Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 39, 2019 - Issue 4
442
Views
23
CrossRef citations to date
0
Altmetric
Comments

Computational Modeling of Transition Temperatures in Spin-Crossover Systems

ORCID Icon &

References

  • Cambi, L.; Szego, L. The Magnetic Susceptibility of Complex Compounds. Ber. Dtsch. Chem. Ges. 1931, 64, 2591–2598. DOI: 10.1002/cber.19310641002.
  • Bethe, H. Term Splitting in Crystals. Ann. Phys. 1929, 3, 133–208. DOI: 10.1002/andp.19293950202.
  • Van Vleck, J. H. The Group Relation between the Mulliken and Slater-Pauling Theories of Valence. J. Chem. Phys. 1935, 3, 803–806. DOI: 10.1063/1.1749595.
  • Albright, T. A.; Burdett, J. K.; Whangbo, M. H. Orbital Interactions in Chemistry, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2013.
  • Gütlich, P.Goodwin, H. A., Eds. Spin Crossover in Transition Metal Compounds; Topics in Current Chemistry; Springer: Berlin, 2004; Vols. I, II, and III doi:10.1007/b93641
  • Halcrow, M. A., Ed. Spin-Crossover Materials: Properties and Applications; John Wiley & Sons: Hoboken, 2013.
  • Gütlich, P.; Hauser, A.; Spiering, H. Thermal and Optical Switching of Iron(II) Complexes. Angew. Chem. Int. Ed. 1994, 33, 2024–2054. DOI: 10.1002/anie.199420241.
  • Gütlich, P.; Gaspar, A. B.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. DOI: 10.3762/bjoc.9.39.
  • Gütlich, P.; Goodwin, H. A. Top. Curr. Chem. 2004, 233, 1–47.
  • Boča, R.; Linert, W. Is There a Need for New Models of the Spin Crossover? Mon. Chem. 2003, 134, 199–216. DOI: 10.1007/s00706-002-0489-4.
  • Gütlich, P.; Köppen, H.; Link, R.; Steinhäuser, H. G. Interpretation of High-Spin Reversible Low-Spin Transition in iron(II) Complexes .I. Phenomenological Thermodynamic Model. J. Chem. Phys. 1979, 70, 3977–3983. DOI: 10.1063/1.437952.
  • Tuchagues, J. P.; Bousseksou, A.; Molnar, G.; McGarvey, J. J.; Varret, F. The Role of Molecular Vibrations in the Spin Crossover Phenomenon; In Spin Crossover in Transition Metal Compounds III; Gutlich, P., Goodwin, H. A., Eds.; Springer-Verlag Berlin: Berlin, 2004; Vol. 235, pp 84–103.
  • Paulsen, H.; Schuenemann, V.; Wolny, J. A. Progress in Electronic Structure Calculations on Spin-Crossover Complexes. Eur. J. Inorg. Chem. 2013, 628–641. DOI: 10.1002/ejic.201201289.
  • Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. DOI: 10.1021/cr200107z.
  • Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1873. DOI: 10.1021/cr990029p.
  • Ziegler, T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics. Chem. Rev. 1991, 91, 651–667. DOI: 10.1021/cr00005a001.
  • Kohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974–12980. DOI: 10.1021/jp960669l.
  • Parr, R. G. Density Functional Theory of Atoms and Molecules; Springer Netherlands: Dordrecht, 1980; pp 5–15.
  • Irikura, K. K.; Johnson, R. D.; Kacker, R. N. Uncertainties in Scaling Factors for Ab Initio Vibrational Frequencies. J. Phys. Chem. A. 2005, 109, 8430–8437. DOI: 10.1021/jp052793n.
  • Reiher, M. Theoretical Study of the [Fe(phen)2(NCS)2] Spin-Crossover Complex with Reparametrized Density Functionals. Inorg. Chem. 2002, 41, 6928–6935.
  • Reiher, M.; Salomon, O.; Hess, B. A. Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicity. Theor. Chem. Acc. 2001, 107, 48–55. DOI: 10.1007/s00214-001-0300-3.
