formation of sol gel dried droplets of carbon doped titanium dioxide (TiO2) at low temperature via electrospraying. Presented at IOP Science Conference Series, Material Science & Engineering, 2018, 358, 012048.
  • Peng, X.; Fu, J.; Zhang, X.; Li, Y.; Huang, M.; Huo, K.; Chu, P. K. Carbon-doped TiO2 nanotube array platform for visible photocatalysis. Nanosci. Nanotechnol. Lett. 2013, 5, 1251–1257. DOI: 10.1166/nnl.2013.1681.
  • Ganeshan, N. M.; Muthukumarasamy, N.; Balasundaraprabhu, R. Senthil, T. S. Carbon doped TiO2 thin films for photo catalytic applications. J. Ovonic Res. 2014, 10(5), 157–165.
  • Wang, D.-H.; Jia, L.; Wu, X.-L.; Lu, L.-Q.; Xu, A.-W. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale. 2012, 4, 576–584. DOI: 10.1039/c1nr11353d.
  • Azami, M. S.; Nawawi, W. I.; Jawad, A. H.; Ishak M. A. M.; Ismail, K. N-doped TiO2 synthesized via microwave induced photocatalytic on RR4 dye removal under LED light irradiation. Sains Malays. 2017, 46(8), 1309–1316. DOI: 10.17576/jsm-2017-4608-17.
  • Yoshida, T.; Niimi, S.; Yamamoto, M.; Nomoto, T.; Yagi, S. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis. J Colloid. Interf. Sci. 2015, 447, 278–281. DOI: 10.1016/j.jcis.2014.12.097.
  • Vaiano, V.; Sannino, O. S.; Ciambelli, P. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem. Eng. J. 2015, 261, 3–8. DOI: 10.1016/j.cej.2014.02.071.
  • Lin, Y.-H.; Lin, Y.-T.; Weng, C.-H.; Tzeng, J.-H.; Srivastav, A. L. Facile synthesis and characterization of N-doped TiO2 photocatalyst and its visible-light activity for photo-oxidation of ethylene. J. Nanomater. 2015, 807394.
  • Zhang, X.; Song, P.; Cui, X. Nitrogen-doped TiO2 photocatalysts synthesized from titanium nitride: Characterizations and photocatalytic hydrogen evolution performance. J. Adv. Oxid. Technol. 2013, 16(1), 131–136.
  • Zhou, X.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2. Mater. Res. Bull. 2011, 46, 840–844. DOI: 10.1016/j.materresbull.2011.02.029.
  • Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 2010, 20, 5301–5309. DOI: 10.1039/c0jm00376j.
  • Cheng, X.; Yu, X.; Xing, Z.; Yang, L. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arabian J. Chem. 2012, 9, S1706–S1711. DOI: 10.1016/j.arabjc.2012.04.052.
  • Tryba, B.; Wozniak, M.; Zolnieriewicz, G.; Guskos, N.; Morawski, A.; Colbeau-Justin, C.; Nitta, A.; Ohtani, B. Influence of an electronic structure of N-TiO2 on its photocatalytic activity towards decomposition of acetaldehyde under UV and fluorescent lamps irradiation. Catal. 2018, 8, 85. DOI: 10.3390/catal8020085.
  • Mekprasart, W.; Pecharapa, W. Synthesis and characterization of nitrogen-doped TiO2 and its photocatalytic activity enhancement under visible light. Energy Procedia. 2011, 9, 509–514. DOI: 10.1016/j.egypro.2011.09.058.
  • Perez, E.; Vittorio, L.; Torres, M. F.; Sham, E. Nitrogen doped TiO2 photoactive in visible light. Rev. Mater. 2015, 561–570.
  • Dhanya, T. P.; Sugunan, S. Preparation, characterization and photocatalytic activity of N doped TiO2. J. Appl. Chem. 2013, 4(3), 27–33.
  • Yusuf, A.; Gaya, U. Mechanochemical synthesis and characterization of N-doped TiO2 for photocatalytic degradation of caffeine. Nanochem. Res. 2018, 3(1), 29–35.
  • Bakar, S. A.; Ribeiro, C. Rapid and morphology controlled synthesis of anionic S-doped TiO2 photocatalysts for the visible-light-driven photodegradation of organic pollutants. RSC Adv. 2016, 6, 36516–36527. DOI: 10.1039/C6RA03819K.
  • Devi, L. G.; Kavitha, R. Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification. Mater. Chem. Phys. 2013, 143(3), 1300–1308. DOI: 10.1016/j.matchemphys.2013.11.038.
  • Rockafellow, E. M.; Stewart, L. K.; Jenks, W. S. Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation?. Appl. Catal. B. Environ. 2009, 91, 554–562. DOI: 10.1016/j.apcatb.2009.06.027.
