Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 40, 2020 - Issue 3
833
Views
18
CrossRef citations to date
0
Altmetric
Comments

Crystallography of Reactive Intermediates

, &

References

  • Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to that of Photosystem II. Nat. Chem. 2012, 4, 418–423. DOI: 10.1038/nchem.1301.
  • Mano, N.; de Poulpiquet, A. O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev. 2018, 118, 2392–2468. DOI: 10.1021/acs.chemrev.7b00220.
  • Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chem. Rev. 2014, 114, 4041–4062. DOI: 10.1021/cr400641x.
  • Zhong, C.; Hu, W. B.; Cheng, Y. F. Recent Advances in Electrocatalysts for Electro-oxidation of Ammonia. J. Mater. Chem. A. 2013, 1, 3216–3238. DOI: 10.1039/C2TA00607C.
  • Rittle, J.; Green, M. T. Cytochrome P450 Compound I: Capture, Characterization, and C-H Bond Activation Kinetics. Science. 2010, 330, 933–937. DOI: 10.1126/science.1193478.
  • Nam, W. High-Valent Iron(IV)–Oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions. Acc. Chem. Res. 2007, 40, 522–531. DOI: 10.1021/ar700027f.
  • Bell, S. R.; Groves, J. T. A Highly Reactive P450 Model Compound I. J. Am. Chem. Soc. 2009, 131, 9640–9641. DOI: 10.1021/ja903394s.
  • Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev. 2004, 104, 3947–3980. DOI: 10.1021/cr020443g.
  • Meinhold, P.; Peters, M. W.; Chen, M. M. Y.; Takahashi, K.; Arnold, F. H. Direct Conversion of Ethane to Ethanol by Engineered Cytochrome P450 BM3. Chem. Biol. Chem. 2005, 6, 1765–1768. DOI: 10.1002/cbic.200500261.
  • Castillo, R. G.; Banerjee, R.; Allpress, C. J.; Rohde, G. T.; Bill, E.; Que, L.; Lipscomb, J. D.; DeBeer, S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J. Am. Chem. Soc. 2017, 139, 18024–18033. DOI: 10.1021/jacs.7b09560.
  • Qian, J.; An, Q.; Fortunelli, A.; Nielsen, R. J.; Goddard, W. A. Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface. J. Am. Chem. Soc. 2018, 140, 6288–6297. DOI: 10.1021/jacs.7b13409.
  • van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chem. Soc. Rev. 2014, 43, 5183–5191. DOI: 10.1039/C4CS00085D.
  • Surendranath, Y.; Nocera, D. G. Oxygen Evolution Reaction Chemistry of Oxide-Based Electrodes. In Progress in Inorganic Chemistry; Karlin, K. G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; Vol. 57, pp 505–560.
  • Gunay, A. Theopold, K. H. C−H Bond Activations by Metal Oxo Compounds. Chem. Rev. 2010, 110, 1060–1081. DOI: 10.1021/cr900269x.
  • Davies, H. M. L.; Manning, J. R. Catalytic C–H Functionalization by Metal Carbenoid and Nitrenoid Insertion. Nature. 2008, 451, 417–424. DOI: 10.1038/nature06485.
  • Davies, H. M. L.; Beckwith, R. E. J. Catalytic Enantioselective C−H Activation by Means of Metal−Carbenoid-Induced C−H Insertion. Chem. Rev. 2003, 103, 2861–2904. DOI: 10.1021/cr0200217.
  • Davies, H. M. L.; Liao, K. Dirhodium Tetracarboxylates as Catalysts for Selective Intermolecular C–H Functionalization. Nat. Rev. Chem. 2019, 3, 347–360. DOI: 10.1038/s41570-019-0099-x.
  • Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L. Design of Catalysts for Site-Selective and Enantioselective Functionalization of Non-Activated Primary C–H Bonds. Nat. Chem. 2018, 10, 1048–1055. DOI: 10.1038/s41557-018-0087-7.
