Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 40, 2020 - Issue 1
675
Views
6
CrossRef citations to date
0
Altmetric
Comments

Is a High Photoluminescence Quantum Yield Good Enough for OLEDs? Can Luminescence Rigidochromism Be Manifest in the Solid State? an Optoelectronic Device Screening Case Study for Diphosphine/Pyrazolate Copper(I) Complexes

ORCID Icon, , , , , , , & ORCID Icon show all

References

  • Geffroy, B.; Le Roy, P.; Prat, C. Organic Light-Emitting Diode (OLED) Technology: Materials, Devices and Display Technologies. Polym. Int. 2006, 55(6), 572–582. DOI: 10.1002/pi.1974.
  • Chaskar, A.; Chen, H. F.; Wong, K. T. Bipolar Host Materials: A Chemical Approach for Highly Efficient Electrophosphorescent Devices. Adv. Mater. 2011, 23(34), 3876–3895. DOI: 10.1002/adma.201101848.
  • Yersin, H., Ed. Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. In Transition Metal and Rare Earth Compounds SE - 1; Topics in Current Chemistry; Springer Berlin Heidelberg, 2004; Vol. 241, pp 1–26. DOI:10.1007/b96858.
  • Tanaka, D.; Sasabe, H.; Li, Y.-J.; Su, S.-J.; Takeda, T.; Kido, J. Ultra High Efficiency Green Organic Light-Emitting Devices. Jpn. J. Appl. Phys. 2006, 46(1), L10–L12. DOI: 10.1143/JJAP.46.L10.
  • Xiao, L.; Su, S. J.; Agata, Y.; Lan, H.; Kido, J. Nearly 100% Internal Quantum Efficiency in an Organic Blue-Light Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap. Adv. Mater. 2009, 21(12), 1271–1274. DOI: 10.1002/adma.200802034.
  • Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device. J. Appl. Phys. 2001, 90(10), 5048–5051. DOI: 10.1063/1.1409582.
  • Omary, M. A.; Rawashdeh-Omary, M. A.; Diyabalanage, H. V. K.; Dias, H. V. R. Blue Phosphors of Dinuclear and Mononuclear Copper(I) and Silver(I) Complexes of 3,5-Bis(Trifluoromethyl)Pyrazolate and the Related Bis(Pyrazolyl)Borate. Inorg. Chem. 2003, 42(26), 8612–8614. DOI: 10.1021/ic0347586.
  • Omary, M. A.; Kassab, R. M.; Haneline, M. R.; Elbjeirami, O.; Gabbaï, F. P. Enhancement of the Phosphorescence of Organic Luminophores upon Interaction with a Mercury Trifunctional Lewis Acid. Inorg. Chem. 2003, 42(7), 2176–2178. DOI: 10.1021/ic034066h.
  • Burress, C.; Elbjeirami, O.; Omary, M. A.; Gabbai, F. P. Five-Order-of-Magnitude Reduction of the Triplet Lifetimes of N-Heterocycles by Complexation to a Trinuclear Mercury Complex. J. Am. Chem. Soc. 2005, 127(35), 12166–12167. DOI: 10.1021/ja053004i.
  • Stoffers, C.; Yang, S.; Zhang, F.; Jacobsen, S. M.; Wagner, B. K.; Summers, C. J. Activator Recycling in Low Voltage Cathodoluminescent Phosphors. Appl. Phys. Lett. 1997, 71(13), 1759–1761. DOI: 10.1063/1.119391.
  • Elbjeirami, O.; Rawashdeh-Omary, M. A.; Omary, M. A. Phosphorescence Sensitization via Heavy-Atom Effects in d10 Complexes. Res. Chem. Intermed. 2011, 37(7), 691–703. DOI: 10.1007/s11164-011-0342-7.
  • Ikai, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Highly Efficient Phosphorescence from Organic Light-Emitting Devices with an Exciton-Block Layer. Appl. Phys. Lett. 2001, 79(2), 156–158. DOI: 10.1063/1.1385182.
  • Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. High-Efficiency Organic Electrophosphorescent Devices with Tris(2-Phenylpyridine)Iridium Doped into Electron-Transporting Materials. Appl. Phys. Lett. 2000, 77(6), 904–906. DOI: 10.1063/1.1306639.
  • Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Baldo. Pure Appl. Chem. 1999, 71(11), 2095–2106. DOI: 10.1351/pac199971112095.
  • Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. High-Efficiency Polymer-Based Electrophosphorescent Devices. Adv. Mater. 2002, 14(8), 581–585. DOI: 10.1002/1521-4095(20020418)14:8<581::AID-ADMA581>3.0.CO;2-B.
  • Lo, S.-C.; Male, N. A. H.; Markham, J. P. J.; Magennis, S. W.; Burn, P. L.; Salata, O. V.; Samuel, I. D. W. Green Phosphorescent Dendrimer for Light-Emitting Diodes. Adv. Mater. 2002, 14(13–14), 975–979. DOI: 10.1002/1521-4095(20020705)14:13/14<975::AID-ADMA975>3.0.CO;2-D.
  • Welter, S.; Brunner, K.; Hofstraat, J. W.; De Cola, L. Electroluminescent Device with Reversible Switching between Red and Green Emission. Nature. 2003, 421(6918), 54–57. DOI: 10.1038/nature01309.
  • Meyer, T. J. Chemical Approaches to Artificial Photosynthesis. Acc. Chem. Res. 1989, 22(5), 163–170. DOI: 10.1021/ar00161a001.
  • Li, F.; Zhang, M.; Feng, J.; Cheng, G.; Wu, Z.; Ma, Y.; Liu, S.; Sheng, J.; Lee, S. T. Red Electrophosphorescence Devices Based on Rhenium Complexes. Appl. Phys. Lett. 2003, 83(2), 365–367. DOI: 10.1063/1.1592633.
  • Ma, Y.; Zhang, H.; Shen, J.; Che, C. Electroluminescence from Triplet Metal—Ligand Charge-Transfer Excited State of Transition Metal Complexes. Synth. Met. 1998, 94(3), 245–248. DOI: 10.1016/S0379-6779(97)04166-0.
  • Jiang, X.; Jen, A. K. Y.; Carlson, B.; Dalton, L. R. Red-Emitting Electroluminescent Devices Based on Osmium-Complexes-Doped Blend of Poly(Vinylnaphthalene) and 1,3,4-Oxadiazole Derivative. Appl. Phys. Lett. 2002, 81(17), 3125–3127. DOI: 10.1063/1.1514401.
  • Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Nature. 1998, 395(6698), 151–154. DOI: 10.1038/25954.
  • Jabbour, G. E.; Wang, J.-F.; Peyghambarian, N. High-Efficiency Organic Electrophophorescent Devices through Balance of Charge Injection. Appl. Phys. Lett. 2002, 80(11), 2026–2028. DOI: 10.1063/1.1458687.
  • Laguna, A.; Laguna, M. Coordination Chemistry of Gold(II) Complexes. Coord. Chem. Rev. 1999, 193–195, 837–856. DOI: 10.1016/S0010-8545(99)00141-1.
  • Schmidbaur, H.; Schier, A. Aurophilic Interactions as a Subject of Current Research: An up-Date. Chem. Soc. Rev. 2012, 41(1), 370. DOI: 10.1039/c1cs15182g.
  • Wing-Wah Yam, V.; Kam-Wing Lo, K. Luminescent Polynuclear d10 Metal Complexes. Chem. Soc. Rev. 1999, 28(5), 323–334. DOI: 10.1039/A804249G.
  • Barakat, K.; Cundari, T. R. Chemical and Photophysical Properties of AuI, AuII, AuIII, and AuI-Dimer Complexes. Chem. Phys. 2005, 311(1–2), 3–11. DOI: 10.1016/j.chemphys.2004.10.017.
  • Barakat, K. A.; Cundari, T. R.; Omary, M. A. Jahn−Teller Distortion in the Phosphorescent Excited State of Three-Coordinate Au(I) Phosphine Complexes. J. Am. Chem. Soc. 2003, 125(47), 14228–14229. DOI: 10.1021/ja036508u.
  • Hashimoto, M.; Igawa, S.; Yashima, M.; Kawata, I.; Hoshino, M.; Osawa, M. Highly Efficient Green Organic Light-Emitting Diodes Containing Luminescent Three-Coordinate Copper(I) Complexes. J. Am. Chem. Soc. 2011, 133(27), 10348–10351. DOI: 10.1021/ja202965y.
