Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 40, 2020 - Issue 1
197
Views
3
CrossRef citations to date
0
Altmetric
Comments

1,2-(Benz)Azaphospholes: A Slow Beginning to a Bright Future

References

  • For nomenclature: Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley: New York, 2000.
  • Quin, L. D.; Bryson, J. G. 1-Methylphosphole. J. Am. Chem. Soc. 1967, 89, 5984–5985. DOI: 10.1021/ja00999a065.
  • (a) MacDougall, J. J.; Nelson, J. H.; Mathey, F.; Mayerle, J. J. Phospholes as Ligands: Palladium(II) Complexes of 1-Substituted 3,4-Dimethylphospholes. Structure and Properties. Inorg. Chem. 1980, 19, 709–718. (b) Fourmy, K.; Nguyen, D. H.; Dechy-Cabaret, O.; Gouygou, M. Phosphole-based Ligands in Catalysis. Catal. Sci. Technol. 2015, 5, 4289–4323. DOI: 10.1021/ic50205a026.
  • (a) Baumgartner, T. Insights on the Design and Electron-Acceptor Properties of Conjugated Organophosphorus Materials. Acc. Chem. Res. 2014, 47, 1613–1622. (b) Su, H.-C.; Fadhel, O.; Yang, C.-J.; Cho, T.-Y.; Fave, C.; Hissler, M.; Wu, C.-C.; Réau, R. Toward Functional π-Conjugated Organophosphorus Materials: Design of Phosphole-Based Oligomers for Electroluminescent Devices. J. Am. Chem. Soc. 2006, 128, 983–995. DOI: 10.1021/ar500084b.
  • Urig, S.; Fritz-Wolf, K.; Réau, R.; Herold-Mende, C.; Toth, K.; Davioud-Charvet, E.; Becker, K. Undressing of Phosphine Gold(I) Complexes as Irreversible Inhibitors of Human Disulfide Reductases. Angew. Chem. Int. Ed. 2006, 45, 1881–1886. DOI: 10.1002/(ISSN)1521-3773.
  • Nyulaszi, L. Aromaticity of Phosphorus Heterocycles. Chem. Rev. 2001, 101, 1229–1246. DOI: 10.1021/cr990321x.
  • Egan, W.; Tang, R.; Zon, G.; Mislow, K. Barriers to Pyramidal Inversion at Phosphorus in Phospholes, Phosphindoles, and Dibenzophospholes. J. Am. Chem. Soc. 1971, 93, 6205–6216. DOI: 10.1021/ja00752a035.
  • Coggon, P.; Engel, J. F.; McPhail, A. T.; Quin, L. D. Molecular Structure of 1-Benzylphosphole by X-ray Analysis. J. Am. Chem. Soc. 1970, 92, 5779–5780. DOI: 10.1021/ja00722a063.
  • (a) See Ref 6. (b) A computational study: Nyulaszi, L. Effects of Substituents on the Aromatization of Phosphole. J. Phys. Chem. 1995, 99, 586–591. DOI: 10.1021/j100002a021.
  • (a) Fagan, P. J.; Nugent, W. A. Synthesis of Main Group Heterocycles by Metallacycle Transfer from Zirconium. J. Am. Chem. Soc. 1988, 110, 2310–2312. (b) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. Metallacycle Transfer from Zirconium to Main Group Elements: A Versatile Synthesis of Heterocycles. J. Am. Chem. Soc. 1994, 116, 1880–1889. (c) Yan, X.; Xi, C. Conversion of Zirconacyclopentadienes into Metalloles: Fagan-Nugent Reaction and Beyond. Acc. Chem. Res. 2015, 48, 935–946. (d) Broene, R. D.; Buchwald, S. L. Zirconocene Complexes of Unsaturated Organic Molecules: New Vehicles for Organic Synthesis. Science. 1993, 261, 1696–1701. DOI: 10.1021/ja00215a057.
  • Romero-Nieto, C.; Baumgartner, T. Dithieno[3,2-b:2ʹ,3ʹ-d]phospholes: A Look Back at the First Decade. Synlett. 2013, 24, 920–937. DOI: 10.1055/s-0032-1317804.