  • Handy, N. C.; Cohen, A. J. Left-Right Correlation Energy. Mol. Phys. 2001, 99, 403–412. DOI: 10.1080/00268970010018431.
  • Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  • Güell, M.; Solà, M.; Swart, M. Spin-State Splittings of iron(II) Complexes with Trispyrazolyl Ligands. Polyhedron. 2010, 29, 84–93. DOI: 10.1016/j.poly.2009.06.006.
  • Swart, M. Accurate Spin-State Energies for Iron Complexes. J. Chem. Theory Comput. 2008, 4, 2057–2066. DOI: 10.1021/ct800277a.
  • Cirera, J.; Ruiz, E. Electronic and Steric Control of the Spin-Crossover Behavior in [(Cpr)2mn] Manganocenes. Inorg. Chem. 2018, 57, 702–709. DOI: 10.1021/acs.inorgchem.7b02592.
  • Siig, O. S.; Kepp, K. P. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional. J. Phys. Chem. A. 2018, 122, 4208–4217. DOI: 10.1021/acs.jpca.8b02027.
  • Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. DOI: 10.1016/j.cplett.2004.06.011.
  • Ye, S.; Neese, F. Accurate Modeling of Spin-State Energetics in Spin-Crossover Systems with Modern Density Functional Theory. Inorg. Chem. 2010, 49, 772–774. DOI: 10.1021/ic902365a.
  • Staroverov, V. N.; Scuseria, G. E.; Tao, J. M.; Perdew, J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. DOI: 10.1063/1.1626543.
  • Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. DOI: 10.1103/PhysRevLett.91.146401.
  • Cirera, J.; Paesani, F. Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems. Inorg. Chem. 2012, 51, 8194–8201. DOI: 10.1021/ic300750c.
  • Cirera, J.; Ruiz, E. Theoretical Modeling of the Ligand-Tuning Effect over the Transition Temperature in Four-Coordinated FeII Molecules. Inorg. Chem. 2016, 55, 1657–1663. DOI: 10.1021/acs.inorgchem.5b02564.
  • Jensen, K. P.; Cirera, J. Accurate Computed Enthalpies of Spin Crossover in Iron and Cobalt Complexes. J. Phys. Chem. A. 2009, 113, 10033–10039. DOI: 10.1021/jp900654j.
  • Cirera, J.; Via-Nadal, M.; Ruiz, E. Benchmarking Density Functional Methods for Calculation of State Energies of First Row Spin-Crossover Molecules. Inorg. Chem. 2018, 57, 14097–14105. DOI: 10.1021/acs.inorgchem.8b01821.
  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B. 1998, 57, 1505–1509. DOI: 10.1103/PhysRevB.57.1505.
  • Vela, S.; Fumanal, M.; Ribas-Arino, J.; Robert, V. Towards an Accurate and Computationally-Efficient Modelling of Fe(II)-based Spin Crossover Materials. Phys. Chem. Chem. Phys. 2015, 17, 16306–16314. DOI: 10.1039/c5cp02502h.
  • Zhao, Q.; Kulik, H. J. Where Does the Density Localize in the Solid State? Divergent Behavior for Hybrids and DFT+U. J. Chem. Theory Comput. 2018, 14, 670–683. DOI: 10.1021/acs.jctc.7b01061.
  • Pierloot, K.; Quan Manh, P.; Domingo, A. Spin State Energetics in First-Row Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory. J. Chem. Theory Comput. 2017, 13, 537–553. DOI: 10.1021/acs.jctc.6b01005.
  • Daku, L. M. L.; Aquilante, F.; Robinson, T. W.; Hauser, A. Accurate Spin-State Energetics of Transition Metal Complexes. 1. CCSD(T), CASPT2, and DFT Study of [M(NCH)6]2+ (M = Fe, Co). J. Chem. Theory Comput. 2012, 8, 4216–4231. DOI: 10.1021/ct300592w.