  • Zhang, J.; Duan, C.; Han, C.; Yang, H.; Wei, Y.; Xu, H. Balanced Dual Emissions from Tridentate Phosphine-Coordinate Copper(I) Complexes toward Highly Efficient Yellow OLEDs. Adv. Mater. 2016, 28(28), 5975–5979. DOI: 10.1002/adma.201600487.
  • Zink, D. M.; Bächle, M.; Baumann, T.; Nieger, M.; Kühn, M.; Wang, C.; Klopper, W.; Monkowius, U.; Hofbeck, T.; Yersin, H., et al. Synthesis, Structure, And Characterization Of Dinuclear Copper(I) Halide Complexes With P^N Ligands Featuring Exciting Photoluminescence Properties. Inorg. Chem. 2013, 52(5), 2292–2305. DOI: 10.1021/ic300979c.
  • Schinabeck, A.; Chen, J.; Kang, L.; Teng, T.; Homeier, H. H. H.; Suleymanova, A. F.; Shafikov, M. Z.; Yu, R.; Lu, C.-Z.; Yersin, H. Symmetry-Based Design Strategy for Unprecedentedly Fast Decaying Thermally Activated Delayed Fluorescence (TADF). Application to Dinuclear Cu(I) Compounds. Chem. Mater. 2019, 31(12), 4392–4404. DOI: 10.1021/acs.chemmater.9b00671.
  • Li, Y.; Li, Z.; Hou, Y.; Fan, Y.-N.; Su, C.-Y. Photoluminescent Phosphinine Cu(I) Halide Complexes: Temperature Dependence of the Photophysical Properties and Applications as a Molecular Thermometer. Inorg. Chem. 2018, 57(21), 13235–13245. DOI: 10.1021/acs.inorgchem.8b01732.
  • Zhang, Y.; Schulz, M.; Wächtler, M.; Karnahl, M.; Dietzek, B. Heteroleptic Diimine–Diphosphine Cu(I) Complexes as an Alternative Towards Noble-Metal Based Photosensitizers: Design Strategies, Photophysical Properties and Perspective Applications. Coord. Chem. Rev. 2018, 356, 127–146. DOI: 10.1016/j.ccr.2017.10.016.
  • Keller, S.; Brunner, F.; Junquera-Hernández, J. M.; Pertegás, A.; La-Placa, M.-G.; Prescimone, A.; Constable, E. C.; Bolink, H. J.; Ortí, E.; Housecroft, C. E. CF3 Substitution Of [Cu(P^P)(Bpy)][PF6] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance. Chempluschem. 2018, 83(4), 217–229. DOI: 10.1002/cplu.201700501.
  • Keller, S.; Prescimone, A.; Constable, E. C.; Housecroft, C. E. Copper(I) and Silver(I) Complexes of 9,9-Dimethyl-4,5-Bis(Di-Tert-Butylphosphino)Xanthene: Photophysical Properties and Structural Rigidity under Pressure. Photochem. Photobiol. Sci. 2018, 17(4), 375–385. DOI: 10.1039/C7PP00432J.
  • Alkan-Zambada, M.; Keller, S.; Martínez-Sarti, L.; Prescimone, A.; Junquera-Hernández, J. M.; Constable, E. C.; Bolink, H. J.; Sessolo, M.; Ortí, E.; Housecroft, C. E. [Cu(P^P)(N^N)][PF6] Compounds with Bis(Phosphane) and 6-Alkoxy, 6-Alkylthio, 6-Phenyloxy and 6-Phenylthio-Substituted 2,2′-Bipyridine Ligands for Light-Emitting Electrochemical Cells. J. Mater. Chem. C. 2018, 6(31), 8460–8471. DOI: 10.1039/C8TC02882F.
  • Washimi, M.; Nishikawa, M.; Shimoda, N.; Satokawa, S.; Tsubomura, T. Blue and Orange Oxygen Responsive Emissions in the Solid State Based on Copper(i) Complexes Bearing Dodecafluorinated Diphosphine and 1,10-Phenanthroline Derivative Ligands. Inorg. Chem. Front. 2017, 4(4), 639–649. DOI: 10.1039/C6QI00577B.
  • Kakizoe, D.; Nishikawa, M.; Fujii, Y.; Tsubomura, T. Photophysical Properties of Three Coordinated Copper(I) Complexes Bearing 1,10-Phenanthroline and a Monodentate Phosphine Ligand. Dalton Trans. 2017, 46(43), 14804–14811. DOI: 10.1039/C7DT02938A.