  • Caballero, A.; Despagnet-Ayoub, E.; Mar Díaz-Requejo, M.; Díaz-Rodríguez, A.; González-Núñez, M. E.; Mello, R.; Muñoz, B. K.; Ojo, W.-S.; Asensio, G.; Etienne, M.; et al. Silver-Catalyzed C–C Bond Formation between Methane and Ethyl Diazoacetate in Supercritical CO2. Science. 2011, 332, 835–838. DOI: 10.1126/science.1204131.
  • Wang, Z.; Herraiz, A. G.; del Hoyo, A. M.; Suero, M. G. Generating Carbyne Equivalents with Photoredox Catalysis. Nature. 2018, 554, 86–91. DOI: 10.1038/nature25185.
  • Wang, Z.; Jiang, L.; Sarró, P.; Suero, M. G. Catalytic Cleavage of C(sp2)–C(sp2) Bonds with Rh–Carbynoids. J. Am. Chem. Soc. 2019, 141, 15509–15514. DOI: 10.1021/jacs.9b08632.
  • Zhang, R. K.; Chen, K.; Huang, X.; Wohlschlager, L.; Renata, H.; Arnold, F. H. Enzymatic Assembly of Carbon–Carbon Bonds via Iron-Catalysed Sp3 C–H Functionalization. Nature. 2019, 565, 67–72. DOI: 10.1038/s41586-018-0808-5.
  • Chen, K.; Huang, X.; Kan, S. B. J.; Zhang, R. K.; Arnold, F. H. Enzymatic Construction of Highly Strained Carbocycles. Science. 2018, 360, 71–75. DOI: 10.1126/science.aar4239.
  • Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Recent Progress on Donor and Donor–Donor Carbenes. Chem. Soc. Rev. 2020, 49, 908–950. DOI: 10.1039/C9CS00542K.
  • Ballhausen, C. J.; Gray, H. B. The Electronic Structure of the Vanadyl Ion. Inorg. Chem. 1962, 1, 111–122. DOI: 10.1021/ic50001a022.
  • Mayer, J. M. Metal–Oxygen Multiple Bond Lengths: A Statistical Study. Inorg. Chem. 1988, 27, 3899–3903. DOI: 10.1021/ic00295a006.
  • Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G. Electronic Design Criteria for O−O Bond Formation via Metal−Oxo Complexes. Inorg. Chem. 2008, 47, 1849–1861. DOI: 10.1021/ic701972n.
  • Winkler, J. R.; Gray, H. B. Electronic Structure of Metal–Oxo Ions. In Structure and Bonding; Mingos, D. M. P., Day, P., Dahl, J. P., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; Vol. 142, pp 17–28.
  • Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. A Continuum of Proton-Coupled Electron Transfer Reactivity. Acc. Chem. Res. 2018, 51, 2391–2399. DOI: 10.1021/acs.accounts.8b00319.
  • Varela-Álvarez, A.; Yang, T.; Jennings, H.; Kornecki, K. P.; Macmillan, S. N.; Lancaster, K. M.; Mack, J. B. C.; Du Bois, J.; Berry, J. F.; Musaev, D. G. Rh2(II,III) Catalysts with Chelating Carboxylate and Carboxamidate Supports: Electronic Structure and Nitrene Transfer Reactivity. J. Am. Chem. Soc. 2016, 138, 2327–2341. DOI: 10.1021/jacs.5b12790.
  • Barman, S. K.; Jones, J. R.; Sun, C.; Hill, E. A.; Ziller, J. W.; Borovik, A. S. Regulating the Basicity of Metal–Oxido Complexes with a Single Hydrogen Bond and Its Effect on C–H Bond Cleavage. J. Am. Chem. Soc. 2019, 141, 11142–11150. DOI: 10.1021/jacs.9b03688.
  • Parsell, T. H.; Behan, R. K.; Green, M. T.; Hendrich, M. P.; Borovik, A. S. Preparation and Properties of a Monomeric MnIV−Oxo Complex. J. Am. Chem. Soc. 2006, 128, 8728–8729. DOI: 10.1021/ja062332v.
  • Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C. Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography. J. Am. Chem. Soc. 2017, 139, 2912–2915. DOI: 10.1021/jacs.6b13357.
  • Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation. J. Am. Chem. Soc. 2019, 141, 16232–16236. DOI: 10.1021/jacs.9b09064.
  • Wentrup, C. Carbenes and Nitrenes: Recent Developments in Fundamental Chemistry. Angew. Chem. Int. Ed. 2018, 57, 11508–11521. DOI: 10.1002/anie.201804863.
  • Platz, M.; Gritsan, N. P. Organic Azides: Syntheses and Applications; John Wiley & Sons: West Sussex, UK, 2010.
  • Dielmann, F.; Back, O.; Henry-Ellinger, M.; Jerabek, P.; Frenking, G.; Bertrand, G. A Crystalline Singlet Phosphinonitrene: A Nitrogen Atom–Transfer Agent. Science. 2012, 337, 1526–1528. DOI: 10.1126/science.1226022.
  • Hinsberg, W. D.; Schultz, P. G.; Dervan, P. B. Direct Studies of 1,1-Diazenes. Syntheses, Infrared and Electronic Spectra, and Kinetics of the Thermal Decomposition of N-(2,2,6,6-tetramethylpiperidyl)nitrene and N-(2,2,5,5-tetramethylpyrrolidyl)nitrene. J. Am. Chem. Soc. 1982, 104, 766–773. DOI: 10.1021/ja00367a020.
  • Hinsberg, W. D.; Dervan, P. B. Synthesis and Direct Spectroscopic Observation of a 1,1-Dialkyldiazene. Infrared and Electronic Spectrum of N-(2,2,6,6-tetramethylpiperidyl)nitrene. J. Am. Chem. Soc. 1978, 100, 1608–1610. DOI: 10.1021/ja00473a051.
  • Schultz, P. G.; Dervan, P. B. Synthesis and Direct Spectroscopic Observation of N-(2,2,5,5-tetramethylpyrrolidinyl)nitrene. Comparison of Five- and Six-membered Cyclic 1,1-Dialkyldiazenes. J. Am. Chem. Soc. 1980, 102, 878–880. DOI: 10.1021/ja00522a090.
  • Meyer, D.; Roth, K. C. Discovery of Interstellar NH. Astrophys. J. 1991, 376, L49–L52. DOI: 10.1086/186100.
  • Klima, R. F.; Gudmundsdóttir, A. D. Intermolecular Triplet-Sensitized Photolysis of Alkyl Azides: Trapping of Triplet Alkyl Nitrenes. J. Photochem. Photobiol. A: Chem. 2004, 162, 239–247. DOI: 10.1016/S1010-6030(03)00368-X.
  • Grote, D.; Sander, W. Photochemistry of Fluorinated 4-Iodophenylnitrenes: Matrix Isolation and Spectroscopic Characterization of Phenylnitrene-4-yls. J. Org. Chem. 2009, 74, 7370–7382. DOI: 10.1021/jo901145h.
  • Nunes, C. M.; Knezz, S. N.; Reva, I.; Fausto, R.; McMahon, R. J. Evidence of a Nitrene Tunneling Reaction: Spontaneous Rearrangement of 2-Formyl Phenylnitrene to an Imino Ketene in Low-Temperature Matrixes. J. Am. Chem. Soc. 2016, 138, 15287–15290. DOI: 10.1021/jacs.6b07368.
  • Abramovitch, R. A.; Challand, S. R.; Yamada, Y. Addition of Aryl Nitrenes to Olefins. J. Org. Chem. 1975, 40, 1541–1547. DOI: 10.1021/jo00899a004.
  • Zalatan, D. N.; Bois, J. D. Metal-Catalyzed Oxidations of C–H to C–N Bonds. In C-H Activation; Yu, J.-Q., Shi, Z., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp 347–378.
  • Breslow, R.; Gellman, S. H. Tosylamidation of Cyclohexane by a Cytochrome P450 Model. J. Chem. Soc., Chem. Commun. 1982, 1400–1401. DOI: 10.1039/c39820001400.
