Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 40, 2020 - Issue 5
567
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Metal/Organosilicon Complexes: Structure, Reactivity, and Considerations for Catalysis

ORCID Icon & ORCID Icon

References

  • Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; John Wiley & Sons, Inc.: New York, NY, USA, 2000.
  • Lewis, K. M.; Rethwisch, D. G. Catalyzed Direct Reactions of Silicon; Elsevier: Amsterdam, 1993.
  • Clarke, M. P. The Direct Synthesis of Methylchlorosilanes. J. Organomet. Chem. 1989, 376, 165–222. DOI: 10.1016/0022-328X(89)85131-9.
  • Marciniec, B., Ed. Hydrosilylation: A Comprehensive Review on Recent Advances; Springer: New York, 2009.
  • Marciniec, B. Catalysis by Transition Metal Complexes of Alkene Silylation – Recent Progress and Mechanistic Implications. Coord. Chem. Rev. 2005, 249, 2374–2390. DOI: 10.1016/j.ccr.2005.02.025.
  • Obligacion, J. V.; Chirik, P. J. Earth-Abundant Transition Metal Catalysts for Alkene Hydrosilylation and Hydroboration. Nat. Rev. Chem. 2018, 2, 15–34. DOI: 10.1038/s41570-018-0001-2.
  • Nakajima, Y.; Shimada, S. Hydrosilylation Reaction of Olefins: Recent Advances and Perspectives. R. Soc. Chem. Adv. 2015, 5, 20603–20616.
  • Ojima, I. The Chemistry of Organic Silicon Compounds, Part 2, Patai, S., Rappoport, Z., Eds.; Wiley & Sons: New York, 1989; pp 1479–1526.
  • Corey, J. Y. Reactions of Hydrosilanes with Transition Metal Complexes. Chem. Rev. 2016, 116, 11291–11435. DOI: 10.1021/acs.chemrev.5b00559.
  • Ozawa, F. The Chemistry of Organo(silyl)platinum(II) Complexes Relevant to Catalysis. J. Organomet. Chem. 2000, 611, 332–342. DOI: 10.1016/S0022-328X(00)00493-9.
  • Iglesias, M.; Fernandez-Alvarez, F. J.; Oro, L. A. Non-classical Hydrosilane Mediated Reductions Promoted by Transition Metal Complexes. Coord. Chem. Rev. 2019, 386, 240–266. DOI: 10.1016/j.ccr.2019.02.003.
  • Lipke, M. C.; Liberman-Martin, A. L.; Tilley, T. D. Electrophilic Activation of Silicon-Hydrogen Bonds in Catalytic Hydrosilations. Angew. Chem. Int. Ed. 2017, 56, 2260–2294. DOI: 10.1002/anie.201605198.
  • Tilley, T. D. The Chemistry of Organic Silicon Compounds, Part 2, Patai, S., Rappoport, Z., Eds.; Wiley & Sons: New York, 1989; pp 1415–1477.
  • Waterman, R.; Hayes, P. G.; Tilley, T. D. Synthetic Development and Chemical Reactivity of Transition-Metal Silylene Complexes. Acc. Chem. Res. 2007, 40, 712–719. DOI: 10.1021/ar700028b.
  • Okazaki, M.; Tobita, H.; Ogino, H. Reactivity of Silylene Complexes. Dalton Trans. 2003, 493–506. doi:10.1039/b210588h.
  • Simon, M.; Breher, F. Multidentate Silyl Ligands in Transition Metal Chemistry. Dalton Trans. 2017, 46, 7976–7997. DOI: 10.1039/C7DT02085F.
  • Blom, B.; Stoelzel, M.; Driess, M. New Vistas in N-Heterocyclic Silylene (NHSi) Transition-Metal Coordination Chemistry: Syntheses, Structures and Reactivity Towards Activation of Small Molecules. Chem. Eur. J. 2013, 19, 40–62. DOI: 10.1002/chem.201203072.
  • Braunstein, P.; Knorr, M. Reactivity of the Metal-Silicon Bond in Organometallic Chemistry. J. Organomet. Chem. 1995, 500, 21–38. DOI: 10.1016/0022-328X(95)00530-4.
  • Rodgers, G. E. Descriptive Inorganic, Coordination, and Solid-State Chemistry; Brooks/Cole: Belmont, CA, 2011.
  • DFT calculations were performed at the M06/6-311+G(2d,p) level of theory in Gaussian 09.
  • Chuit, C.; Corriu, R. J. P.; Reye, C. Chemistry of Hypervalent Compounds, Akiba, K.-Y., Ed.; Wiley-VCH: New York, 1998; pp 81–146.
  • Walsh, R. Bond Dissociation Energy Values in Silicon-Containing Compounds and Some of Their Implications. Acc. Chem. Res. 1981, 14, 246–252. DOI: 10.1021/ar00068a004.
  • Berkowitz, J.; Ellison, G. B.; Gutman, D. Three Methods to Measure RH Bond Energies. J. Phys. Chem. 1994, 98, 2744–2765. DOI: 10.1021/j100062a009.
  • Hashimoto, H.; Tobita, H. Recent Advances in the Chemistry of Transition Metal-Silicon/Germanium Triple-Bonded Complexes. Coord. Chem. Rev. 2018, 355, 362–379. DOI: 10.1016/j.ccr.2017.09.023.
  • Schubert, U. Advances in Organometallic Chemistry, Stone, F. G. A., West, R., Eds.; Academic Press: San Diego, CA, 1990; Vol. 30, pp 151–187.
  • Corey, J. Y.; Braddock-Wilking, J. Reactions of Hydrosilanes with Transition-Metal Complexes: Formation of Stable Transition-Metal Silyl Compounds. Chem. Rev. 1999, 99, 175–292. DOI: 10.1021/cr9701086.
  • Corey, J. Y. Reactions of Hydrosilanes with Transition Metal Complexes and Characterization of the Products. Chem. Rev. 2011, 111, 863–1071. DOI: 10.1021/cr900359c.
  • Houghton, A. Y.; Hurmalainen, J.; Mansikkamaki, A.; Piers, W. E.; Tuononen, H. M. Direct Observation of a Borane-Silane Complex Involved in Frustrated Lewis-pair-mediated Hydrosilylations. Nat. Chem. 2014, 6, 983–988. DOI: 10.1038/nchem.2063.
  • Chen, J. W.; Chen, E. Y. X. Elusive Silane-Alane Complex SiHAl: Isolation, Characterization, and Multifaceted Frustrated Lewis Pair Type Catalysis. Angew. Chem. Int. Ed. 2015, 54, 6842–6846. DOI: 10.1002/anie.201502400.
  • Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. Novel Weak Coordination to Silylium Ions: Formation of Nearly Linear Si-H-Si Bonds. Chem. Commun. 2006, 767–769. doi:10.1039/b511344j.
  • Ciruelo, G.; Cuenca, T.; Gomez, R.; Gomez-Sal, P.; Martin, A. Mono- and Di-cyclopentadienyl Zirconium Derivatives Containing the Dimethylsilylcyclopentadienyl Ligand. Agostic Linear Si-H-Zr Interaction in the Molecular Structure of [Zr{η5-C5H4(SiMe2H)}Cl3]2. J. Chem. Soc. Dalton 2001, 1657–1663. doi:10.1039/b010221k.
  • Yang, J. A.; Fasulo, M.; Tilley, T. D. (MeQn2SiH)Fe[N(SiMe3)2]2 (Qn=8-quinolyl): An Unusual δ-agostic Iron Complex Containing an η1-SiH Interaction. New J. Chem. 2010, 34, 2528–2529. DOI: 10.1039/c0nj00554a.
  • Yang, J.; White, P. S.; Schauer, C. K.; Brookhart, M. Structural and Spectroscopic Characterization of an Unprecedented Cationic Transition-Metal η1-Silane Complex. Angew. Chem. Int. Ed. 2008, 47, 4141–4143. DOI: 10.1002/anie.200705359.
  • Rios, P.; Fouilloux, H.; Vidossich, P.; Diez, J.; Lledos, A.; Conejero, S. Isolation of a Cationic Platinum(II) σ-Silane Complex. Angew. Chem. Int. Ed. 2018, 57, 3217–3221. DOI: 10.1002/anie.201712791.