  • Baumgartner, T.; Réau, R. Organophosphorus π-Conjugated Materials. Chem. Rev. 2006, 106, 4681–4727. DOI: 10.1021/cr040179m.
  • Mathey, F. The Organic Chemistry of Phospholes. Chem. Rev. 1988, 88, 429–453. DOI: 10.1021/cr00084a005.
  • (a) Schäfer, W.; Schweig, A.; Mathey, F. Phospholes. Electronic Structure. J. Am. Chem. Soc. 1976, 98, 407–414. (b) See Ref 12.
  • Wu, J.; Wu, S.; Geng, Y.; Yang, G.; Muhammad, S.; Jin, J.; Liao, Y.; Su, Z. Theoretical Study on Dithieno[3,2-b:2ʹ,3ʹ-d]phospholes Derivatives: High-Efficiency Blue-Emitting Materials with Ambipolar Semiconductor Behavior. Theor. Chem. Acc. 2010, 127, 419–427. DOI: 10.1007/s00214-010-0730-x.
  • Nyulászi, L.; Hollóczki, O.; Lescop, C.; Hissler, M.; Réau, R. An Aromatic-Antiaromatic Switch in P-Heteroles. A Small Change in Delocalisation Makes A Big Reactivity Difference. Org. Biomol. Chem. 2006, 4, 996–998. DOI: 10.1039/b516836h.
  • Keglevich, G.; Böcskei, Z.; Keserü, M.; Ujszászy, K.; Quin, L. D. 1-(2,4,6-Tri-tert-butylphenyl)-3-methylphosphole: A Phosphole with A Significant Flattened Phosphorus Pyramid Having Pronounced Characteristics of Aromaticity. J. Am. Chem. Soc. 1997, 119, 5095–5099. DOI: 10.1021/ja970463d.
  • Larrañaga, O.; Romero-Nieto, C.; de Cózar, A. Dismantling the Hyperconjugation of π-Conjugated Phosphorus Heterocycles. Chem. Eur. J. 2019, 25, 9035–9044. DOI: 10.1002/chem.201900225.
  • (a) Anthony, J. E. Functionalized Acenes and Heteroacenes for Organic Electronics. Chem. Rev. 2006, 106, 5028–5048. (b) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. DOI: 10.1021/cr050966z.
  • (a) Washington, M. P.; Gudimetla, V. B.; Laughlin, F. L.; Deligonul, N.; He, S.; Payton, J. L.; Simpson, M. C.; Protasiewicz, J. D. Phosphorus Can Also Be a “Photocopy”. J. Am. Chem. Soc. 2010, 132, 4566–4567. (b) Laughlin, F. L.; Deligonul, N.; Rheingold, A. L.; Golen, J. A.; Laughlin, B. J.; Smith, R. C.; Protasiewicz, J. D. Fluorescent Heteroacenes with Multiply-Bonded Phosphorus. Organometallics. 2013, 32, 7116–7121. DOI: 10.1021/ja1009426.
  • Twamley, B.; Sofield, C. D.; Olmstead, M. M.; Power, P. P. Homologous Series of Heavier Element Dipnictenes 2,6-Ar2H3C6E=EC6H3-2,6,-Ar2 (E = P, As, Sb, Bi; Ar = Mes = C6H2-2,4,6-Me3; or Trip = C6H2-2,4,6-iPr3) Stabilized by m-Terphenyl Ligands. J. Am. Chem. Soc. 1999, 121, 3357–3367. DOI: 10.1021/ja983999n.
  • (a) Märkl, G. 2,4,6-Triphenylphosphabenzene. Angew. Chem. Int. Ed. Engl. 1966, 5, 846–847. (b) Dimroth, K.; Hoffmann, P. Phosphacyanines, a New Class of Compounds Containing Trivalent Phosphorus. Angew. Chem. Int. Ed. Engl. 1964, 3, 384. DOI: 10.1002/(ISSN)1521-3773.
  • Bansal, R. K.; Karaghiosoff, K.; Schmidpeter, A. Anellated Heterophospholes. Tetrahedron. 1994, 50, 7675–7745. DOI: 10.1016/S0040-4020(01)85258-3.