  • Breslow, R.; Gellman, S. H. Intramolecular Nitrene Carbon-Hydrogen Insertions Mediated by Transition-Metal Complexes as Nitrogen Analogs of Cytochrome P450 Reactions. J. Am. Chem. Soc. 1983, 105, 6728–6729. DOI: 10.1021/ja00360a039.
  • Pearce, A. J.; See, X. Y.; Tonks, I. A. Oxidative Nitrene Transfer from Azides to Alkynes via Ti(II)/Ti(IV) Redox Catalysis: Formal [2+2+1] Synthesis of Pyrroles. Chem. Commun. 2018, 54, 6891–6894. DOI: 10.1039/C8CC02623H.
  • Gilbert, Z. W.; Hue, R. J.; Tonks, I. A. Catalytic Formal [2+2+1] Synthesis of Pyrroles from Alkynes and Diazenes via TiII/TiIV Redox Catalysis. Nat. Chem. 2016, 8, 63–68. DOI: 10.1038/nchem.2386.
  • Kawakita, K.; Beaumier, E. P.; Kakiuchi, Y.; Tsurugi, H.; Tonks, I. A.; Mashima, K. Bis(imido)vanadium(V)-Catalyzed [2+2+1] Coupling of Alkynes and Azobenzenes Giving Multisubstituted Pyrroles. J. Am. Chem. Soc. 2019, 141, 4194–4198. DOI: 10.1021/jacs.8b13390.
  • Clark, J. R.; Feng, K.; Sookezian, A.; White, M. C. Manganese-Catalysed Benzylic C(sp3)–H Amination for Late-Stage Functionalization. Nat. Chem. 2018, 10, 583–591. DOI: 10.1038/s41557-018-0020-0.
  • Svastits, E. W.; Dawson, J. H.; Breslow, R.; Gellman, S. H. Functionalized Nitrogen Atom Transfer Catalyzed by Cytochrome P450. J. Am. Chem. Soc. 1985, 107, 6427–6428. DOI: 10.1021/ja00308a064.
  • Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Efficient Intermolecular Iron-Catalyzed Amidation of C−H Bonds in the Presence of N-Bromosuccinimide. Org. Lett. 2008, 10, 1863–1866. DOI: 10.1021/ol800593p.
  • Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.; Woutersen, S.; Troeppner, O.; Ivanović-Burmazović, I.; Lu, H.; Cui, X.; Zhang, X. P.; et al. Characterization of Porphyrin-Co(III)-‘Nitrene Radical’ Species Relevant in Catalytic Nitrene Transfer Reactions. J. Am. Chem. Soc. 2015, 137, 5468–5479. DOI: 10.1021/jacs.5b01197.
  • Jin, L.-M.; Lu, H.; Cui, Y.; Lizardi, C. L.; Arzua, T. N.; Wojtas, L.; Cui, X.; Zhang, X. P. Selective Radical Amination of Aldehydic C(sp2)–H Bonds with Fluoroaryl Azides via Co(II)-Based Metalloradical Catalysis: Synthesis of N-Fluoroaryl Amides from Aldehydes under Neutral and Nonoxidative Conditions. Chem. Sci. 2014, 5, 2422–2427. DOI: 10.1039/C4SC00697F.
  • Powers, I. G.; Andjaba, J. M.; Luo, X.; Mei, J.; Uyeda, C. Catalytic Azoarene Synthesis from Aryl Azides Enabled by a Dinuclear Ni Complex. J. Am. Chem. Soc. 2018, 140, 4110–4118. DOI: 10.1021/jacs.8b00503.
  • Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. Bis(oxazoline)-Copper Complexes as Chiral Catalysts for the Enantioselective Aziridination of Olefins. J. Am. Chem. Soc. 1993, 115, 5328–5329. DOI: 10.1021/ja00065a068.
  • Hamilton, C. W.; Laitar, D. S.; Sadighi, J. P. Oxidation-Resistant, Sterically Demanding Phenanthrolines as Supporting Ligands for Copper(I) Nitrene Transfer Catalysts. Chem. Commun. 2004, 1628–1629. DOI: 10.1039/B404515G.