  • Yersin, H., Ed. Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence; Wiley VCH: Weinheim, Germany, 2019.
  • Wing-Wah Yam, V.; Chung-Chin Cheng, E.; Zhu, N. The First Luminescent Tetranuclear Copper(I) μ4-Phosphinidene Complex. Chem. Commun. 2001, 11, 1028–1029. DOI: 10.1039/B101284N.
  • Sun, Y.; Zhang, S.; Li, G.; Xie, Y.; Zhao, D. Crystallographic and Spectroscopic Studies of a Luminescent Binuclear Copper(I) Complex Containing Mixed-Ligands. Transit. Met. Chem. 2003, 28(7), 772–776. DOI: 10.1023/A:1026021725435.
  • Li, D.; Feng, Q.; Feng, X.-L.; Cai, J.-W. A. Photoluminescent Metallophane [Cu2(μ-Dppb)2(CH3CN)4](BF4)2 with a Chair Conformation: Synthesis, Structural and Spectroscopic Studies. Inorg. Chem. Commun. 2003, 6(4), 361–364. DOI: 10.1016/S1387-7003(02)00777-3.
  • Benito, Q.; Le Goff, X. F.; Nocton, G.; Fargues, A.; Garcia, A.; Berhault, A.; Kahlal, S.; Saillard, J.-Y.; Martineau, C.; Trébosc, J., et al. Geometry Flexibility of Copper Iodide Clusters: Variability in Luminescence Thermochromism. Inorg. Chem. 2015, 150410080055004. DOI: 10.1021/acs.inorgchem.5b00321.
  • Kyle, K. R.; Ford, P. C. Dynamic Quenching of the Metal-to-Ligand Charge-Transfer Excited State of Cu4I4(Pyridine)4. Exciplex Formation and Self-Quenching. J. Am. Chem. Soc. 1989, 111(13), 5005–5006. DOI: 10.1021/ja00195a078.
  • Kyle, K. R.; DiBenedetto, J.; Ford, P. C. Dual Photoemissions from the Room Temperature Solutions of the Tetranuclear Copper(I) Clusters Cu4I4(Py-X)4(Py-X = Substituted Pyridine). J. Chem. Soc. Chem. Commun. 1989, 11, 714–715. DOI: 10.1039/C39890000714.
  • Kyle, K. R.; Palke, W. E.; Ford, P. C. The Photoluminescence Properties of the Copper(I) Clusters Cu4I4A4 (A = Aromatic Amine) in Solution. Coord. Chem. Rev. 1990, 97, 35–46. DOI: 10.1016/0010-8545(90)80078-8.
  • Kyle, K. R.; Ryu, C. K.; Ford, P. C.; DiBenedetto, J. A. Photophysical Studies in Solution of the Tetranuclear Copper(I) Clusters Cu4I4L4 (L = Pyridine or Substituted Pyridine). J. Am. Chem. Soc. 1991, 113(8), 2954–2965. DOI: 10.1021/ja00008a026.
  • Dossing, A.; Ryu, C. K.; Kudo, S.; Ford, P. C. Competitive Bimolecular Electron- and Energy-Transfer Quenching of the Excited State(s) of the Tetranuclear Copper(I) Cluster Cu4I4py4. Evidence for Large Reorganization Energies in an Excited-State Electron Transfer. J. Am. Chem. Soc. 1993, 115(12), 5132–5137. DOI: 10.1021/ja00065a026.
  • Vitale, M.; Ryu, C. K.; Palke, W. E.; Ford, P. C. Ab Initio Studies of the Copper(I) Tetramers Cu4X4L4 (X = I, Br, Cl). Effects of Cluster Structure and of Halide on Photophysical Properties. Inorg. Chem. 1994, 33(3), 561–566. DOI: 10.1021/ic00081a026.
  • Ford, P. C. Photochemical and Photophysical Studies of Tetranuclear Copper(I) Halide Clusters: An Overview. Coord. Chem. Rev. 1994, 132, 129–140. DOI: 10.1016/0010-8545(94)80032-4.
  • Simon, J. A.; Palke, W. E.; Ford, P. C. Photophysical and Ab Initio Studies of Mononuclear Copper(I) Complexes. Inorg. Chem. 1996, 35(22), 6413–6421. DOI: 10.1021/ic960367y.