  • Scherer, W.; Herz, V.; Bruck, A.; Hauf, C.; Reiner, F.; Altmannshofer, S.; Leusser, D.; Stalke, D. The Nature of β-Agostic Bonding in Late-Transition-Metal Alkyl Complexes. Angew. Chem. Int. Ed. 2011, 50, 2845–2849. DOI: 10.1002/anie.201006065.
  • Scherer, W.; Meixner, P.; Barquera-Lozada, J. E.; Hauf, C.; Obenhuber, A.; Bruck, A.; Wolstenholme, D. J.; Ruhland, K.; Leusser, D.; Stalke, D. A Unifying Bonding Concept for Metal Hydrosilane Complexes. Angew. Chem. Int. Ed. 2013, 52, 6092–6096. DOI: 10.1002/anie.201210224.
  • Scherer, W.; Eickerling, G.; Tafipolsky, M.; McGrady, G. S.; Sirsch, P.; Chatterton, N. P. Elucidation of the Bonding in Mn(η2-SiH) Complexes by Charge Density Analysis and T1 NMR Measurements: Asymmetric Oxidative Addition and Anomeric Effects at Silicon. Chem. Commun. 2006, 2986–2988. doi:10.1039/B604843A.
  • Green, M. L. H. A New Approach to the Formal Classification of Covalent Compounds of the Elements. J. Organomet. Chem. 1995, 500, 127–148. DOI: 10.1016/0022-328X(95)00508-N.
  • Green, J. C.; Green, M. L. H.; Parkin, G. The Occurrence and Representation of Three-Centre Two-Electron Bonds in Covalent Inorganic Compounds. Chem. Commun. 2012, 48, 11481–11503. DOI: 10.1039/c2cc35304k.
  • Green, M. L. H.; Parkin, G. Chemical Bond III: 100 Years Old and Getting Stronger, Mingos, D. M. P., Ed.; Springer: Switzerland, 2017; Vol. 171, pp 79–139.
  • Spaltenstein, E.; Palma, P.; Kreutzer, K. A.; Willoughby, C. A.; Davis, W. M.; Buchwald, S. L. Preparation and X-ray Structure of Cp2Ti(Ph2SiH2)(PMe3). J. Am. Chem. Soc. 1994, 116, 10308–10309. DOI: 10.1021/ja00101a064.
  • Kreutzer, K. A.; Fisher, R. A.; Davis, W. M.; Spaltenstein, E.; Buchwald, S. L. Synthesis, Characterization, and Reactivity of Zirconocene and Hafnocene Silyl Hydride Complexes. Organometallics 1991, 10, 4031–4035. DOI: 10.1021/om00058a018.
  • Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. DOI: 10.1002/jcc.v32.7.
  • Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. DOI: 10.1002/()1096-987X.
  • Takaya, J.; Iwasawa, N. Reaction of Bis(o-phosphinophenyl)silane with M(PPh3)4 (M = Ni, Pd, Pt): Synthesis and Structural Analysis of η2-(Si-H) Metal(0) and Pentacoordinate Silyl Metal(II) Hydride Complexes of the Ni Triad Bearing a PSiP-Pincer Ligand. Dalton Trans. 2011, 40, 8814–8821. DOI: 10.1039/c1dt10526d.
  • Lee, C. I.; Zhou, J.; Ozerov, O. V. Catalytic Dehydrogenative Borylation of Terminal Alkynes by a SiNN Pincer Complex of Iridium. J. Am. Chem. Soc. 2013, 135, 3560–3566. DOI: 10.1021/ja311682c.
  • McGrady, G. S.; Sirsch, P.; Chatterton, N. P.; Ostermann, A.; Gatti, C.; Altmannshofer, S.; Herz, V.; Eickerling, G.; Scherer, W. Nature of the Bonding in Metal-Silane σ-Complexes. Inorg. Chem. 2009, 48, 1588–1598. DOI: 10.1021/ic8019777.
  • Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, CA, 2010.
  • Hart-Davis, A. J.; Graham, W. A. G. Silicon-Transition Metal Chemistry. VI. Kinetics and Mechanism of Replacement of Triphenylsilane by Triphenylphosphine in Hydridotriphenylsilyl(π-cyclopentadienyl)dicarbonylmanganese. J. Am. Chem. Soc. 1971, 93, 4388–4393. DOI: 10.1021/ja00747a009.
  • Yan, K. K.; Heredia, J. J. D.; Ellern, A.; Gordon, M. S.; Sadow, A. D. Lewis Base Mediated β-Elimination and Lewis Acid Mediated Insertion Reactions of Disilazido Zirconium Compounds. J. Am. Chem. Soc. 2013, 135, 15225–15237. DOI: 10.1021/ja407950e.
  • Lapointe, D.; Fagnou, K. Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway. Chem. Lett. 2010, 39, 1119–1126. DOI: 10.1246/cl.2010.1118.
  • Lalrempuia, R.; Iglesias, M.; Polo, V.; Miguel, P. J. S.; Fernandez-Alvarez, F. J.; Perez-Torrente, J. J.; Oro, L. A. Effective Fixation of CO2 by Iridium-Catalyzed Hydrosilylation. Angew. Chem. Int. Ed. 2012, 51, 12824–12827. DOI: 10.1002/anie.201206165.
  • Omann, L.; Konigs, C. D. F.; Klare, H. F. T.; Oestreich, M. Cooperative Catalysis at Metal-Sulfur Bonds. Acc. Chem. Res. 2017, 50, 1258–1269. DOI: 10.1021/acs.accounts.7b00089.
  • Metsanen, T. T.; Oestreich, M. Temperature-Dependent Chemoselective Hydrosilylation of Carbon Dioxide to Formaldehyde or Methanol Oxidation State. Organometallics 2015, 34, 543–546. DOI: 10.1021/om501279a.
  • Yang, J.; White, P. S.; Brookhart, M. Scope and Mechanism of the Iridium-Catalyzed Cleavage of Alkyl Ethers with Triethylsilane. J. Am. Chem. Soc. 2008, 130, 17509–17518. DOI: 10.1021/ja806419h.
  • Park, S.; Brookhart, M. Hydrosilylation of Carbonyl-Containing Substrates Catalyzed by an Electrophilic η1-Silane Iridium(III) Complex. Organometallics. 2010, 29, 6057–6064. DOI: 10.1021/om100818y.
  • Metsanen, T. T.; Hrobarik, P.; Klare, H. F. T.; Kaupp, M.; Oestreich, M. Insight into the Mechanism of Carbonyl Hydrosilylation Catalyzed by Brookhart’s Cationic Iridium(III) Pincer Complex. J. Am. Chem. Soc. 2014, 136, 6912–6915. DOI: 10.1021/ja503254f.
  • Iglesias, M.; Miguel, P. J. S.; Polo, V.; Fernandez-Alvarez, F. J.; Perez-Torrente, J. J.; Oro, L. A. An Alternative Mechanistic Paradigm for the β-Z Hydrosilylation of Terminal Alkynes: The Role of Acetone as a Silane Shuttle. Chem. Eur. J. 2013, 19, 17559–17566. DOI: 10.1002/chem.201303063.
  • Kim, J.; Kim, Y.; Sinha, I.; Park, K.; Kim, S. H.; Lee, Y. The Unusual Hydridicity of a Cobalt Bound Si-H Moiety. Chem. Commun. 2016, 52, 9367–9370. DOI: 10.1039/C6CC03983A.
  • Whited, M. T.; Mankad, N. P.; Lee, Y. H.; Oblad, P. F.; Peters, J. C. Dinitrogen Complexes Supported by Tris(phosphino)silyl Ligands. Inorg. Chem. 2009, 48, 2507–2517. DOI: 10.1021/ic801855y.
  • Sadow, A. D.; Tilley, T. D. Synthesis and Characterization of Scandium Silyl Complexes of the Type Cp*2ScSiHRR’. σ-Bond Metathesis Reactions and Catalytic Dehydrogenative Silation of Hydrocarbons. J. Am. Chem. Soc. 2005, 127, 643–656. DOI: 10.1021/ja040141r.