  • Vancoillie, S.; Zhao, H.; Radon, M.; Pierloot, K. Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models. J. Chem. Theory Comput. 2010, 6, 576–582. DOI: 10.1021/ct900567c.
  • Alcover-Fortuny, G.; de Graaf, C.; Caballol, R. Spin-Crossover in Phenylazopyridine-Functionalized Ni-Porphyrin: Trans-Cis Isomerization Triggered by Pi-Pi Interactions. Phys. Chem. Chem. Phys. 2015, 17, 217–225. DOI: 10.1039/c4cp04402a.
  • Frenking, G.; Frohlich, N. The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev. 2000, 100, 717–774.
  • Siegbahn, P. E. M.; Blomberg, M. R. A. Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods. Chem. Rev. 2000, 100, 421–437.
  • Rudavskyi, A.; Sousa, C.; Graaf, C. d; Havenith, R. W. A.; Broer, R. Computational Approach to the Study of Thermal Spin Crossover Phenomena. J. Chem. Phys.. 2014, 140, 184318.
  • Sousa, C.; Llunell, M.; Domingo, A.; de Graaf, C. Theoretical Evidence for the Direct 3MLCT-HS Deactivation in the Light-Induced Spin Crossover of Fe(II)-polypyridyl Complexes. Phys. Chem. Chem. Phys. 2018, 20, 2351–2355. DOI: 10.1039/c7cp08098k.
  • Sousa, C.; de Graaf, C.; Rudavskyi, A.; Broer, R. Theoretical Study of the Light-Induced Spin Crossover Mechanism in [Fe(mtz)6]2+ and [Fe(phen)3]2+. J. Phys. Chem. A. 2017, 121, 9720–9727. DOI: 10.1021/acs.jpca.7b10687.
  • Deeth, R. J. The Ligand Field Molecular Mechanics Model and the Stereoelectronic Effects of D and S Electrons. Coord. Chem. Rev. 2001, 212, 11–34. DOI: 10.1016/S0010-8545(00)00354-4.
  • Comba, P.; Hambley, T. W.; Martin, B. Molecular Modeling of Inorganic Compounds, 3rd ed.; Wiley-VCH: Weinheim, 2009.
  • Schaffer, C. E.; Jorgense, C. K. Angular Overlap Model an Attempt to Revive Ligand Field Approaches. Mol. Phys. 1965, 9, 401. DOI: 10.1080/00268976500100551.
  • Deeth, R. J.; Anastasi, A.; Diedrich, C.; Randell, K. Molecular Modelling for Transition Metal Complexes: Dealing with D-Electron Effects. Coord. Chem. Rev. 2009, 253, 795–816. DOI: 10.1016/j.ccr.2008.06.018.
  • Singh, S. K.; Eng, J.; Atanasov, M.; Neese, F. Covalency and Chemical Bonding in Transition Metal Complexes: An Ab Initio Based Ligand Field Perspective. Coord. Chem. Rev. 2017, 344, 2–25. DOI: 10.1016/j.ccr.2017.03.018.
  • Deeth, R. J.; Halcrow, M. A.; Cook, L. J. K.; Raithby, P. R. Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand pi-Bonding in Fe(II) 2,6-Di(Pyrazol-1-Yl)Pyridine Spin Crossover Complexes. Chem. Eur. J. 2018, 24, 5204–5212. DOI: 10.1002/chem.201704558.
  • Boillot, M. L.; Chantraine, S.; Zarembowitch, J.; Lallemand, J. Y.; Prunet, J. First Ligand-Driven Light-Induced Spin Change at Room Temperature in a Transition-Metal Molecular Compound. New J. Chem. 1999, 23, 179–183. DOI: 10.1039/a809504c.
  • Boillot, M. L.; Roux, C.; Audiere, J. P.; Dausse, A.; Zarembowitch, J. Ligand-Driven Light-Induced Spin Change in Transition-Metal Complexes: Selection of an Appropriate System and First Evidence of the Effect, in Fe-II(4-styrylpyridine)4(NCBPh3)2. Inorg. Chem. 1996, 35, 3975–3980.