  • Regitz, M. Phosphaalkynes: New Building Blocks in Synthetic Chemistry. Chem. Rev. 1990, 90, 191–213. DOI: 10.1021/cr00099a007.
  • Sklorz, J. A. W.; Hoof, S.; Rades, N.; De Rycke, N.; Könczöl, L.; Szieberth, D.; Weber, M.; Wiecko, J.; Nyulaszi, L.; Hissler, M.; et al. Pyridyl-Functionalised 3H-1,2,3,4-Triazaphospholes: Synthesis, Coordination Chemistry and Photophysical Properties of Low-Coordinate Phosphorus Compounds. Chem. Eur. J. 2015, 21, 11096–11109. DOI: 10.1002/chem.201500988.
  • Sklorz, J. A. W.; Hoof, S.; Sommer, M. G.; Weiβer, F.; Weber, M.; Wiecko, J.; Sarkar, B.; Müller, C. Triazaphospholes versus Triazoles: An Investigation of the Differences between “Click”-derived Chelating Phosphorus- and Nitrogen-Containing Heterocycles. Organometallics. 2014, 33, 511–516. DOI: 10.1021/om4010077.
  • (a) Bansal, R. K.; Heinicke, J. Anellated Heterophospholes and Phospholides and Analogies with Related Non-Phosphorus Systems. Chem. Rev. 2001, 101, 3549–3578. (b) Karaghiosoff, K.; Sheldrick, W. S.; Schmidpeter, A. 4,6-Diamino-1,3,5-triaza-2-phosphapentalene. Chem. Ber. 1986, 119, 3213–3226. (c) Wu, S.; Deligonal, N.; Protasiewicz, J. D. An Unusually Unstable Ortho-Phosphinophenol and its Use to Prepare Benzoxaphospholes having Enhanced Air-Stability. Dalton Trans. 2013, 42, 14866–14874. DOI: 10.1021/cr000434c.
  • Similar arguments have been made with acyclic derivatives: Le Floch, P. Phosphaalkene, Phospholyl and Phosphinine Ligands: New Tools in Coordination Chemistry and Catalysis. Coord. Chem. Rev. 2006, 250, 627–681. DOI: 10.1016/j.ccr.2005.04.032.
  • Bent, H. A. An Appraisal of Valence-Bond Structures and Hybridization in Compounds of the First-Row Elements. Chem. Rev. 1961, 61, 275–311. DOI: 10.1021/cr60211a005.
  • Birks, J. B. Photophysics of Aromatic Molecules; Wiley: London, 1970.
  • Heinicke, J.; Tzschach, A. 1,3-Benzoxaphosphole-Heterocyclen Mit Phosphor Der Koordinationszahl 2. Phosphorus Sulfur Relat. Elem. 1985, 25, 345–356. DOI: 10.1080/03086648508072750.
  • Wu, S.; Rheingold, A. L.; Golen, J. A.; Grimm, A. B.; Protasiewicz, J. D. Synthesis of a Luminescent Azaphosphole. Eur. J. Inorg. Chem. 2016, 2016, 768–773. DOI: 10.1002/ejic.201501279.
  • Karaghiosoff, K.; Klehr, H.; Schmidpeter, A. Four- and Five-membered Phosphorus Heterocycles, 69. 1,3,2-Diaza to 1,2-Azaphosphole Conversion by Acetylenes. Chem. Ber. 1986, 119, 410–419. DOI: 10.1002/cber.19861190204.
  • Rösch, W.; Facklam, T.; Regitz, M. Phosphorus Compounds with Unusual Coordination – 20. 1,2,3,4-Triazaphospholes by [3+2]-cycloaddition of Azides to a Stable Phosphaalkyne. Tetrahedron. 1987, 43, 3247–3256. DOI: 10.1016/S0040-4020(01)90292-3.
  • Fabian, W. M. F.; Bakulev, V. A.; Kappe, C. O. Pericyclic versus Pseudopericyclic 1,5-Electrocyclization of Iminodiazomethanes. An Ab Initio and Density Functional Theory Study. J. Org. Chem. 1998, 63, 5801–5805. DOI: 10.1021/jo980238u.