  • Perutz, R. N.; Sabo-Etienne, S. The σ-CAM Mechanism: σ Complexes as the Basis of σ-Bond Metathesis at Late-Transition-Metal Centers. Angew. Chem. Int. Ed. 2007, 46, 2578–2592. DOI: 10.1002/anie.200603224.
  • Charboneau, D. J.; Balcells, D.; Hazari, N.; Lant, H. M. C.; Mayer, J. M.; Melvin, P. R.; Mercado, B. Q.; Morris, W. D.; Repisky, M.; Suh, H. W. Dinitrogen-Facilitated Reversible Formation of a Si-H Bond in a Pincer-Supported Ni Complex. Organometallics 2016, 35, 3154–3162. DOI: 10.1021/acs.organomet.6b00514.
  • Connor, B. A.; Rittle, J.; VanderVelde, D.; Peters, J. C. A Ni0(η2-(Si–H))(η2-H2) Complex that Mediates Facile H Atom Exchange between Two σ-Ligands. Organometallics 2016, 35, 686–690. DOI: 10.1021/acs.organomet.5b00985.
  • Takaya, J.; Iwasawa, N. Silyl Ligand Mediated Reversible β-Hydrogen Elimination and Hydrometalation at Palladium. Chem. Eur. J. 2014, 20, 11812–11819. DOI: 10.1002/chem.201403220.
  • Komuro, T.; Arai, T.; Kikuchi, K.; Tobita, H. Synthesis of Ruthenium Complexes with a Nonspectator Si,O,P-Chelate Ligand: Interconversion between a Hydrido(η2-silane) Complex and a Silyl Complex Leading to Catalytic Alkene Hydrogenation. Organometallics 2015, 34, 1211–1217. DOI: 10.1021/om5011885.
  • Wang, Y. W.; Kostenko, A.; Yao, S. L.; Driess, M. Divalent Silicon-Assisted Activation of Dihydrogen in a Bis(N-heterocyclic Silylene)xanthene Nickel(0) Complex for Efficient Catalytic Hydrogenation of Olefins. J. Am. Chem. Soc. 2017, 139, 13499–13506. DOI: 10.1021/jacs.7b07167.
  • Harman, W. H.; Lin, T. P.; Peters, J. C. A d10 Ni-(H2) Adduct as an Intermediate in H-H Oxidative Addition across A Ni-B Bond. Angew. Chem. Int. Ed. 2014, 53, 1081–1086. DOI: 10.1002/anie.201308175.
  • Harman, W. H.; Peters, J. C. Reversible H2 Addition across a Nickel-Borane Unit as a Promising Strategy for Catalysis. J. Am. Chem. Soc. 2012, 134, 5080–5082. DOI: 10.1021/ja211419t.
  • Lipke, M. C.; Liberman-Martin, A. L.; Tilley, T. D. Significant Cooperativity between Ruthenium and Silicon in Catalytic Transformations of an Isocyanide. J. Am. Chem. Soc. 2016, 138, 9704–9713. DOI: 10.1021/jacs.6b05736.
  • Lipke, M. C.; Tilley, T. D. Hypercoordinate Ketone Adducts Of Electrophilic η3-H2SiRR ‘ Ligands on Ruthenium as Key Intermediates for Efficient and Robust Catalytic Hydrosilation. J. Am. Chem. Soc. 2014, 136, 16387–16398. DOI: 10.1021/ja509073c.
  • Lipke, M. C.; Neumeyer, F.; Tilley, T. D. Interconversion Of η3-H2SiRR' σ-Complexes and 16-Electron Silylene Complexes via Reversible H-H or C-H Elimination. J. Am. Chem. Soc. 2014, 136, 6092–6102. DOI: 10.1021/ja501803w.
  • Lipke, M. C.; Tilley, T. D. Silane-Isocyanide Coupling Involving 1,1-Insertion of XylNC into the Si-H Bond of a σ-Silane Ligand. J. Am. Chem. Soc. 2013, 135, 10298–10301. DOI: 10.1021/ja404910h.
  • Lipke, M. C.; Tilley, T. D. High Electrophilicity at Silicon in η3-Silane σ-Complexes: Lewis Base Adducts of a Silane Ligand, Featuring Octahedral Silicon and Three Ru–H–Si Interactions. J. Am. Chem. Soc. 2011, 133, 16374–16377. DOI: 10.1021/ja207169e.
  • Suginome, M.; Ito, Y. Activation of Silicon-Silicon σ Bonds by Transition-Metal Complexes: Synthesis and Catalysis of New Organosilyl Transition-Metal Complexes. J. Chem. Soc. Dalton 1998, 1925–1934. doi:10.1039/a802066c.
  • Sharma, H. K.; Pannell, K. H. Activation of the Si-Si Bond by Transition-Metal Complexes. Chem. Rev. 1995, 95, 1351–1374. DOI: 10.1021/cr00037a010.
  • Miyaura, N. Catalytic Heterofunctionalization, Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; pp 1–45.
  • Beletskaya, I.; Moberg, C. Element-Element Addition to Alkynes Catalyzed by the Group 10 Metals. Chem. Rev. 1999, 99, 3435–3461. DOI: 10.1021/cr9902594.
  • Piper, T. S.; Lemal, D.; Wilkinson, G. A Silyliron Compound; An Fe-Si δ-Bond. Naturwissenschaften 1956, 43, 129. DOI: 10.1007/BF00621565.
  • Karshtedt, D.; Bell, A. T.; Tilley, T. D. Stoichiometric and Catalytic Reactions Involving Si-H Bond Activations by Rh and Ir Complexes Containing a Pyridylindolide Ligand. Organometallics 2006, 25, 4471–4482.
  • McBee, J. L.; Escalada, J.; Tilley, T. D. High Oxidation State Rhodium and Iridium Bis(silyl)dihydride Complexes Supported by a Chelating Pyridyl-Pyrrolide Ligand. J. Am. Chem. Soc. 2009, 131, 12703–12713. DOI: 10.1021/ja9035169.
  • Zhang, N.; Sherbo, R. S.; Bindra, G. S.; Zhu, D.; Budzelaar, P. H. M. Rh and Ir β-Diiminate Complexes of Boranes, Silanes, Germanes, and Stannanes. Organometallics 2017, 36, 4123–4135. DOI: 10.1021/acs.organomet.7b00469.
  • Brookhart, M.; Grant, B. E.; Lenges, C. P.; Prosenc, M. H.; White, P. S. High Oxidation State Organocobalt Complexes: Synthesis and Characterization of Dihydridodisilyl Cobalt(V) Species. Angew. Chem. Int. Ed. 2000, 39, 1676–1679. DOI: 10.1002/()1521-3773.
  • Chen, W. Z.; Shimada, S.; Tanaka, M. Synthesis and Structure of Formally Hexavalent Palladium Complexes. Science 2002, 295, 308–310. DOI: 10.1126/science.1067027.
  • Vyboishchikov, S. F.; Nikonov, G. I. Rhodium Silyl Hydrides in Oxidation State +5: Classical or Nonclassical? Organometallics 2007, 26, 4160–4169. DOI: 10.1021/om070238x.
  • Lichtenberger, D. L.; Raichaudhuri, A. Electronic Structure of Transition Metal-Silicon Bonds. Valence Photoelectron Spectra of (η5-C5H5)Fe(CO)2L Complexes (L = SiCl3, Si(CH3)3). J. Am. Chem. Soc. 1991, 113, 2923–2930. DOI: 10.1021/ja00008a021.
  • Tilley, T. D. Trimethylsilyl Derivatives of Bis(cyclopentadienyl)zirconium and -hafnium. Crystal Structure of (η5-C6H-)2Zr(SiMe3)(S2CNEt2). Organometallics. 1985, 4, 1452–1457. DOI: 10.1021/om00127a025.
  • Binh, D. H.; Milovanovic, M.; Puertes-Mico, J.; Hamdaoui, M.; Zaric, S. D.; Djukic, J. P. Is the R3Si Moiety in Metal-Silyl Complexes a Z Ligand? An Answer from the Interaction Energy. Chem. Eur. J. 2017, 23, 17058–17069. DOI: 10.1002/chem.201703373.