  • Li, N.; Zhang, X.; Zhou, W.; Liu, Z.; Xie, G.; Wang, Y.; Du, Y. High quality sulfur-doped titanium dioxide nanocatalysts with visible light photocatalytic activity from non-hydrolytic thermolysis synthesis. Inorg. Chem. Front. 2014, 1, 521–525. DOI: 10.1039/C4QI00027G.
  • Ivanov, S.; Barylyak, A.; Besaha, K.; Bund, A.; Bobotski, Y.; Woinarowska-Nowak, R.; Yaremchuk, I.; Kus-Liskewicz, M. Synthesis, characterization, and photocatalytic properties of sulfur- and carbon-codoped TiO2 nanoparticles. Nanoscale. Res. Lett. 2016, 11(1), 140. DOI: 10.1186/s11671-016-1353-5.
  • Phung, H. N. T. Effect of co-doping and tri-doping with transition metals and a nonmetal on photocatalytic activity in visible light of TiO2 thin film. J Kor. Phys. Soc. 2017, 70(11), 995–1000. DOI: 10.3938/jkps.70.995.
  • Gaidau, C.; Petica, A.; Ignat, M.; Iordache, O.; Ditu, L.-M.; Ionescu, M. Enhanced photocatalysts based on Ag-TiO2 and Ag-N-TiO2 nanoparticles for multifunctional leather surface coating. Open Chem. 2016, 14, 383–392. DOI: 10.1515/chem-2016-0040.
  • Zhao, W.; Ai, Z.; Dai, J.; Zhang, M. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-Vis light by Au-modified nitrogen-doped TiO2. Plos One. 2014, 9(8), e103671. DOI: 10.1371/journal.pone.0103671.
  • Li, Q.; Easter, N. J.; Shang, J. K. As(III) removal by palladium-modified nitrogen-doped titanium oxide nanoparticle photocatalyst. Environ. Sci. Technol. 2009, 43, 1534–1539.
  • Li, H. H.; Yin, S.; Wang, Y. H.; Sato, T. G. Effect of the status of Sm on the properties of Sm contained N doped TiO2 photocatalysts. J. Porous Mater. 2013, 20, 859–864. DOI: 10.1007/s10934-012-9662-2.
  • Higashimoto, S.; Azuma, M. Photo-induced charging effect and electron transfer to the redox species on nitrogen-doped TiO2 under visible light irradiation. Appl. Catal. B. 2009, 89, 557–562. DOI: 10.1016/j.apcatb.2009.01.017.
  • Zhang, X.; Yates, M. Z. Enhanced photocatalytic activity of TiO2 nanoparticles supported on electrically polarized hydroxyapatite. Appl. Mater. Interfaces. 2018. DOI: 10.1021/acsami.8b03838.
  • Xu, Q.; Wang, X.; Dong, X.; Ma, C.; Zhang, X.; Ma, H. Improved visible light photocatalytic activity for TiO2 nanomaterials by codoping with zinc and sulfur. J. Nanomater. 2015, 1–8.
  • Lai, L.-L.; Wu, J.-M. A facile solution approach to W, N co-doped TiO2 nanobelt thin films with high photocatalytic activity. J. Mater. Chem. A. 2015, 3, 15863–15868. DOI: 10.1039/C5TA03918E.
  • Ansari, S. A.; Khan M. M.; Ansari, M. O.; Cho, M. H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000–3009. DOI: 10.1039/C5NJ03478G.
  • Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. DOI: 10.1016/j.surfrep.2008.10.001.
  • Gonzalez-Torres, J. C.; Garcia-Cruz, R.; Poulain, E.; Olvera-Neria, O. Dominguez-Soria, V. C-, N-, S-, and F-doped anatase TiO2 (101) with oxygen vacancies: Photocatalysts active in the visible region. Int. J. Photoenergy. 2018, 7506151.
  • Li, K.; Huang Z.; Zeng, X.; Huang, B.; Gao, S.; Lu, J. Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl. Mater. Interfaces. 2017, 9(13), 11577–11586. DOI: 10.1021/acsami.6b16191.
  • Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 2010, 20, 5301–5309. DOI: 10.1039/c0jm00376j.
  • Valentin, C. D.; Pacchioni, G.; Selloni, A. Theory of carbon doping of titanium dioxide. Chem. Mater. 2005, 17, 6656–6665. DOI: 10.1021/cm051921h.
  • Li, J.-L.; Yang, B.; Yu, Y. Ti3+ in the surface of titanium dioxide: Generation, properties and photocatalytic application. J. Nanomater. 2012, 831524.
  • He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S. Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Appl. Surf. Sci. 2016, 364, 416–427. DOI: 10.1016/j.apsusc.2015.12.163.