  • Angermund, K.; Eckerle, A.; Monkiewicz, J.; Krüger, C.; Wilke, G. Transition Metal Complexes IX. Nickel Complexes with a Chiral Azaphosphole Ligand. Inorg. Chim. Acta. 1998, 270, 273–278. DOI: 10.1016/S0020-1693(97)05853-2.
  • Peters, C.; Tabellion, F.; Schröder, M.; Bergsträβer, U.; Preuss, F.; Regitz, M. Organophosphorus Compounds, Part 150; Imidovanadium(V)-Complexes as Reaction Partners for Kinetically Stabilized Phosphaalkynes. 1-Aza-2-phospha-4-vanada(V)-cyclobutenes: Precursors in the Synthesis of 1H-1,2,-Azaphospholes. Synthesis. 2000, 3, 417–428. DOI: 10.1055/s-2000-6353.
  • Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. The Chemistry of β-Diketiminatometal Complexes. Chem. Rev. 2002, 102, 3031–3065. DOI: 10.1021/cr010424r.
  • Tokitoh, N.; Matsumoto, T.; Sasamori, T. Unexpected Cyclization Reaction of an Overcrowded 2-Phosphinophenylmethanimine Derivative Leading to the Formation of the First Stable 2-Phospha-2H-Iso-Indole Derivative. Heterocycles. 2008, 76, 981–987. DOI: 10.3987/COM-08-S(N)36.
  • Hyvl, J.; Yoshida, W. Y.; Rheingold, A. L.; Hughes, R. P.; Cain, M. F. A Masked Phosphinidene Trapped in A Fluxional NCN Pincer. Chem. Eur. J. 2016, 22, 17562–17565. DOI: 10.1002/chem.v22.49.
  • Kremláček, V.; Hyvl, J.; Yoshida, W. Y.; Růžička, A.; Rheingold, A. L.; Turek, J.; Hughes, R. P.; Dostál, L.; Cain, M. F. Heterocycles Derived from Generating Monovalent Pnictogens within NCN Pincers and Bidentate NC Chelates: Hypervalency Vs. Bell-Clappers Vs. Static Aromatics. Organometallics. 2018, 37, 2481–2490. DOI: 10.1021/acs.organomet.8b00290.
  • Nguyen, M. T.; Gabidullin, B.; Nikonov, G. I. Imino-Stabilized Phosphinidene (Or Azaphosphole?) and Some of Its Derivatives. Dalton Trans. 2018, 47, 17011–17019. DOI: 10.1039/C8DT03465F.
  • Simon, P.; de Proft, F.; Jambor, R.; Růžička, A.; Dostál, L. Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures. Angew. Chem. Int. Ed. 2010, 49, 5468–5471. DOI: 10.1002/anie.201002209.
  • Wang, F.; Planas, O.; Cornella, J. Bi(I)-Catalyzed Transfer-Hydrogenation with Ammonia-Borane. J. Am. Chem. Soc. 2019, 141, 4235–4240. DOI: 10.1021/jacs.9b00594.
  • For information concerning phosphinidenes, see: (a) Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A Singlet Phosphinidene Stable at Room Temperature. Chem. 2016, 1, 147–153. (b) Hansmann, M. M.; Jazzar, R.; Bertrand, G. Singlet (Phosphino)phosphinidene are Electrophilic. J. Am. Chem. Soc. 2016, 138, 8356–8359. DOI: 10.1016/j.chempr.2016.04.001.
  • Related Bi complexes have also been recently reported: Kindervater, M. B.; Marczenko, K. M.; Werner-Zwanziger, U.; Chitnis, S. S. A Redox-Confused Bismuth(I/III) Triamide with A T-Shaped Planar Ground State. Angew. Chem. Int. Ed. 2019, 58, 7850–7855. DOI: 10.1002/anie.201903354.