  • Aizenberg, M.; Milstein, D. Facial (Methyl)(hydrido)(silyl) Complexes of Iridium: Synthesis, X-ray Structures, and Reductive Elimination Reactions. Facile Formation of Silametalacycles by Metalation of Silyl Ligands. J. Am. Chem. Soc. 1995, 117, 6456–6464. DOI: 10.1021/ja00129a007.
  • Zhu, J.; Lin, Z. Y.; Marder, T. B. Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorg. Chem. 2005, 44, 9384–9390. DOI: 10.1021/ic0513641.
  • Ozawa, F.; Hikida, T.; Hayashi, T. Reductive Elimination of cis-PtMe(SiPh3)(PMePh2)2. J. Am. Chem. Soc. 1994, 116, 2844–2849. DOI: 10.1021/ja00086a017.
  • Suh, H. W.; Schmeier, T. J.; Hazari, N.; Kemp, R. A.; Takase, M. K. Experimental and Computational Studies of the Reaction of Carbon Dioxide with Pincer-Supported Nickel and Palladium Hydrides. Organometallics 2012, 31, 8225–8236. DOI: 10.1021/om3008597.
  • Takaya, J.; Iwasawa, N. Hydrocarboxylation of Allenes with CO2 Catalyzed by Silyl Pincer-Type Palladium Complex. J. Am. Chem. Soc. 2008, 130, 15254–15255. DOI: 10.1021/ja806677w.
  • Sola, E.; Garcia-Camprubi, A.; Andres, J. L.; Martin, M.; Plou, P. Iridium Compounds with κ-P,P,Si(biPSi) Pincer Ligands: Favoring Reactive Structures in Unsaturated Complexes. J. Am. Chem. Soc. 2010, 132, 9111–9121. DOI: 10.1021/ja102479h.
  • MacInnis, M. C.; McDonald, R.; Ferguson, M. J.; Tobisch, S.; Turculet, L. Four-Coordinate, 14-Electron RuII Complexes: Unusual Trigonal Pyramidal Geometry Enforced by Bis(phosphino)silyl Ligation. J. Am. Chem. Soc. 2011, 133, 13622–13633. DOI: 10.1021/ja204935x.
  • MacInnis, M. C.; Ruddy, A. J.; McDonald, R.; Ferguson, M. J.; Turculet, L. Synthesis and Characterization of Five-Coordinate, 16-Electron RuII Complexes Supported by Tridentate Bis(phosphino)silyl Ligation. Dalton Trans. 2016, 45, 15850–15858. DOI: 10.1039/C6DT01869F.
  • Sola, E. Pincer Compounds: Chemistry and Applications, Morales-Morales, D., Ed.; Elsevier: Amsterdam, 2018; pp 401–413.
  • Whited, M. T.; Trenerry, M. J.; DeMeulenaere, K. E.; Taylor, B. L. H. Computational and Experimental Investigation of Alkene Hydrogenation by a Pincer-Type [P2Si]Rh Complex: Alkane Release via Competitive σ-Bond Metathesis and Reductive Elimination. Organometallics 2019, 38, 1493–1501. DOI: 10.1021/acs.organomet.8b00922.
  • Morgan, E.; MacLean, D. F.; McDonald, R.; Turculet, L. Rhodium and Iridium Amido Complexes Supported by Silyl Pincer Ligation: Ammonia N-H Bond Activation by a [PSiP]Ir Complex. J. Am. Chem. Soc. 2009, 131, 14234–14236. DOI: 10.1021/ja906646v.
  • Zhao, J.; Goldman, A. S.; Hartwig, J. F. Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science 2005, 307, 1080–1082. DOI: 10.1126/science.1109389.
  • Wang, D. Y.; Choliy, Y.; Haibach, M. C.; Hartwig, J. F.; Krogh-Jespersen, K.; Goldman, A. S. Assessment of the Electronic Factors Determining the Thermodynamics of “Oxidative Addition” of C-H and N-H Bonds to Ir(I) Complexes. J. Am. Chem. Soc. 2016, 138, 149–163. DOI: 10.1021/jacs.5b09522.
  • Uhe, A.; Holscher, M.; Leitner, W. Analysis of Potential Molecular Catalysts for the Hydroamination of Ethylene with Ammonia: A DFT Study with [Ir(PCP)] and [Ir(PSiP)] Complexes. Chem. Eur. J. 2013, 19, 1020–1027. DOI: 10.1002/chem.201202185.
  • Rickard, C. E. F.; Roper, W. R.; Salter, D. M.; Wright, L. J. The Diosmium Tetrahydroxydisiloxane, [OsCl(CO)(PPh3)2Si(OH)2]2O, from the Coordinatively Unsaturated Trihydroxysilyl Complex, Os(Si(OH)3)Cl(CO)(PPh3)2. J. Am. Chem. Soc. 1992, 114, 9682–9683. DOI: 10.1021/ja00050a071.
  • Roper, W. R.; Wright, L. J. Similarities and Contrasts between Silyl and Stannyl Derivatives of Ruthenium and Osmium. Organometallics 2006, 25, 4704–4718. DOI: 10.1021/om060526d.
  • Kwok, W. H.; Lu, G. L.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Nucleophilic Substitution Reactions at the Si-Cl Bonds of the Dichloro(methyl)silyl Ligand in Five- and Six-coordinate Complexes of ruthenium(II) and osmium(II). J. Organomet. Chem. 2004, 689, 2511–2522. DOI: 10.1016/j.jorganchem.2004.04.039.
  • Straus, D. A.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. Silyl and Diphenylsilylene Derivatives of (η5-C5Me5)(PMe3)2Ru. Evidence for the Base-Free Silylene Complex [(η5-C5Me5)(PMe3)2Ru=SiPh2]+. J. Am. Chem. Soc. 1990, 112, 2673–2681. DOI: 10.1021/ja00163a030.
  • Corriu, R. J. P.; Guerin, C.; Moreau, J. J. E. Stereochemistry at Silicon. Top. Stereochem. 1984, 15, 43–198.
  • Stobart, S. R.; Zhou, X. B.; Cea-Olivares, R.; Toscano, A. Activation of Water and of Dioxygen by a Bis(diphenylphosphinopropyl)silyl (biPSi) Complex of Ruthenium(II): Formation of Bis(diphenylphosphinopropyl)siloxo Cage Complexes. Concomitant Oxygen Atom Insertion into a Silicon–Carbon Bond. Organometallics 2001, 20, 4766–4768. DOI: 10.1021/om010463t.
  • Korshin, E. E.; Leitus, G.; Shimon, L. J. W.; Konstantinovski, L.; Milstein, D. Silanol-Based Pincer Pt(II) Complexes: Synthesis, Structure, and Unusual Reactivity. Inorg. Chem. 2008, 47, 7177–7189. DOI: 10.1021/ic800457u.
  • Garcia-Camprubi, A.; Martin, M.; Sola, E. Addition of Water across Si–Ir Bonds in Iridium Complexes with κ-P,P,Si (biPSi) Pincer Ligands. Inorg. Chem. 2010, 49, 10649–10657. DOI: 10.1021/ic1016774.
  • Wierschen, A. L.; Romano, N.; Lee, S. J.; Gagné, M. R. Silylpalladium Cations Enable the Oxidative Addition of C(sp3)–O Bonds. J. Am. Chem. Soc. 2019, 141, 16024–16032. DOI: 10.1021/jacs.9b08178.
  • Kingston, B. M.; Lappert, M. F. Binuclear Organometallic Compounds. Part VI. Complexes Containing Metal–Metal Bonds between Elements of Group IVA and Group IVB. J. Chem. Soc. Dalton 1972, 69. doi:10.1039/DT9720000069.
  • Colomer, E.; Corriu, R. J. P. Behavior of an Optically Active Cobalt–Silicon Bond. Evidence for the Formation of Analogues of Silyl-Grignard Reagents. J. Organomet. Chem. 1977, 133, 159–168. DOI: 10.1016/S0022-328X(00)92869-9.