  • Roux, C.; Zarembowitch, J.; Gallois, B.; Granier, T.; Claude, R. Toward Ligand-Driven Light-Induced Spin Changing. Influence of the Configuration of 4 Styrylpyridine (Stpy) on the Magnetic Properties of FeII(stpy)4(NCS)2 Complexes. Crystal Structures of the Spin-Crossover Species Fe(trans-stpy)4(NCS)2 and of the High-Spin Species Fe(cis-stpy)4(NCS)2. Inorg. Chem. 1994, 33, 2273–2279.
  • Cook, L. J. K.; Kulmaczewski, R.; Mohammed, R.; Dudley, S.; Barrett, S. A.; Little, M. A.; Deeth, R. J.; Halcrow, M. A. A Unified Treatment of the Relationship between Ligand Substituents and Spin State in A Family of Iron(II) Complexes. Angew. Chem. Int. Ed. 2016, 55, 4327–4331. DOI: 10.1002/anie.201600165.
  • Vela, S.; Novoa, J. J.; Ribas-Arino, J. Insights into the Crystal-Packing Effects on the Spin Crossover of [Feii(1-bpp)]2+-Based Materials. Phys. Chem. Chem. Phys. 2014, 16, 27012–27024. DOI: 10.1039/c4cp03971h.
  • Fumanal, M.; Jimenez-Gravalos, F.; Ribas-Arino, J.; Vela, S. Lattice-Solvent Effects in the Spin-Crossover of an Fe(II)-Based Material. The Key Role of Intermolecular Interactions between Solvent Molecules. Inorg. Chem. 2017, 56, 4474–4483. DOI: 10.1021/acs.inorgchem.7b00017.
  • Ksenofontov, V.; Gaspar, A. B.; Niel, V.; Reiman, S.; Real, J. A.; Gutlich, P. On the Nature of the Plateau in Two-Step Dinuclear Spin-Crossover Complexes. Chem. Eur. J. 2004, 10, 1291–1298. DOI: 10.1002/chem.200305275.
  • Real, J. A.; Bolvin, H.; Bousseksou, A.; Dworkin, A.; Kahn, O.; Varret, F.; Zarembowitch, J. Two-Step Spin Crossover in the New Dinuclear Compound [Fe(bt)(NCS)2]2bpym, with bt = 2,2‘-Bi-2-Thiazoline and bpym = 2,2‘-Bipyrimidine: Experimental Investigation and Theoretical Approach. J. Am. Chem. Soc. 1992, 114, 4650–4658. DOI: 10.1021/ja00038a031.
  • Zein, S.; Borshch, S. A. Energetics of Binuclear Spin Transition Complexes. J. Am. Chem. Soc. 2005, 127, 16197–16201. DOI: 10.1021/ja054282k.
  • Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape Maps and Polyhedral Interconversion Paths in Transition Metal Chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708. DOI: 10.1016/j.ccr.2005.03.031.
  • Alvarez, S.; Ruiz, E. Self-assembly of Coordination Compounds: Design Principles; In Supramolecular Chemistry, from Molecules to Nanomaterials; Steed, J. W., Gale, P. A., Eds.; John Wiley & Sons: Chichester, UK, 2012; Vol. 5, pp 1993–2044.
  • Cirera, J.; Ruiz, E. Theoretical Modeling of Two-Step Spin-Crossover Transitions in Fe-II Dinuclear Systems. J. Mater. Chem. C. 2015, 3, 7954–7961. DOI: 10.1039/C5TC01304F.
  • Borshch, S. A.; Zueva, E. M. Theoretical Study of Spin-State and Redox Multistability in an Iron 2 × 2 Grid Complex. Eur. J. Inorg. Chem. 2013, 1009–1014. DOI: 10.1002/ejic.201201074.