  • Bhuyan, R.; Nicholas, K. M. Efficient Copper-Catalyzed Benzylic Amidation with Anhydrous Chloramine-T. Org. Lett. 2007, 9, 3957–3959. DOI: 10.1021/ol701544z.
  • Harvey, M. E.; Musaev, D. G.; Du Bois, J. A Diruthenium Catalyst for Selective, Intramolecular Allylic C–H Amination: Reaction Development and Mechanistic Insight Gained through Experiment and Theory. J. Am. Chem. Soc. 2011, 133, 17207–17216. DOI: 10.1021/ja203576p.
  • Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. Synthesis of 1,3-Difunctionalized Amine Derivatives through Selective C−H Bond Oxidation. J. Am. Chem. Soc. 2001, 123, 6935–6936. DOI: 10.1021/ja011033x.
  • Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. Intramolecular C−H Amination Reactions: Exploitation of the Rh2(II)-Catalyzed Decomposition of Azidoacrylates. J. Am. Chem. Soc. 2007, 129, 7500–7501. DOI: 10.1021/ja072219k.
  • Fiori, K. W.; Du Bois, J. Catalytic Intermolecular Amination of C−H Bonds: Method Development and Mechanistic Insights. J. Am. Chem. Soc. 2007, 129, 562–568. DOI: 10.1021/ja0650450.
  • Cui, Y.; He, C. A Silver-Catalyzed Intramolecular Amidation of Saturated C–H Bonds. Angew. Chem. Int. Ed. 2004, 43, 4210–4212. DOI: 10.1002/anie.200454243.
  • Gómez-Emeterio, B. P.; Urbano, J.; Díaz-Requejo, M. M.; Pérez, P. J. Easy Alkane Catalytic Functionalization. Organometallics. 2008, 27, 4126–4130. DOI: 10.1021/om800218d.
  • Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. H. Enantioselective, Intermolecular Benzylic C–H Amination Catalysed by an Engineered Iron-Haem Enzyme. Nat. Chem. 2017, 9, 629–634. DOI: 10.1038/nchem.2783.
  • DiMucci, I. M.; Lukens, J. T.; Chatterjee, S.; Carsch, K. M.; Titus, C. J.; Lee, S. J.; Nordlund, D.; Betley, T. A.; MacMillan, S. N.; Lancaster, K. M. The Myth of D8 Copper(III). J. Am. Chem. Soc. 2019, 141, 18508–18520. DOI: 10.1021/jacs.9b09016.
  • Carsch, K. M.; DiMucci, I. M.; Iovan, D. A.; Li, A.; Zheng, S.-L.; Titus, C. J.; Lee, S. J.; Irwin, K. D.; Nordlund, D.; Lancaster, K. M.; et al. Synthesis of a Copper-Supported Triplet Nitrene Complex Pertinent to Copper-Catalyzed Amination. Science. 2019, 365, 1138–1143. DOI: 10.1126/science.aax4423.
  • Ye, S.; Neese, F. Nonheme Oxo-Iron(IV) Intermediates Form an Oxyl Radical upon Approaching the C–H Bond Activation Transition State. Proc. Natl. Acad. Sci. 2011, 108, 1228–1233. DOI: 10.1073/pnas.1008411108.
  • Vilella, L.; Conde, A.; Balcells, D.; Díaz-Requejo, M. M.; Lledós, A.; Pérez, P. J. A Competing, Dual Mechanism for Catalytic Direct Benzene Hydroxylation from Combined Experimental-DFT Studies. Chem. Sci. 2017, 8, 8373–8383. DOI: 10.1039/C7SC02898A.
  • Corona, T.; Pfaff, F. F.; Acuña-Parés, F.; Draksharapu, A.; Whiteoak, C. J.; Martin-Diaconescu, V.; Lloret-Fillol, J.; Browne, W. R.; Ray, K.; Company, A. Reactivity of a Nickel(II) Bis(amidate) Complex with meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species. Chem. Eur. J. 2015, 21, 15029–15038. DOI: 10.1002/chem.201501841.