  • Tilley, T. D. Final Technical Report on ‘The Reactivity of Transition Metal-Silicon Compounds’. Air Force Office of Scientific Research. https://apps.dtic.mil/dtic/tr/fulltext/u2/a200371.pdf (accessed Oct 30, 2019).
  • Osakada, K.; Sarai, S.; Koizumi, T.; Yamamoto, T. Structure and Chemical Properties of Chlorohydrido(diarylsilyl)rhodium(III) Complexes, mer-RhCl(H)(SiHAr2)(PMe3)3. Thermally Induced Chloro Transfer from Rhodium to Silicon in the Complexes and Silane Exchange. Organometallics 1997, 16, 3973–3980. DOI: 10.1021/om970391z.
  • Whited, M. T.; Deetz, A. M.; Boerma, J. W.; DeRosha, D. E.; Janzen, D. E. Formation of Chlorosilyl Pincer-Type Rhodium Complexes by Multiple Si–H Activations of Bis(phosphine)/Dihydrosilyl Ligands. Organometallics 2014, 33, 5070–5073. DOI: 10.1021/om5006319.
  • Whited, M. T.; Deetz, A. M.; Donnell, T. M.; Janzen, D. E. Examining the Role of Rh/Si Cooperation in Alkene Hydrogenation by a Pincer-Type [P2Si]Rh Complex. Dalton Trans. 2016, 45, 9758–9761. DOI: 10.1039/C6DT00027D.
  • Curtis, M. D.; Epstein, P. S. Redistribution Reactions on Silicon Catalyzed by Transition Metal Complexes. Adv. Organomet. Chem. 1981, 19, 213–255.
  • Park, S.; Kim, B. G.; Gottker-Schnetmann, I.; Brookhart, M. Redistribution of Trialkyl Silanes Catalyzed by Iridium Silyl Complexes. ACS Catal. 2012, 2, 307–316. DOI: 10.1021/cs200629t.
  • Okazaki, M.; Tobita, H.; Ogino, H. Iridium-Catalyzed Redistribution of Hydrodisilanes via a Silyl(silylene)iridium(III) Complex: Synthesis of a Donor-Stabilized Silyl(silylene)iridium(III) Complex. Chem. Lett. 1997, 26, 437–438. DOI: 10.1246/cl.1997.437.
  • Ogino, H. Synthesis of Silylene and Silyl(silylene) Metal Complexes. Chem. Rec. 2002, 2, 291–306. DOI: 10.1002/tcr.10034.
  • Mitton, S. J.; McDonald, R.; Turculet, L. Nickel and Palladium Silyl Pincer Complexes: Unusual Structural Rearrangements that Involve Reversible Si-C(sp(3)) and Si-C(sp(2)) Bond Activation. Angew. Chem. Int. Ed. 2009, 48, 8568–8571. DOI: 10.1002/anie.200904570.
  • Suh, H. W.; Guard, L. M.; Hazari, N. A Mechanistic Study of Allene Carboxylation with CO2 Resulting in the Development of A Pd(II) Pincer Complex for the Catalytic Hydroboration of CO2. Chem. Sci. 2014, 5, 3859–3872. DOI: 10.1039/C4SC01110D.
  • Bernal, M. J.; Torres, O.; Martin, M.; Sola, E. Reversible Insertion of Carbenes into Ruthenium-Silicon Bonds. J. Am. Chem. Soc. 2013, 135, 19008–19015. DOI: 10.1021/ja410822p.
  • Berry, D. H.; Koloski, T. S.; Carroll, P. J. Alkylidene-Transfer Processes in the Reactions of Cp2Ta(=CH2)(CH3) with Silanes. Organometallics 1990, 9, 2952–2962. DOI: 10.1021/om00161a027.
  • Whited, M. T.; Grubbs, R. H. Synthesis and Reactivity of Iridium(III) Dihydrido Aminocarbenes. Organometallics 2008, 27, 5737–5740. DOI: 10.1021/om8009365.
  • Ozawa, F.; Kitaguchi, M.; Katayama, H. A New Process for C–Si Bond Formation from cis-Alkyl(silyl)platinum(II) Complexes. Chem. Lett. 1999, 28, 1289–1290. DOI: 10.1246/cl.1999.1289.
  • Hasebe, K.; Kamite, J.; Mori, T.; Katayama, H.; Ozawa, F. Thermolysis Reactions of cis-PtR(SiPh3)(PMe2Ph)2 in Solution. Organometallics 2000, 19, 2022–2030. DOI: 10.1021/om000012t.
  • Gallego, D.; Bruck, A.; Irran, E.; Meier, F.; Kaupp, M.; Driess, M.; Hartwig, J. F. From Bis(silylene) and Bis(germylene) Pincer-Type Nickel(II) Complexes to Isolable Intermediates of the Nickel-Catalyzed Sonogashira Cross-Coupling Reaction. J. Am. Chem. Soc. 2013, 135, 15617–15626. DOI: 10.1021/ja408137t.
  • Suginome, M.; Ito, Y. Transition-Metal-Catalyzed Additions of Silicon-Silicon and Silicon-Heteroatom Bonds to Unsaturated Organic Molecules. Chem. Rev. 2000, 100, 3221–3256. DOI: 10.1021/cr9902805.
  • Ansell, M. B.; Roberts, D. E.; Cloke, F. G. N.; Navarro, O.; Spencer, J. Synthesis of an (NHC)2Pd(SiMe3)2 Complex and Catalytic cis-Bis(silyl)ations of Alkynes with Unactivated Disilanes. Angew. Chem. Int. Ed. 2015, 54, 5577–5582. DOI: 10.1002/anie.201501764.
  • Sakaki, S.; Mizoe, N.; Sugimoto, M.; Musashi, Y. Pt-Catalyzed Hydrosilylation of Ethylene. A Theoretical Study of the Reaction Mechanism. Coord. Chem. Rev. 1999, 190, 933–960. DOI: 10.1016/S0010-8545(99)00130-7.
  • Chalk, A. J.; Harrod, J. F. Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes. J. Am. Chem. Soc. 1965, 87, 16–21. DOI: 10.1021/ja01079a004.
  • Schroeder, M. A.; Wrighton, M. S. Pentacarbonyliron(0) Photocatalyzed Reactions of Trialkylsilanes with Alkenes. J. Organomet. Chem. 1977, 128, 345–358. DOI: 10.1016/S0022-328X(00)92207-1.
  • Randolph, C. L.; Wrighton, M. S. Photochemical Reactions of (η5-Pentamethylcyclopentadienyl)dicarbonyliron-Alkyl and -silyl Complexes: Reversible Ethylene Insertion into an Iron-Silicon Bond and Implications for the Mechanism of Transition-Metal-Catalyzed Hydrosilation of Alkenes. J. Am. Chem. Soc. 1986, 108, 3366–3374. DOI: 10.1021/ja00272a035.
  • Price, J. S.; Emslie, D. J. H.; Britten, J. F. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes. Angew. Chem. Int. Ed. 2017, 56, 6223–6227. DOI: 10.1002/anie.201700863.
  • Sakaki, S.; Sumimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Why Does the Rhodium-Catalyzed Hydrosilylation of Alkenes Take Place through A Modified Chalk-Harrod Mechanism? A Theoretical Study. Organometallics 2002, 21, 3788–3802. DOI: 10.1021/om020239j.
  • Ojima, I.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Sato, T. Reduction of Carbonyl Compounds via Hydrosilylation: 2. Asymmetric Reduction of Ketones via Hydrosilylation Catalyzed by a Rhodium(I) Complex with Chiral Phosphine Ligands. J. Organomet. Chem. 1976, 122, 83–97. DOI: 10.1016/S0022-328X(00)92750-5.
  • Ito, J.; Hosokawa, S.; Khalid, H. B.; Nishiyama, H. Preparation, Characterization, and Catalytic Reactions of NCN Pincer Iron Complexes Containing Stannyl, Silyl, Methyl, and Phenyl Ligands. Organometallics 2015, 34, 1377–1383. DOI: 10.1021/acs.organomet.5b00082.