  • Ford, P. C.; Cariati, E.; Bourassa, J. Photoluminescence Properties of Multinuclear Copper(I) Compounds. Chem. Rev. 1999, 99(12), 3625–3648. DOI: 10.1021/cr960109i.
  • Vitale, M.; Ford, P. C. Luminescent Mixed Ligand Copper(I) Clusters (Cui)n(l)m (L=pyridine, Piperidine): Thermodynamic Control of Molecular and Supramolecular Species. Coord. Chem. Rev. 2001, 219–221, 3–16. DOI: 10.1016/S0010-8545(00)00414-8.
  • Leitl, M. J.; Krylova, V. A.; Djurovich, P. I.; Thompson, M. E.; Yersin, H. Phosphorescence versus Thermally Activated Delayed Fluorescence. Controlling Singlet–Triplet Splitting in Brightly Emitting and Sublimable Cu(I) Compounds. J. Am. Chem. Soc. 2014, 136(45), 16032–16038. DOI: 10.1021/ja508155x.
  • Dias, R. H.; Polach, S. A.; Wang, Z. Coinage Metal Complexes of 3,5-Bis(Trifluoromethyl)Pyrazolate Ligand. J. Fluor. Chem. 2000, 103(2), 163–169. DOI: 10.1016/S0022-1139(99)00313-9.
  • Dias, H. V. R.; Diyabalanage, H. V. K.; Rawashdeh-Omary, M. A.; Franzman, M. A.; Omary, M. A. Bright Phosphorescence of a Trinuclear Copper (I) Complex: Luminescence Thermochromism, Solvatochromism, and “Concentration Luminochromism”. J. Am. Chem. Soc. 2003, 125(40), 12072–12073. DOI: 10.1021/ja036736o.
  • Dias, H. V. R.; Diyabalanage, H. V. K.; Eldabaja, M. G.; Elbjeirami, O.; Rawashdeh-Omary, M. A.; Omary, M. A. Brightly Phosphorescent Trinuclear Copper (I) Complexes of Pyrazolates: Substituent Effects on the Supramolecular Structure and Photophysics. J. Am. Chem. Soc. 2005, 127(20), 7489–7501. DOI: 10.1021/ja0427146.
  • Omary, M. A.; Rawashdeh-Omary, M. A.; Gonser, M. W. A.; Elbjeirami, O.; Grimes, T.; Cundari, T. R.; Diyabalanage, H. V. K.; Gamage, C. S. P.; Dias, H. V. R. Metal Effect on the Supramolecular Structure, Photophysics, and Acid-Base Character of Trinuclear Pyrazolato Coinage Metal Complexes. Inorg. Chem. 2005, 44(23), 8200–8210. DOI: 10.1021/ic0508730.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09, Revision B.01.Gaussian, Inc.: Wallingford CT, 2009.
  • Becke, A. Density Functional Thermochemistry III the Role of Exact Exchange. J. Chem. Phys. 1993, 98(7), 5648–5652. DOI: 10.1063/1.464913.
  • Perdew, J. P.; Unified theory of exchange and correlation beyond the local density approximation. In Electronic Structure of Solids ’91; Ziesche, P., Eschrig, H., Eds.; Akademie Verlag: Berlin, 1991; Vol. 17, p 11–20.
  • Burke, K.; Perdew, J. P.; Wang, Y. Derivation of a Generalized Gradient Approximation: The PW91 Density Functional. In Electronic Density Functional Theory: Recent Progress and New Directions; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum: New York, 1998; pp p 81.
  • Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B. 1992, 46(11), 6671–6687. DOI: 10.1103/PhysRevB.48.4978.2.
  • Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B. 1993, 48(7), 4978. DOI: 10.1103/PhysRevB.48.4978.2.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple- ERRATA. Phys. Rev. Lett. 1996, 77(18), 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  • Herzberg, G. Molecular Spectra and Molecular Structure; New York: Van Nostrand Reinhold, 1950; Vol. I Spec.
  • Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82(1), 270–283. DOI: 10.1063/1.448799.
  • Couty, M.; Hall, M. B. Basis Sets for Transition Metals: Optimized Outer P Functions. J. Comput. Chem. 1996, 17(11), 1359–1370. DOI: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L.
  • Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self‐consistent Molecular Orbital Methods. XXIII. A Polarization‐type Basis Set for Second‐row Elements. J. Chem. Phys. 1982, 77(7), 3654–3665. DOI: 10.1063/1.444267.