  • Cao, Y.; Jing, Y.; Shi, X.; Luan, Y.; Durrant, J. R.; Tang, J.; Fu, H. Phosphate modification improves the photocatalytic activity of TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen. Phys. Chem. Chem. Phys. 2012, 14, 8530–8536. DOI: 10.1039/c2cp41167a.
  • Liu, D.; Jing, L.; Luan, P.; Tang, J.; Fu, H. Enhancement effects of cobalt phosphate modification on activity for photoelectrochemical water oxidation of TiO2 and mechanism insights. Appl. Mater. Interfaces. 2013, 5, 4046–4052. DOI: 10.1021/am400351m.
  • Luan, Y.; Jing, L.; Xie, Y.; Sun, X.; Feng, Y.; Fu, H. Exceptional photocatalytic activity of 001-facet-exposed TiO2 mainly depending on enhanced adsorbed oxygen by residual hydrogen fluoride. ACS Catal. 2013, 3, 1378–1385. DOI: 10.1021/cs400216a.
  • Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chem. Lett. Rev. 2018, 11(2), 86–102. DOI: 10.1080/17518253.2018.1440324.
  • Savio, J.; Monizand, A.; Tang, J. Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route. Chem. Cat. Chem. 2015, 7, 1659–1667.
  • Zha, R.; Nadimicherla, R.; Guo, X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A. 2015, 3, 6565–6574. DOI: 10.1039/C5TA00764J.
  • Wang, C.; Shao, C.; Zhang, X.; Liu, Y. SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg. Chem. 2009, 48(15), 7261–7268. DOI: 10.1021/ic9005983.
  • Mahyar, A.; Behnajady, M.; Modirshahla, N. Characterization and photocatalytic activity of SiO2/TiO2 mixed oxide nanoparticles prepared by sol-gel method. Ind. J. Chem. 2010, 49A, 1593–1600.
  • Liu, Z.; Liu, Z.; Cui, T.; Zhang, J.; Zhao, Y.; Han, J.; Guo, K. Domen, ico C. Preparation and photocatalysis of Schlumbergera bridgesii-like CdS modified one-dimensional TiO2 nanowires on zeolite. J. Mater. Eng. Perfor. 2015, 24, 700–708. DOI: 10.1007/s11665-014-1326-8.
  • Li, X.; Lin, H.; Chen, X.; Niu, H.; Liu, J.; Zhang, T.; Qu, F. Dendritic α-Fe2O3/TiO2nanocomposites with improved visible light photocatalytic activity. Phys. Chem. Chem. Phys. 2016, 18, 9176–9185. DOI: 10.1039/c5cp06681f.
  • Lee, S. C.; Lintang, H. O.; Yuliati, L. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid. Beilstein J. Nanotechnol.. 2017, 8, 915–926. DOI: 10.3762/bjnano.8.93.
  • Czech, B.; Buda, W.; Pasieczna-Patkowska, S.; Olesczuk, P. MWCNT-TiO2-SiO2 nanocomposites possessing the photocatalytic activity in UVA and UVC. Appl. Catal. B. Environ.. 2015, 162, 564–572. DOI: 10.1016/j.apcatb.2014.07.035.
  • Ingale, S. V.; Wagh, P. B.; Dudwadkar, A. S.; Singh, I. K.; Tripathi, A. K.; Gamre, S. S.; Gupta, S. C.; Rao, P. T. Photo catalytic oxidation of TNT using TiO2-SiO2 nano-composite aerogel catalyst prepared using sol-gel process. J Sol-Gel Sci. Technol.. 2011, 58, 682–688. DOI: 10.1007/s10971-011-2445-4.
  • Smitha, V. S.; Manjumol, K. A.; Baiju, K. V.; Gosh, S.; Perumal, P.; Warrier, K. G. K. Sol-gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings. J Sol-Gel Sci. Technol. 2010, 54, 203–211. DOI: 10.1007/s10971-010-2178-9.
  • Nilchi, A.; Janitabar-Darzi, S.; Mahjoub, A. R.; Rrasouli-Garmarodi, S. New TiO2/SiO2 nanocomposites-phase transformations and photocatalytic studies. Colloids. Surf. A Physicochem. Eng. Asp. 2015, 450, 213–223.
  • Zirakzou, A.; Aghdam, A. M.; Soorbaghi, F. P. Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Appl. Clay Sci. 32, 99–110.
  • Yang, J.-H.; Piao, H.; Vinu, A.; Elzatahry, A. A.; Paek, S.-M.; Choy, J.-H. TiO2-pillared clays with well-ordered porous structure and excellent photocatalytic activity. RSC Adv. 2015, 5, 8210–8215. DOI: 10.1039/C4RA12880J.