  • Vargas, R. M.; Hossain, M. M. Photochemical Reactions of (η5-C5H5)Fe(CO)2SiMe2R (R = Me, Ph) with ArCHO (Ar = C6H5, p-OCH3C6H4). Inorg. Chim. Acta. 1993, 204, 139–140. DOI: 10.1016/S0020-1693(00)82916-3.
  • Johnson, D. L.; Gladysz, J. A. Reactions of (Co)5MnSi(CH3)3 with Organic Carbonyl Compounds. Inorg. Chem. 1981, 20, 2508–2515. DOI: 10.1021/ic50222a028.
  • Gladysz, J. A. New Synthetic Chemistry of the Transition-Metal Trialkylsilane Complexes. Acc. Chem. Res. 1984, 17, 326–332. DOI: 10.1021/ar00105a005.
  • Arnold, J.; Tilley, T. D. Insertion of Organic Carbonyls into the Tantalum-Silicon Bond of (η5-C5Me5)Cl3TaSiMe3. Preparation and Characterization of the α-Silylalkoxides (η5-C5Me5)Cl3TaOCRR’SiMe3. J. Am. Chem. Soc. 1987, 109, 3318–3322. DOI: 10.1021/ja00245a022.
  • Kleeberg, C.; Feldmann, E.; Hartmann, E.; Vyas, D. J.; Oestreich, M. Copper-Catalyzed 1,2-Addition of Nucleophilic Silicon to Aldehydes: Mechanistic Insight and Catalytic Systems. Chem. Eur. J. 2011, 17, 13538–13543. DOI: 10.1002/chem.v17.48.
  • Cirriez, V.; Rasson, C.; Hermant, T.; Petrignet, J.; Alvarez, J. D.; Robeyns, K.; Riant, O. Copper-Catalyzed Addition of Nucleophilic Silicon to Aldehydes. Angew. Chem. Int. Ed. 2013, 52, 1785–1788. DOI: 10.1002/anie.v52.6.
  • Whited, M. T.; Zhang, J.; Donnell, T. M.; Eng, V. H.; Peterson, P. O.; Trenerry, M. J.; Janzen, D. E.; Taylor, B. L. H. Cooperative CO2 Scission by Anomalous Insertion into a Rh–Si Bond. Organometallics 2019, 38, 4420–4432. DOI: 10.1021/acs.organomet.9b00556.
  • Kleeberg, C.; Cheung, M. S.; Lin, Z. Y.; Marder, T. B. Copper-Mediated Reduction of CO2 with pinB–SiMe2Ph via CO2 Insertion into a Copper-Silicon Bond. J. Am. Chem. Soc. 2011, 133, 19060–19063. DOI: 10.1021/ja208969d.
  • Ariafard, A.; Brookes, N. J.; Stranger, R.; Yates, B. F. DFT Study on the Mechanism of the Activation and Cleavage of CO2 by (NHC)CuEPh3 (E = Si, Ge, Sn). Organometallics 2011, 30, 1340–1349. DOI: 10.1021/om100730h.
  • Thompson, C. V.; Arman, H. D.; Tonzetich, Z. J. Square-Planar Iron(II) Silyl Complexes: Synthesis, Characterization, and Insertion Reactivity. Organometallics 2019, 38, 2979–2989. DOI: 10.1021/acs.organomet.9b00335.
  • Campion, B. K.; Heyn, R. H.; Tilley, T. D. Carbon Dioxide Activation by a Transition-Metal–Silicon Bond. Formation of Silanecarboxylate Complexes Cp2Sc(μ-O2CSiR3)2. Inorg. Chem. 1990, 29, 4355–4356. DOI: 10.1021/ic00347a001.
  • Witzke, R. J.; Tilley, T. D. A Two-Coordinate Ni(I) Silyl Complex: CO2 Insertion and Oxidatively-Induced Silyl Migrations. Chem. Commun. 2019, 55, 6559–6562. DOI: 10.1039/C9CC03128F.
  • Fukumoto, K.; Sakai, A.; Hayasaka, K.; Nakazawa, H. Desulfurization and H-Migration of Secondary Thioamides Catalyzed by an Iron Complex to Yield Imines and Their Reaction Mechanism. Organometallics 2013, 32, 2889–2892. DOI: 10.1021/om400304v.
  • Komuro, T.; Begum, R.; Ono, R.; Tobita, H. Synthesis and Characterisation of Hydrido Molybdenum and Tungsten Complexes Having a Hemilabile Tridentate Si,Si,O-Ligand: Observation of Stepwise Hydrosilylation of a Nitrile to Form an N-Silylimine on the Metal Centre. Dalton Trans. 2011, 40, 2348–2357. DOI: 10.1039/C0DT01047B.
  • Taw, F. L.; White, P. S.; Bergman, R. G.; Brookhart, M. Carbon-carbon Bond Activation of R-CN (R = Me, Ar, iPr, tBu) Using a Cationic Rh(III) Complex. J. Am. Chem. Soc. 2002, 124, 4192–4193. DOI: 10.1021/ja0255094.
  • Taw, F. L.; Mueller, A. H.; Bergman, R. G.; Brookhart, M. A Mechanistic Investigation of the Carbon-carbon Bond Cleavage of Aryl and Alkyl Cyanides Using A Cationic Rh(III) Silyl Complex. J. Am. Chem. Soc. 2003, 125, 9808–9813. DOI: 10.1021/ja034468o.
  • Fukurnoto, K.; Oya, T.; Itazaki, M.; Nakazawa, H. N-CN Bond Cleavage of Cyanamides by a Transition-Metal Complex. J. Am. Chem. Soc. 2009, 131, 38–39. DOI: 10.1021/ja807896b.
  • Dahy, A. A.; Koga, N.; Nakazawa, H. Density Functional Theory Study of N-CN and O-CN Bond Cleavage by an Iron Silyl Complex. Organometallics 2012, 31, 3995–4005. DOI: 10.1021/om300232h.
  • Ochiai, M.; Hashimoto, H.; Tobita, H. Reactions of a Neutral Silylene Ruthenium Complex with Heterocumulenes: C=O Hydrosilylation of Isocyanates vs C=S Bond Cleavage of Isothiocyanate. Organometallics 2012, 31, 527–530. DOI: 10.1021/om2010854.
  • Tilley, T. D. Insertion of Carbon Monoxide into a Transition-Metal Silicon Bond. X-Ray Structure of the Silaacyl (η5-C5H5)2Zr(η2-COSiMe3)Cl. J. Am. Chem. Soc. 1985, 107, 4084–4085. DOI: 10.1021/ja00299a058.
  • Arnold, J.; Tilley, T. D.; Rheingold, A. L. Tetrahedral Lewis Base Adducts of an Acyl. Preparation and X-Ray Structure of the Pyridine Adduct (η5-C5Me5)Cl3Ta[η2-OC(SiMe3)(NC5H5)]. J. Am. Chem. Soc. 1986, 108, 5355–5356. DOI: 10.1021/ja00277a056.
  • Campion, B. K.; Falk, J.; Tilley, T. D. Reactions of Carbon Monoxide with Trimethylsilyl and Tris(trimethylsilyl)silyl Derivatives of Group 4 Metals. Synthesis, Characterization, and Reactivity of Silaacyl Complexes. J. Am. Chem. Soc. 1987, 109, 2049–2056. DOI: 10.1021/ja00241a023.
  • Campion, B. K.; Heyn, R. H.; Tilley, T. D. Synthesis and Reactions of Silyl and Germyl Derivatives of Scandocene. Structure of Cp2Sc[Si(SiMe3)3](THF). Organometallics 1993, 12, 2584–2590. DOI: 10.1021/om00031a031.
  • Arnold, J.; Woo, H. G.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. Reaction of an Early-Transition-Metal η2-silaacyl Complex with Pyridine. Diastereoselectivity in the Formation of a (2-pyridyl)silylmethoxy Ligand. Organometallics 1988, 7, 2045–2049. DOI: 10.1021/om00099a024.
  • Arnold, J.; Tilley, T. D. Ether Cleavage following Insertion of Carbon Monoxide into the Tantalum-Silicon Bond of (η5-C5Me5)Ta(SiMe3)Cl3. J. Am. Chem. Soc. 1985, 107, 6409–6410. DOI: 10.1021/ja00308a052.