  • Shimoyama, Y.; Kojima, T. Metal–Oxyl Species and Their Possible Roles in Chemical Oxidations. Inorg. Chem. 2019, 58, 9517–9542. DOI: 10.1021/acs.inorgchem.8b03459.
  • Kobayashi, K.; Ohtsu, H.; Wada, T.; Kato, T.; Tanaka, K. Characterization of a Stable Ruthenium Complex with an Oxyl Radical. J. Am. Chem. Soc. 2003, 125, 6729–6739. DOI: 10.1021/ja0211510.
  • Birk, T.; Bendix, J. Atom Transfer as a Preparative Tool in Coordination Chemistry. Synthesis and Characterization of Cr(V) Nitrido Complexes of Bidentate Ligands. Inorg. Chem. 2003, 42, 7608–7615. DOI: 10.1021/ic034777f.
  • Bucinsky, L.; Breza, M.; Lee, W.-T.; Hickey, A. K.; Dickie, D. A.; Nieto, I.; DeGayner, J. A.; Harris, T. D.; Meyer, K.; Krzystek, J.; et al. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorg. Chem. 2017, 56, 4751–4768. DOI: 10.1021/acs.inorgchem.7b00512.
  • Jacobs, B. P.; Wolczanski, P. T.; Jiang, Q.; Cundari, T. R.; MacMillan, S. N. Rare Examples of Fe(IV) Alkyl-Imide Migratory Insertions: Impact of Fe—C Covalency in (Me2IPr)Fe(=NAd)R2 (R = neoPe, 1-nor). J. Am. Chem. Soc. 2017, 139, 12145–12148. DOI: 10.1021/jacs.7b06960.
  • Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Triple-Bond Reactivity of Diphosphorus Molecules. Science. 2006, 313, 1276–1279. DOI: 10.1126/science.1129630.
  • Figueroa, J. S.; Piro, N. A.; Clough, C. R.; Cummins, C. C. A Nitridoniobium(V) Reagent that Effects Acid Chloride to Organic Nitrile Conversion: Synthesis via Heterodinuclear (Nb/Mo) Dinitrogen Cleavage, Mechanistic Insights, and Recycling. J. Am. Chem. Soc. 2006, 128, 940–950. DOI: 10.1021/ja056408j.
  • Jenkins, D. M.; Betley, T. A.; Peters, J. C. Oxidative Group Transfer to Co(I) Affords a Terminal Co(III) Imido Complex. J. Am. Chem. Soc. 2002, 124, 11238–11239. DOI: 10.1021/ja026852b.
  • Mehn, M. P.; Brown, S. D.; Jenkins, D. M.; Peters, J. C.; Que, L. Vibrational Spectroscopy and Analysis of Pseudo-tetrahedral Complexes with Metal Imido Bonds. Inorg. Chem. 2006, 45, 7417–7427. DOI: 10.1021/ic060670r.
  • Fout, A. R.; Kilgore, U. J.; Mindiola, D. J. The Progression of Synthetic Strategies to Assemble Titanium Complexes Bearing the Terminal Imide Group. Chem. Eur. J. 2007, 13, 9428–9440. DOI: 10.1002/chem.200701064.
  • Hay-Motherwell, R. S.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. Synthesis and X-ray Crystal Structure of Oxotrimesityliridium(V). Polyhedron. 1993, 12, 2009–2012. DOI: 10.1016/S0277-5387(00)81474-6.
  • Goetz, M. K.; Hill, E. A.; Filatov, A. S.; Anderson, J. S. Isolation of a Terminal Co(III)-Oxo Complex. J. Am. Chem. Soc. 2018, 140, 13176–13180. DOI: 10.1021/jacs.8b07399.
  • MacBeth, C. E.; Golombek, A. P.; Young, V. G.; Yang, C.; Kuczera, K.; Hendrich, M. P.; Borovik, A. S. O2 Activation by Nonheme Iron Complexes: A Monomeric Fe(III)–Oxo Complex Derived from O2. Science. 2000, 289, 938–941. DOI: 10.1126/science.289.5481.938.