  • (a) Martin, J. C.; Basalay, R. J. Degenerate Interconversions of Sulfonium Ions Involving Intramolecular Nucleophilic Displacement by Neighboring Sulfide Sulfur. The Question of an Intermediate in the SN2 Displacement. J. Am. Chem. Soc. 1973, 95, 2572–2578. (b) Forbus, T. R.; Martin, J. C. Quest for an Observable Model for the SN2 Transition State. Pentavalent Pentaccordinate Carbon. J. Am. Chem. Soc. 1979, 101, 5057–5079. DOI: 10.1021/ja00789a027.
  • P–Caryl single bonds: (a) Cameron, T. S.; Dahlèn, B. Investigation of Phosphorus-Carbon Bond Lengths in Aromatic Phosphines. Part I. Crystal and Molecular Structures of Tri-o-tolylphosphine, -phosphine Oxide, -phosphine Sulphide, and –Phosphine Selenide. J. Chem. Soc. Perkin Trans. 2, 1975, 1737–1751. (b) J. J. Daly. The Crystal and Molecular Structure of Phosphobenzene A, P(C6H5)5. J. Chem. Soc. 1964, 6147–6166. P=Caryl double bonds: Appel, R.; Knoll, F. Double Bonds Between Phosphorus and Carbon. Adv. Inorg. Chem. 1989, 33, 259–361.
  • Puntigam, O.; Förster, D.; Giffin, N. A.; Burck, S.; Bender, J.; Ehret, F.; Hendsbee, A. D.; Nieger, M.; Masuda, J. D.; Gudat, D. Rational Synthesis and Mutual Conversion of Bis-N-Heterocyclic Diphosphanes and Secondary N-Heterocyclic Phosphanes. Eur. J. Inorg. Chem. 2013, 2013, 2041–2050. DOI: 10.1002/ejic.201201471.
  • Wiberg, K. B. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron. 1968, 24, 1083–1096. DOI: 10.1016/0040-4020(68)88057-3.
  • Vranova, I.; Kremlacek, V.; Erben, M.; Turek, J.; Jambor, R.; Ruzicka, A.; Alonso, M.; Dostal, L. A Comparative Study of the Structure and Bonding in Heavier Pnictinidene Complexes [(are}M(co)n] (E = As, Sb, and Bi; M = Cr, Mo, W and Fe). Dalton Trans. 2017, 46, 3556–3568. DOI: 10.1039/C7DT00095B.
  • Lopez, C.; Claramunt, R. M.; Trofimenko, S.; Elguero, J. A 13C NMR Spectroscopy Study of the Structure of N–H Pyrazoles and Indazoles. Can. J. Chem. 1993, 71, 678–684. DOI: 10.1139/v93-092.
  • Dostál, L. Quest for Stable or Masked Pnictinidenes: Emerging and Exciting Class of Group 15 Compounds. Coord. Chem. Rev. 2017, 353, 142–158. DOI: 10.1016/j.ccr.2017.10.009.
  • Vranova, I.; Alonso, M.; Jambor, R.; Ruzicka, A.; Turek, J.; Dostál, L. Different Products of the Reduction of (N),c,n-chelated Antimony(III) Compounds: Competitive Formation of Monomeric Stibinidenes versus 1H-2,1-Benzazastiboles. Chem. Eur. J. 2017, 23, 2340–2349. DOI: 10.1002/chem.201604142.
  • Vranova, I.; Alonso, M.; Lo, R.; Sedlák, R.; Jambor, R.; Ruzicka, A.; De Proft, F.; Hobza, P.; Dostál, L. From Dibismuthenes to Three- and Two-Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC3N Rings through a Combined Experimental and Theoretical Study. Chem. Eur. J. 2015, 21, 16917–16928. DOI: 10.1002/chem.v21.47.
  • Simon, P.; Jambor, R.; Ruzicka, A.; Dostal, L. Oxidative Addition of Diphenyldichalcogenides PhEEPh (E = S, Se, Te) to Low-Valent CN- and NCN-Chelated Organoantimony and Organobismuth Compounds. Organometallics. 2013, 32, 239–248. DOI: 10.1021/om3010383.
  • Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005, 105, 3842–3888.
  • Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5th ed.; Springer: New York, NY, 2007.