  • Arnold, J.; Tilley, T. D. An Arbuzov-like Reaction in the Trimethyl Phosphite–η2-Silaacyl Adduct (η5-C5Me5)Cl3Ta{η2-OC(SiMe3)[P(OMe)3]}. Inorg. Chem. 1987, 26, 2556–2559. DOI: 10.1021/ic00262a044.
  • Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K. Reductive Elimination of d8-Organotransition Metal Complexes. Bull. Chem. Soc. Jpn. 1981, 54, 1857–1867. DOI: 10.1246/bcsj.54.1857.
  • Culkin, D. A.; Hartwig, J. F. Carbon–Carbon Bond-Forming Reductive Elimination from Arylpalladium Complexes Containing Functionalized Alkyl Groups. Influence of Ligand Steric and Electronic Properties on Structure, Stability, and Reactivity. Organometallics 2004, 23, 3398–3416. DOI: 10.1021/om049726k.
  • The reductive elimination shown in Scheme 26 was modeled from the phenylacetylene complex, using B97-D3/def2-TZVP//B97-D3/def2-SVP in Gaussian 09. Reaction enthalpies of 18.2, 18.4, and 19.6 kcal/mol were obtained for Me, Et, and nPr complexes, respectively. A transition-state search was unsuccessful.
  • Alvarez-Rodriguez, L.; Cabeza, J. A.; Garcia-Alvarez, P.; Polo, D. The Transition-Metal Chemistry of Amidinatosilylenes, -germylenes and -stannylenes. Coord. Chem. Rev. 2015, 300, 1–28. DOI: 10.1016/j.ccr.2015.04.008.
  • Zhang, J.; Foley, B. J.; Bhuvanesh, N.; Zhou, J.; Janzen, D. E.; Whited, M. T.; Ozerov, O. V. Synthesis and Reactivity of Pincer-Type Cobalt Silyl and Silylene Complexes. Organometallics 2018, 37, 3956–3962. DOI: 10.1021/acs.organomet.8b00594.
  • Whited, M. T.; Grubbs, R. H. Late Metal Carbene Complexes Generated by Multiple C-H Activations: Examining the Continuum of M=C Bond Reactivity. Acc. Chem. Res. 2009, 42, 1607–1616. DOI: 10.1021/ar900103e.
  • Crabtree, R. H. In The Organometallic Chemistry of the Transition Metals, 5th ed.; Wiley: Hoboken, New Jersey, 2009; 296–326.
  • Cundari, T. R. Computational Studies of Transition Metal-Main Group Multiple Bonding. Chem. Rev. 2000, 100, 807–818. DOI: 10.1021/cr980406i.
  • Lee, V. Y.; Aoki, S.; Yokoyama, T.; Horiguchi, S.; Sekiguchi, A.; Gornitzka, H.; Guo, J. D.; Nagase, S. Toward a Silicon Version of Metathesis: From Schrock-Type Titanium Silylidenes to Silatitanacyclobutenes. J. Am. Chem. Soc. 2013, 135, 2987–2990. DOI: 10.1021/ja401072j.
  • Nakata, N.; Fujita, T.; Sekiguchi, A. A Stable Schrock-Type Hafnium-Silylene Complex. J. Am. Chem. Soc. 2006, 128, 16024–16025. DOI: 10.1021/ja067251d.
  • Haaf, M.; Schmedake, T. A.; West, R. Stable Silylenes. Acc. Chem. Res. 2000, 33, 704–714. DOI: 10.1021/ar950192g.
  • Denk, M.; Hayashi, R. K.; West, R. Silylene Complexes from a Stable Silylene and Metal Carbonyls: Synthesis and Structure of [Ni{(ButN-CH=CH-NBut)Si}2(CO)2, a Donor-Free Bis-Silylene Complexes. J. Chem. Soc. Chem. Commun. 1994, 33–34. DOI: 10.1039/C39940000033.
  • Dysard, J. M.; Tilley, T. D. Synthesis and Reactivity of (Pentamethylcyclopentadienyl)ruthenium Complexes of the Stable Neutral Silylene Si(tBuNCH=CHNtBu). Organometallics 2000, 19, 4726–4732. DOI: 10.1021/om000517j.
  • Feldman, J. D.; Mitchell, G. P.; Nolte, J. O.; Tilley, T. D. Isolation and Characterization of Neutral Platinum Silylene Complexes of the Type (R3P)2Pt=SiMes2 (Mes = 2,4,6-Trimethylphenyl). J. Am. Chem. Soc. 1998, 120, 11184–11185. DOI: 10.1021/ja981882t.
  • Glaser, P. B.; Wanandi, P. W.; Tilley, T. D. Synthesis, Structure, and Reactivity of Osmium Silyl and Silylene Complexes Cp*(Me3P)2OsSiR2X and [Cp*(Me3P)2OSSiR2][B(C6F5)4] (R = Me, iPr; X = Cl, OTf). Organometallics 2004, 23, 693–704. DOI: 10.1021/om0341808.
  • Mitchell, G. P.; Tilley, T. D. Reversible 1,2-Migration of Hydrogen between Platinum and Silicon via Intermediate Silylene Complexes. J. Am. Chem. Soc. 1998, 120, 7635–7636. DOI: 10.1021/ja9808346.
  • Calimano, E.; Tilley, T. D. Synthesis and Structure of PNP-Supported Iridium Silyl and Silylene Complexes: Catalytic Hydrosilation of Alkenes. J. Am. Chem. Soc. 2009, 131, 11161–11173. DOI: 10.1021/ja903737j.
  • Whited, M. T.; Zhang, J.; Ma, S.; Nguyen, B. D.; Janzen, D. E. Silylene-Assisted Hydride Transfer to CO2 and CS2 at a [P2Si]Ru Pincer-Type Complex. Dalton Trans. 2017, 46, 14757–14761. DOI: 10.1039/C7DT03659K.
  • DeMott, J. C.; Gu, W. X.; McCulloch, B. J.; Herbert, D. E.; Goshert, M. D.; Walensky, J. R.; Zhou, J.; Ozerov, O. V. Silyl-Silylene Interplay in Cationic PSiP Pincer Complexes of Platinum. Organometallics 2015, 34, 3930–3933. DOI: 10.1021/acs.organomet.5b00596.
  • Calimano, E.; Tilley, T. D. Alkene Hydrosilation by a Cationic Hydrogen-Substituted Iridium Silylene Complex. J. Am. Chem. Soc. 2008, 130, 9226–9227. DOI: 10.1021/ja803332h.
  • Fukuda, T.; Yoshimoto, T.; Hashimoto, H.; Tobita, H. Synthesis of a Tungsten Silylyne-Complex via Stepwise Proton and Hydride Abstraction from a Hydrido Hydrosilylene Complex. Organometallics 2016, 35, 921–924. DOI: 10.1021/acs.organomet.6b00095.
  • Fukuda, T.; Hashimoto, H.; Sakaki, S.; Tobita, H. Stabilization of a Silaaldehyde by Its η2 Coordination to Tungsten. Angew. Chem. Int. Ed. 2016, 55, 188–192. DOI: 10.1002/anie.201507956.
  • Feldman, J. D.; Peters, J. C.; Tilley, T. D. Activations of Silanes with [PhB(CH2PPh2)3]Ir(H)(η3-C8H13). Formation of Iridium Silylene Complexes via the Extrusion of Silylenes from Secondary Silanes R2SiH2. Organometallics 2002, 21, 4065–4075. DOI: 10.1021/om020389u.
  • Mitchell, G. P.; Tilley, T. D. Generation of a Silylene Complex by the 1,2-Migration of Hydrogen from Silicon to Platinum. Angew. Chem. Int. Ed. 1998, 37, 2524–2526. DOI: 10.1002/(SICI)1521-3773(19981002)37:18<2524::AID-ANIE2524>3.0.CO;2-H.
  • Peters, J. C.; Feldman, J. D.; Tilley, T. D. Silylene Extrusion from a Silane: Direct Conversion of Mes2SiH2 to an Iridium Silylene Dihydride. J. Am. Chem. Soc. 1999, 121, 9871–9872. DOI: 10.1021/ja992367d.