  • Sheldrick, G. M. SHELXTL; Bruker Analytical X-Ray Inc.: Madison, WI, 2008.
  • Omary, M. A.; Sinha, P.; Bagus, P. S.; Wilson, A. K. Electronic Structure of Mercury Oligomers and Exciplexes: Models for Long-Range/Multicenter Bonding in Phosphorescent Transition-Metal Compounds. J. Phys. Chem. A. 2005, 109(4), 690–702. DOI: 10.1021/jp045143c.
  • Determan, J. J.; Omary, M. A.; Wilson, A. K. Modeling the Photophysics of Zn and Cd Monomers, Metallophilic Dimers, and Covalent Excimers. J. Phys. Chem. A. 2011, 115(4), 374–382. DOI: 10.1021/jp108384s.
  • Determan, J. J.; Sinha, P.; Wilson, A. K.; Omary, M. A. M. A. Bonding and Phosphorescence Trends in 1-D, 2-D, and 3-D Oligomers and Extended Excimers of Group 12 Metals: Validation of Cooperativity in Both Metallophilic and Excimeric Bonding. J. Phys. Chem. C. 2015, 119(4), 2015–2028. DOI: 10.1021/jp5034189.
  • Determan, J. J.; Sinha, P.; Wilson, A. K.; Omary, M. A. Correction to “Bonding and Phosphorescence Trends in 1-D, 2-D, and 3-D Oligomers and Extended Excimers of Group 12 Metals: Validation of Cooperativity in Both Metallophilic and Excimeric Bonding”. J. Phys. Chem. C. 2015, 119(13), 7541. DOI: 10.1021/acs.jpcc.5b02429.
  • Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97(3), 597–636. DOI: 10.1021/cr940396v.
  • Wrighton, M.; Morse, D. L. Nature of the Lowest Excited State in Tricarbonylchloro-1,10-Phenanthrolinerhenium(I) and Related Complexes. J. Am. Chem. Soc. 1974, 96(4), 998–1003. DOI: 10.1021/ja00811a008.
  • Giordano, P. J.; Fredericks, S. M.; Wrighton, M. S.; Morse, D. L. Simultaneous Multiple Emissions from fac-XRe(CO)3(3-Benzoylpyridine)2: N-.Pi.*Intraligand and Charge-Transfer Emission at Low Temperature. J. Am. Chem. Soc. 1978, 100(7), 2257–2259. DOI: 10.1021/ja00475a061.
  • Fredericks, S. M.; Luong, J. C.; Wrighton, M. S. Multiple Emissions from Rhenium(I) Complexes: Intraligand and Charge-Transfer Emission from Substituted Metal Carbonyl Cations. J. Am. Chem. Soc. 1979, 101(24), 7415–7417. DOI: 10.1021/ja00518a054.
  • Hamze, R.; Shi, S.; Kapper, S. C.; Muthiah Ravinson, D. S.; Estergreen, L.; Jung, M.-C.; Tadle, A. C.; Haiges, R.; Djurovich, P. I.; Peltier, J. L., et al. “Quick-silver” from a Systematic Study of Highly Luminescent, Two-Coordinate, D10 Coinage Metal Complexes. J. Am. Chem. Soc. 2019, 141(21), 8616–8626. DOI: 10.1021/jacs.9b03657.
  • Hamze, R.; Peltier, J. L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P. I.; Bertrand, G., et al. Eliminating Nonradiative Decay in Cu(I) Emitters: >99% Quantum Efficiency and Microsecond Lifetime. Science. 2019, 363(6427), 601– 606. DOI: 10.1126/science.aav2865.
  • Hurtubise, R. J.; Ramasamy, S. M.; Bello, J. M.; Burrell, G. J.; Citta, L. A. Applications and Interactions in Solid-Surface Luminescence Analysis. In Luminescence Applications; ACS Symposium Series; American Chemical Society, 1989; Vol. 383, pp 155–166 SE – 9. DOI:10.1021/bk-1989-0383.ch009.
  • Nakayama, Y.; Inagi, H.; Zhang, M. Photobleaching and Photodegradation of Photoluminescence in Thin Films of Poly(Methylphenylsilane). J. Appl. Phys. 1999, 86(2), 768–773. DOI: 10.1063/1.370802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.