  • Zueva, E. M.; Ryabikh, E. R.; Borshch, S. A. Theoretical Analysis of Spin Crossover in Iron(II) 2 × 2 Molecular Grids. Inorg. Chem. 2011, 50, 11143–11151. DOI: 10.1021/ic2016929.
  • Zueva, E. M.; Ryabikh, E. R.; Kuznetsov, A. M.; Borshch, S. A. Spin Crossover in Tetranuclear Cyanide-Bridged Iron(II) Square Complexes: A Theoretical Study. Inorg. Chem. 2011, 50, 1905–1913. DOI: 10.1021/ic102387x.
  • Lin, H. J.; Siretanu, D.; Dickie, D. A.; Subedi, D.; Scepaniak, J. J.; Mitcov, D.; Clerac, R.; Smith, J. M. Steric and Electronic Control of the Spin State in Three-Fold Symmetric, Four-Coordinate Iron(II) Complexes. J. Am. Chem. Soc. 2014, 136, 13326–13332. DOI: 10.1021/ja506425a.
  • Tolman, C. A. Phosphorus Ligand Exchange Equilibriums on Zerovalent Nickel. Dominant Role for Steric Effects. J. Am. Chem. Soc. 1970, 92, 2956–2965. DOI: 10.1021/ja00713a007.
  • Switzer, M. E.; Wang, R.; Rettig, M. F.; Maki, A. H. Electronic Ground States of Manganocene and 1,1‘- Dimethylmanganocene. J. Am. Chem. Soc. 1974, 96, 7666–7674. DOI: 10.1021/ja00832a012.
  • Hays, M. L.; Burkey, D. J.; Overby, J. S.; Hanusa, T. P.; Sellers, S. P.; Yee, G. T.; Young, V. G. Steric Influence on the Structure, Magnetic Properties, and Reactivity of Hexa- and Octaisopropylmanganocene. Organometallics. 1998, 17, 5521–5527. DOI: 10.1021/om980596n.
  • Hays, M. L.; Hanusa, T. P.; Nile, T. A. Synthesis and X-Ray Crystal Structures of Alkaline-Earth Metallocenes with Pendant Substituents. J. Organomet. Chem. 1996, 514, 73–79. DOI: 10.1016/0022-328X(95)06015-O.
  • Walter, M. D.; Sofield, C. D.; Booth, C. H.; Andersen, R. A. Spin Equilibria in Monomeric Manganocenes: Solid-State Magnetic and EXAFS Studies. Organometallics. 2009, 28, 2005–2019. DOI: 10.1021/om800922j.
  • Ohba, M.; Yoneda, K.; Agusti, G.; Munoz, M. C.; Gaspar, A. B.; Real, J. A.; Yamasaki, M.; Ando, H.; Nakao, Y.; Sakaki, S.; et al. Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angew. Chem. Int. Ed. 2009, 48, 4767–4771. DOI: 10.1002/anie.200806039.
  • Cirera, J.; Babin, V.; Paesani, F. Theoretical Modeling of Spin Crossover in Metal-Organic Frameworks: [Fe(Pz)2pt(Cn)4] as a Case Study. Inorg. Chem. 2014, 53, 11020–11028. DOI: 10.1021/ic501519a.
  • Pham, C. H.; Cirera, J.; Paesani, F. Molecular Mechanisms of Spin Crossover in the {Fe(Pz) Pt(CN)4} Metal-Organic Framework upon Water Adsorption. J. Am. Chem. Soc. 2016, 138, 6123–6126. DOI: 10.1021/jacs.6b02564.
  • Pham, C. H.; Paesani, F. Guest-Dependent Stabilization of the Low-Spin State in Spin-Crossover Metal-Organic Frameworks. Inorg. Chem. 2018, 57, 9839–9843. DOI: 10.1021/acs.inorgchem.8b00502.
  • Radoń, M. Benchmarking Quantum Chemistry Methods for Spin–State Energetics of Iron Complexes against Quantitative Experimental Data. Phys. Chem. Chem. Phys. 2019, 21, 4854–4870. DOI: 10.1039/C9CP00105K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.