  • Mork, B. V.; Tilley, T. D. High Oxidation-State (Formally d0) Tungsten Silylene Complexes via Double Si–H Bond Activation. J. Am. Chem. Soc. 2001, 123, 9702–9703. DOI: 10.1021/ja0165436.
  • Mork, B. V.; Tilley, T. D.; Schultz, A. J.; Cowan, J. A. Silylene Hydride Complexes of Molybdenum with Silicon-Hydrogen Interactions: Neutron Structure of (η5-C5Me5)(Me2PCH2CH2PMe2)Mo(H)(SiEt2). J. Am. Chem. Soc. 2004, 126, 10428–10440. DOI: 10.1021/ja040026g.
  • Mork, B. V.; Tilley, T. D. Synthons for Coordinatively Unsaturated Complexes of Tungsten, and Their Use for the Synthesis of High Oxidation-State Silylene Complexes. J. Am. Chem. Soc. 2004, 126, 4375–4385. DOI: 10.1021/ja030548g.
  • Hayes, P. G.; Beddie, C.; Hall, M. B.; Waterman, R.; Tilley, T. D. Hydrogen-Substituted Osmium Silylene Complexes: Effect of Charge Localization on Catalytic Hydrosilation. J. Am. Chem. Soc. 2006, 128, 428–429. DOI: 10.1021/ja057494q.
  • Ochiai, M.; Hashimoto, H.; Tobita, H. Synthesis and Structure of a Hydrido(hydrosilylene)ruthenium Complex and Its Reactions with Nitriles. Angew. Chem. Int. Ed. 2007, 46, 8192–8194. DOI: 10.1002/()1521-3773.
  • Burger, P.; Bergman, R. G. Facile Intermolecular Activation of C–H Bonds in Methane and Other Hydrocarbons and Si–H Bonds in Silanes with the Iridium(III) Complex Cp*(PMe3)Ir(CH3)(OTf). J. Am. Chem. Soc. 1993, 115, 10462–10463. DOI: 10.1021/ja00075a113.
  • Hashimoto, H.; Odagiri, Y.; Yamada, Y.; Takagi, N.; Sakaki, S.; Tobita, H. Isolation of A Hydrogen-Bridged Bis(silylene) Tungsten Complex: A Snapshot of A Transition State for 1,3-Hydrogen Migration. J. Am. Chem. Soc. 2015, 137, 158–161. DOI: 10.1021/ja512336v.
  • Watanabe, T.; Hashimoto, H.; Tobita, H. Stoichiometric Hydrosilylation of Nitriles with Hydrido(hydrosilylene)tungsten Complexes: Formation of W-Si-N Three-Membered Ring Complexes and Their Unique Thermal Behaviors. J. Am. Chem. Soc. 2006, 128, 2176–2177. DOI: 10.1021/ja056715p.
  • Ochiai, M.; Hashimoto, H.; Tobita, H. Reactions of a Hydrido(hydrosilylene)ruthenium Complex with Carbonyl Compounds. Dalton Trans. 2009, 1812–1814. doi:10.1039/b819229b.
  • Calimano, E.; Tilley, T. D. Reactions of Cationic PNP-Supported Iridium Silylene Complexes with Polar Organic Substrates. Organometallics 2010, 29, 1680–1692. DOI: 10.1021/om901078d.
  • Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands; Wiley: New York, 1988.
  • Wolczanski, P. T. Activation of Carbon-Hydrogen Bonds via 1,2-RH-Addition/-Elimination to Early Transition Metal Imides. Organometallics 2018, 37, 505–516. DOI: 10.1021/acs.organomet.7b00753.
  • Wada, H.; Tobita, H.; Ogino, H. Intramolecular Aromatic C–H Bond Activation by a Silylene Ligand in a Methoxy-Bridged Bis(silylene)-Ruthenium Complex. Organometallics 1997, 16, 3870–3872. DOI: 10.1021/om970408d.
  • Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. Methane and Benzene Activation via Transient (t-Bu3SiNH)2Zr=NSi-t-Bu3. J. Am. Chem. Soc. 1988, 110, 8731–8733. DOI: 10.1021/ja00234a044.
  • Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Generation, Alkyne Cycloaddition, Arene C-H Activation, N-H Activation, and Dative Ligand Trapping Reactions of the First Monomeric Imidozirconocence (Cp2Zr=NR) Complexes. J. Am. Chem. Soc. 1988, 110, 8729–8731. DOI: 10.1021/ja00234a043.
  • Mitchell, G. P.; Tilley, T. D. Reversible Cycloaddition of Isocyanates to Ruthenium Silylene Complexes. J. Am. Chem. Soc. 1997, 119, 11236–11243. DOI: 10.1021/ja972020f.
  • Whited, M. T.; Zhang, J.; Conley, A. M.; Ma, S.; Janzen, D. E.; Kohen, D. Bimetallic, Silylene-Mediated Multielectron Reduction of Carbon Dioxide and Ethylene, in preparation.
  • Liu, H. J.; Raynaud, C.; Eisenstein, O.; Tilley, T. D. Cyclometalated N-Heterocyclic Carbene Complexes of Ruthenium for Access to Electron-Rich Silylene Complexes that Bind the Lewis Acids CuOTf and AgOTf. J. Am. Chem. Soc. 2014, 136, 11473–11482. DOI: 10.1021/ja5054237.
  • Lee, V. Y.; Horiguchi, S.; Gapurenko, O. A.; Minyaev, R. M.; Minkin, V. I.; Gornitzka, H.; Sekiguchi, A. [2+2] Cycloadduct of Titanium Silylidene and Benzonitrile. Eur. J. Inorg. Chem. 2019, 2019, 4224–4227. DOI: 10.1002/ejic.201900601.
  • Glaser, P. B.; Tilley, T. D. Catalytic Hydrosilylation of Alkenes by a Ruthenium Silylene Complex. Evidence for a New Hydrosilylation Mechanism. J. Am. Chem. Soc. 2003, 125, 13640–13641. DOI: 10.1021/ja037620v.
  • Beddie, C.; Hall, M. B. A Theoretical Investigation of Ruthenium-Catalyzed Alkene Hydrosilation: Evidence to Support an Exciting New Mechanistic Proposal. J. Am. Chem. Soc. 2004, 126, 13564–13565. DOI: 10.1021/ja046525z.
  • Wanandi, P. W.; Glaser, P. B.; Tilley, T. D. Reactivity of an Osmium Silylene Complex toward Chlorocarbons: Promotion of Metal Redox Chemistry by a Silylene Ligand and Relevance to the Mechanism of the Direct Process. J. Am. Chem. Soc. 2000, 122, 972–973. DOI: 10.1021/ja993089l.
  • Braunschweig, H.; Kollann, C.; Rais, D. Transition-Metal Complexes of Boron - New Insights and Novel Coordination Modes. Angew. Chem. Int. Ed. 2006, 45, 5254–5274. DOI: 10.1002/anie.200600506.
  • Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Electron-Precise Coordination Modes of Boron-Centered Ligands. Chem. Rev. 2010, 110, 3924–3957. DOI: 10.1021/cr900333n.
  • Takaya, J.; Iwasawa, N. Bis(o-phosphinophenyl)silane as a Scaffold for Dynamic Behavior of H-Si and C-Si Bonds with Palladium(0). Organometallics 2009, 28, 6636–6638. DOI: 10.1021/om900874p.
  • Fukuda, T.; Hashimoto, H.; Tobita, H. Unexpected Formation of NHC-Stabilized Hydrosilylyne Complexes via Alkane Elimination from NHC-Stabilized Hydrido(alkylsilylene) Complexes. J. Am. Chem. Soc. 2015, 137, 10906–10909. DOI: 10.1021/jacs.5b06366.
  • Krogman, J. P.; Foxman, B. M.; Thomas, C. M. Activation of CO2 by a Heterobimetallic Zr/Co Complex. J. Am. Chem. Soc. 2011, 133, 14582–14585. DOI: 10.1021/ja2071847.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.