  • Rigoberto, R.-R.; Rubi, R.-R.; Osmin, A.-G.; Jaime, E.V. synthesis and characterization of TiO2/SiO2 monoliths as photocatalysts on methanol oxidation. Int. J. Photoenergy. 2018, 8478240.
  • Fu, X.; Clark, L. A.; Yang, Q.; Anderson, M. A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 1996, 30(2), 647–653. DOI: 10.1021/es950391v.
  • Golabiewska, A.; Paszkiewicz-Gawron, M.; Sadzinska, A.; Lisowski, W.; Grabowska, E.; Zaleska-Medynska, A.; Luczak, J. Fabrication and photoactivity of ionic liquid-TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase. Beilstein J. Nanotechnol. 2018, 9, 580–590. DOI: 10.3762/bjnano.9.54.
  • Mendoza, J. A.; Lee, D. H.; Kang, J.-H. Photocatalytic removal of NOx using TiO2-coated zeolite. Environ. Eng. Res. 2016, 21(3), 291–296. DOI: 10.4491/eer.2016.016.
  • Velayutham, K.; Rahuman, A. A.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Jayaseelan, C.; Bagavan, A. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol. Res. 2012, 11(6), 2329–2337. DOI: 10.1007/s00436-011-2676-x.
  • Abduljalill, R. D.; Nuaman, R. S.; Ahmed, N. A. Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. World Sci. News. 2016, 49(2), 204–222.
  • Rajakumar, G.; Rahuman, A. A.; Priyamvada, B.; Khanna, V. G.; Kumar, D. K.; Sujin P. J. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater. Lett. 2012, 68, 115–117. DOI: 10.1016/j.matlet.2011.10.038.
  • Roopan, S. M.; Bharathi, A.; Prabhakarn, A.; Rahuman, A. A.; Velayutham, K.; Rajakumar, G.; Padmaja, R. D.; Lekshmi, M.; Madhumitha, G. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochim. Acta A. 2012, 98, 86–90. DOI: 10.1016/j.saa.2012.08.055.
  • Rao, K. G.; Ashok, C. H.; Rao, K. V.; Chakra, C. H.; Tambur, P. Green synthesis of TiO2 nanoparticles using Aloe vera extract. Int. J. Adv. Res. Phys. Sci. 2015, 2(1A), 28–34.
  • Marimuthu, S.; Rahuman, A. A.; Jayaseelan, C.; Kirthi, A. V.; Santhoshkumar, T.; Velayutham, K.; Bagavan, A. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantean against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac. J. Trop. Med. 2013, 6(9), 682–688. DOI: 10.1016/S1995-7645(13)60118-2.
  • Santhoshkumar, T.; Rahuman, A. A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A. V. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 2014, 7(12), 968–976. DOI: 10.1016/S1995-7645(14)60171-1.
  • Kumar, P. S. M.; Francis, A. P.; Devasena, T. Biosynthesized and chemically synthesized titania nanoparticles: comparative analysis of antibacterial activity. J. Environ. Nanotechnol. 2014, 3(3), 73–81. DOI: 10.13074/jent.2014.09.143098.
  • Rajakumar, G.; Rahuman, A. A.; Jayaseelan, C.; Santhoshkumar, T.; Marimuthu, S.; Kamaraj, C.; Bagavan A. Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol. Res. 2014, 113(2), 469–479. DOI: 10.1007/s00436-013-3676-9.
  • Rao, K. G.; Ashok, C. H.; Rao, K. V.; Chakra, C. H. S.; Rajendar, V. Synthesis of TiO2 nanoparticles from orange fruit waste. Int. J. Multidiscip. Adv. Res. Trends. 2015, 2(1), 82–90.
  • Sankar, R.; Rizwana, K.; Shivashangari, K. S.; Ravikumar, V. Ultra rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl. Nanosci. 2015, 5(6), 731–736. DOI: 10.1007/s13204-014-0369-3.
  • Suganya, A.; Murugan K.; Kovendan, K.; Kumar, P. M.; Hwang, J. S. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol. Res. 2013, 112, 1385–1397. DOI: 10.1007/s00436-012-3269-z.
  • Muniandy, S.S.; Altarawneh, M.; Kaus, N. H. M.; Lee, H. L.; Jiang, Z.-T. Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv. 2017, 7, 48083–48094. DOI: 10.1039/C7RA08187A.
  • Filippo, E.; Carlucci, C.; Capodilupo, A. L.; Perulli, P.; Conciauro, F.; Corrente, G. A.; Gigli, G.; Ciccarella, G. Enhanced photocatalytic activity of pure anatase TiO2 and Pt-TiO2 nanoparticles synthesized by green microwave assisted route. Mater. Res. 2015, 18(3), 473–481. DOI: 10.1590/1516-1439.301914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.