  • Kremlacek, V.; Erben, M.; Jambor, R.; Ruzicka, A.; Turek, J.; Rychagova, E.; Ketkov, S.; Dostal, L. From a 2,1-Benzazaarsole to Elusive 1-Arsanaphthalenes in One Step. Chem. Eur. J. 2019, 25, 5668–5671. DOI: 10.1002/chem.v25.22.
  • Ashe, A. J.; Fang, X.; Kampf, J. W. 1-Arsanaphthalene. The Structure of Tricarbonyl(2-trimethylsilyl-1-arsanaphthalene)molybdenum. Organometallics. 2001, 20, 2109–2113. DOI: 10.1021/om010100t.
  • Miura-Akagi, P. M.; Cain, M. F. Unpublished Results.
  • Gudat, D.; Haghverdi, A.; Nieger, M. Umpolung of P–H Bonds. Angew. Chem. Int. Ed. 2000, 39, 3084–3086. DOI: 10.1002/1521-3773(20000901)39:17<3084::AID-ANIE3084>3.0.CO;2-R.
  • Gudat, D. Diazaphospholenes: N-Heterocyclic Phosphines between Molecules and Lewis Pairs. Acc. Chem. Res. 2010, 43, 1307–1316. DOI: 10.1021/ar100041j.
  • Heinicke, J. W. P=C–N and P–C=N Type 1,3-Azaphospholes – Comparing the Chemistry of π-Excess Aromatic 1H and Non-Aromatic 3H-Isomers and the Influence of Anellation (A Personal Account). Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 401–409. ASAP. DOI: 10.1080/10426507.2018.1528259.
  • Heinicke, J. W. Electron-Rich Aromatic 1,3-Heterophospholes – Recent Syntheses and Impact of High Electron Density at σ2P on the Reactivity. Eur. J. Inorg. Chem. 2016, 2016, 575–594. DOI: 10.1002/ejic.201500941.
  • Niaz, B.; Aluri, B. R.; Jones, P. G.; Heinicke, J. W. π-Excess σ2P=C–N–Heterocycles: Catalytic P-Arylation and Alkylation of N-Alkyl-1,3-benzazaphospholes and Isolation of P,N-Disubstituted Dihydrobenzazaphosphole P-Oxides. Eur. J. Inorg. Chem. 2015, 3995–4005. DOI: 10.1002/ejic.201500532.
  • (a) de Vaumas, R.; Marinetti, A.; Mathey, F. Catalytic Hydrogenation of the Phosphors–Carbon Double Bond in Phosphaalkene Complexes. J. Organomet. Chem. 1991, 413, 411–417. (b) de Vaumas, R.; Marinetti, A.; Ricard, L.; Mathey, F. Use of Prochiral Phosphaalkene Complexes in the Synthesis of Optically Active Phosphines. J. Am. Chem. Soc. 1992, 114, 261–266. (c) Mathey, F. Developing the Chemistry of Monovalent Phosphorus. Dalton Trans. 2007, 1861–1868. DOI: 10.1016/0022-328X(91)80066-S.
  • Hobbs, M. G.; Baumgartner, T. Recent Developments in Phosphole-Containing Oligo- and Polythiophene Materials. Eur. J. Inorg. Chem. 2007, 3611–3628. DOI: 10.1002/ejic.200700236.
  • Ghalib, M.; Niaz, B.; Jones, P. G.; Heinicke, J. W. Syntheses of 2-Unsubstituted 1H-1,3-Benzazaphospholse from N-Formyl-2-Bromoanilides. Heteroat. Chem. 2013, 24, 452–459. DOI: 10.1002/hc.21111.
  • Niaz, B.; Ghalib, M.; Jones, P. G.; Heinicke, J. W. π-Excess σ2P Ligands: Synthesis Of Biaryl-Type 1,3-Benzazaphosphole Hybrid Ligands And Formation Of P^P–M(CO)4 Chelate Complexes. Dalton Trans. 2013, 42, 9523–9532. DOI: 10.1039/c3dt50981h.
  • Ghalib, M.; Konczol, L.; Nyulaszi, L.; Jones, P. G.; Palm, G. J.; Heinicke, J. W. Impact of High π-Density on the Coordination Properties of π-Excess Aromatic Neutral σ2P Ligands – P(π)-Donor Bonds to Ag+ and HgCl2. Dalton Trans. 2014, 43, 51–54. DOI: 10.1039/C3DT52909F.
  • Deschamps, E.; Deschamps, B.; Dormieux, J. L.; Ricard, L.; Mezailles, N.; Le Floch, P. 4,6-Bis(supermesitylphosphanylidenemethyl)dibenzofuran. Synthesis, X-ray Structure and Reactivity Towards Group 11 Metals. Dalton Trans. 2006, 594–602. DOI: 10.1039/B508678G.
  • Gudat, D. A Very Peculiar Family of N-Heterocyclic Phosphines: Unusual Structures and the Unique Reactivity of 1,3,2-Diazaphospholenes. Dalton Trans. 2016, 45, 5896–5907. DOI: 10.1039/C6DT00085A.
  • Chong, C. C.; Hirao, H.; Kinjo, R. Metal-Free σ-Bond Metathesis in 1,3,2-Diazaphospholene-Catalyzed Hydroboration of Carbonyl Compounds. Angew. Chem. Int. Ed. 2015, 127, 192–196. DOI: 10.1002/ange.201408760.
  • Adams, M. R.; Tien, C.-H.; McDonald, R.; Speed, A. W. H. Asymmetric Imine Hydroboration Catalyzed by Chiral Diazaphospholenes. Angew. Chem. Int. Ed. 2017, 56, 16660–16663. DOI: 10.1002/anie.201709926.
  • (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Practical Enantioselective Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc. 1995, 117, 2675–2676. (b) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes. J. Am. Chem. Soc. 1995, 117, 7562–7563. (c) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Imines. J. Am. Chem. Soc. 1996, 118, 4916-4917. (d) Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. Asymmetric Hydrogenation of Alkenyl, Cyclopropyl, and Aryl Ketones. RuCl2(xylbinap)(1,2-diamine) as a Precatalyst Exhibiting a Wide Scope. J. Am. Chem. Soc. 1998, 120, 13529–13530. (e) Ohkuma, T.; Ishii, D.; Takeno, H.; Noyori, R. Asymmetric Hydrogenation of Amino Ketones Using Chiral RuCl2(diphosphine)(1,2-diamine) Complexes. J. Am. Chem. Soc. 2000, 122, 6510–6511. DOI: 10.1021/ja00114a043.
  • Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621–6686. DOI: 10.1021/acs.chemrev.5b00203.
  • Dunn, N. L.; Ha, M.; Radosevich, A. T. Main Group Redox Catalysis: Reversible PIII/PV Cycling at a Phosphorus Platform. J. Am. Chem. Soc. 2012, 134, 11330–11333. DOI: 10.1021/ja302963p.
  • He, R.; Cui, P.; Pi, D.; Sun, Y.; Zhou, H. High Efficient Iron-Catalyzed Transfer Hydrogenation of Quinolines with Hantzsch Ester as Hydrogen Source under Mild Conditions. Tetrahedron Lett. 2017, 58, 3571–3573. DOI: 10.1016/j.tetlet.2017.07.101.
  • Lefranc, A.; Qu, Z.-W.; Grimme, S.; Oestreich, M. Hydrogenation and Transfer Hydrogenation Promoted by Tethered Ru–S Complexes: From Cooperative Dihydrogen Activation to Hydride Abstraction/Proton Release from Dihydrogen Surrogates. Chem. Eur. J. 2016, 22, 10009–10016. DOI: 10.1002/chem.201600386.
  • Pieber, B.; Martinez, S. T.; Cantillo, D.; Kappe, C. O. In Situ Generation of Diimide from Hydrazine and Oxygen: Continuous-Flow Transfer Hydrogenation of Olefins. Angew. Chem. Int. Ed. 2013, 52, 10241–10244. DOI: 10.1002/anie.201303528.
  • (a) Gunanathan, C.; Milstein, D. Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chem. Rev. 2014, 114, 12024–12087. (b) Gunanathan, C.; Milstein, D. Metal-Ligand Cooperation by Aromatization-Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis. Acc. Chem. Res. 2011, 44, 588–602. DOI: 10.1021/cr5002782.
  • Gellrich, U.; Diskin-Posner, Y.; Shimon, L. J. W.; Milstein, D. Reversible Aromaticity Transfer in a Bora-Cycle: Boron–Ligand Cooperation. J. Am. Chem. Soc. 2016, 138, 13307–13313. DOI: 10.1021/jacs.6b07454.
  • Su, Y.; Do, D. C. H.; Kinjo, R. Metal-Free Selective Borylation of Arenes by a Diazadiborinine via C–H/C–F Bond Activation and Dearomatization. J. Am. Chem. Soc. 2019, 141, 13729–13733. ASAP. DOI: 10.1021/jacs.9b06022.
  • Cowley, A. H.; Kemp, R. A. Synthesis and Reaction Chemistry of Stable Two-Coordinate Phosphorus Cations (Phosphenium Ions). Chem. Rev. 1985, 85, 367–382. DOI: 10.1021/cr00069a002.
  • Burck, S.; Gudat, D.; Nieger, M.; Tirree, J. Structures, Dynamic Behaviour, and Reactivity of P-Cyclopentadienyl-substituted 1,3,2-Diazaphospholenes. Dalton Trans. 2007, 1891–1897. DOI: 10.1039/b702720f.
  • Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249–2295. DOI: 10.1021/acs.chemrev.7b00443.
  • (a) Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473. (b) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564–12649. DOI: 10.1021/ar800036s.
  • (a) Grushin, V. V.; Marshall, W. J. Facile Ar–CF3 Bond Formation at Pd. Strikingly Different Outcomes of Reductive Elimination from [(ph3p)2pd(cf3)ph] and [(xantphos)pd(cf3)ph]. J. Am. Chem. Soc. 2006, 128, 12644–12645. (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides. Science. 2010, 328, 1679–1681. (c) Nielsen, M. C.; Bonney, K. J.; Schoenebeck, P. Computational Ligand Design for the Reductive Elimination of ArCF3 from a Small Bite Angle PdII Complex: Remarkable Effect of a Perfluoroalkylphosphine. Angew. Chem. Int. Ed. 2014, 53, 5903–5906. (d) Ferguson, D. M.; Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford, M. S. Aryl–CF3 Coupling from Phosphinoferrocene-Ligated Palladium(II) Complexes. Organometallics. 2019, 38, 519–526. DOI: 10.1021/ja064935c.
  • Cordovilla, C.; Bartolome, C.; Martinez-Ilarduya, J.; Espinet, P. The Stille Reaction, 38 Years Later. ACS Catal. 2015, 5, 3040–3053. DOI: 10.1021/acscatal.5b00448.
  • NHP-Alkynyl Species are known: Gediga, M.; Burck, S.; Bender, J.; Forster, D.; Nieger, M.; Gudat, D. Specific and Reversible Alkynyl Transfer Reactions of an N-Heterocyclic Phosphane. Eur. J. Inorg. Chem. 2014, 2014, 1818–1825.
  • Power, P. P. Main-Group Elements as Transition Metals. Nature. 2010, 463, 171–177. DOI: 10.1038/nature08634.
  • Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science. 2007, 316, 439–441. DOI: 10.1126/science.1141474.
  • Cowley, A. H.; Kilduff, J. E.; Norman, N. C.; Pakulski, M.; Atwood, J. L.; Hunter, W. E. Electrophilic Addition of Diphosphenes (RP=PR). J. Am. Chem. Soc. 1983, 105, 4845–4846. DOI: 10.1021/ja00352a059.
  • Dordevic, N.; Ganguly, R.; Petkovic, M.; Vidovic, D. E–H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations. Inorg. Chem. 2017, 56, 14671–14681. DOI: 10.1021/acs.inorgchem.7b02579.
  • Chu, T.; Nikonov, G. I. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. Chem. Rev. 2018, 118, 3608–3680. DOI: 10.1021/acs.chemrev.7b00572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.