  • Shook, R. L.; Peterson, S. M.; Greaves, J.; Moore, C.; Rheingold, A. L.; Borovik, A. S. Catalytic Reduction of Dioxygen to Water with a Monomeric Manganese Complex at Room Temperature. J. Am. Chem. Soc. 2011, 133, 5810–5817. DOI: 10.1021/ja106564a.
  • Betley, T. A.; Peters, J. C. A Tetrahedrally Coordinated L3Fe−Nx Platform that Accommodates Terminal Nitride (FeIV⋮N) and Dinitrogen (FeI−N2−FeI) Ligands. J. Am. Chem. Soc. 2004, 126, 6252–6254. DOI: 10.1021/ja048713v.
  • Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. On the Feasibility of N2 Fixation via a Single-Site FeI/FeIV Cycle: Spectroscopic Studies of FeI(N2)FeI, FeIVN, and Related Species. Proc. Natl. Acad. Sci. 2006, 103, 17107–17112. DOI: 10.1073/pnas.0604402103.
  • Vogel, C.; Heinemann, F. W.; Sutter, J.; Anthon, C.; Meyer, K. An Iron Nitride Complex. Angew. Chem. Int. Ed. 2008, 47, 2681–2684. DOI: 10.1002/anie.200800600.
  • Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. Structural and Spectroscopic Characterization of an Electrophilic Iron Nitrido Complex. J. Am. Chem. Soc. 2008, 130, 10515–10517. DOI: 10.1021/ja8027372.
  • Scepaniak, J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M. Formation of Ammonia from an Iron Nitrido Complex. Angew. Chem. Int. Ed. 2009, 48, 3158–3160. DOI: 10.1002/anie.200900381.
  • Scepaniak, J. J.; Vogel, C. S.; Khusniyarov, M. M.; Heinemann, F. W.; Meyer, K.; Smith, J. M. Synthesis, Structure, and Reactivity of an Iron(V) Nitride. Science. 2011, 331, 1049–1052. DOI: 10.1126/science.1198315.
  • Kropp, H.; King, A. E.; Khusniyarov, M. M.; Heinemann, F. W.; Lancaster, K. M.; DeBeer, S.; Bill, E.; Meyer, K. Manganese Nitride Complexes in Oxidation States III, IV, and V: Synthesis and Electronic Structure. J. Am. Chem. Soc. 2012, 134, 15538–15544. DOI: 10.1021/ja306647c.
  • Brown, S. D.; Betley, T. A.; Peters, J. C. A Low-Spin d5 Iron Imide: Nitrene Capture by Low-Coordinate Iron(I) Provides the 4-Coordinate Fe(III) Complex [PhB(CH2PPh2)3]Fe⋮N-p-tolyl. J. Am. Chem. Soc. 2003, 125, 322–323. DOI: 10.1021/ja028448i.
  • Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng, Y.; Wang, H.; Smith, J. M. Formation of a Cobalt(III) Imido from a Cobalt(II) Amido Complex. Evidence for Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2007, 129, 2424–2425. DOI: 10.1021/ja066899n.
  • Poverenov, E.; Efremenko, I.; Frenkel, A. I.; Ben-David, Y.; Shimon, L. J. W.; Leitus, G.; Konstantinovski, L.; Martin, J. M. L.; Milstein, D. Evidence for a Terminal Pt(IV)-Oxo Complex Exhibiting Diverse Reactivity. Nature. 2008, 455, 1093–1096. DOI: 10.1038/nature07356.
  • Searles, K.; Fortier, S.; Khusniyarov, M. M.; Carroll, P. J.; Sutter, J.; Meyer, K.; Mindiola, D. J.; Caulton, K. G. A cis-Divacant Octahedral and Mononuclear Iron(IV) Imide. Angew. Chem. Int. Ed. 2014, 53, 14139–14143. DOI: 10.1002/anie.201407156.
  • Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. Iron- and Manganese-Porphyrin Catalysed Aziridination of Alkenes by Tosyl- and Acyl-Iminoiodobenzene. J. Chem. Soc., Chem. Commun. 1984, 1161–1163. DOI: 10.1039/c39840001161.
  • Mahy, J. P.; Bedi, G.; Battioni, P.; Mansuy, D. Allylic Amination of Alkenes by Tosyliminoiodobenzene: Manganese Porphyrins as Suitable Catalysts. Tetrahedron Lett. 1988, 16, 1927–1930. DOI: 10.1016/S0040-4039(00)82081-X.
  • Alcover-Fortuny, G.; Caballol, R.; Pierloot, K.; de Graaf, C. Role of the Imide Axial Ligand in the Spin and Oxidation State of Manganese Corrole and Corrolazine Complexes. Inorg. Chem. 2016, 55, 5274–5280. DOI: 10.1021/acs.inorgchem.6b00194.
  • Eikey, R. A.; Khan, S. I.; Abu-Omar, M. M. The Elusive Terminal Imido of Manganese(V). Angew. Chem. Int. Ed. 2002, 41, 3591–3595. DOI: 10.1002/1521-3773(20021004)41:19<3591::AID-ANIE3591>3.0.CO;2-Z.
  • Lansky, D. E.; Kosack, J. R.; Narducci Sarjeant, A. A.; Goldberg, D. P. An Isolable Nonreducible High-Valent Manganese(V) Imido Corrolazine Complex. Inorg. Chem. 2006, 45, 8477–8479. DOI: 10.1021/ic0609251.
  • Badiei, Y. M.; Dinescu, A.; Dai, X.; Palomino, R. M.; Heinemann, F. W.; Cundari, T. R.; Warren, T. H. Copper–Nitrene Complexes in Catalytic C–H Amination. Angew. Chem. Int. Ed. 2008, 47, 9961–9964. DOI: 10.1002/anie.200804304.
  • McGhee, W. D.; Foo, T.; Hollander, F. J.; Bergman, R. G. Synthesis and Chemistry of a Dinuclear Iridium Bis-.mu.-oxo Complex. Observation of Oxygen Transfer and Phosphorus-Carbon Bond Cleavage. J. Am. Chem. Soc. 1988, 110, 8543–8545. DOI: 10.1021/ja00233a040.
  • Dobbs, D. A.; Bergman, R. G. Synthesis and Reactivity of Bridging Imido and Imido-Oxo Complexes of Iridium. Water-Catalyzed and -uncatalyzed Dimerization of Terminal Iridium Imido Complexes. Organometallics. 1994, 13, 4594–4605. DOI: 10.1021/om00023a072.
  • Wilding, M. J. T.; Iovan, D. A.; Betley, T. A. High-Spin Iron Imido Complexes Competent for C–H Bond Amination. J. Am. Chem. Soc. 2017, 139, 12043–12049. DOI: 10.1021/jacs.7b06682.
  • Jones, C.; Schulten, C.; Rose, R. P.; Stasch, A.; Aldridge, S.; Woodul, W. D.; Murray, K. S.; Moubaraki, B.; Brynda, M.; La Macchia, G.; et al. Amidinato– And Guanidinato–Cobalt(I) Complexes: Characterization of Exceptionally Short Co–Co Interactions. Angew. Chem. Int. Ed. 2009, 48, 7406–7410. DOI: 10.1002/anie.200900780.
  • Grapperhaus, C. A.; Mienert, B.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Mononuclear (Nitrido)iron(V) and (Oxo)iron(IV) Complexes via Photolysis of [(cyclam-acetato)FeIII(N3)]+ and Ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in Water/Acetone Mixtures. Inorg. Chem. 2000, 39, 5306–5317. DOI: 10.1021/ic0005238.
  • Aghazada, S.; Miehlich, M.; Messelberger, J.; Heinemann, F. W.; Munz, D.; Meyer, K. A Terminal Iron Nitrilimine Complex: Accessing the Terminal Nitride through Diazo N−N Bond Cleavage. Angew. Chem. Int. Ed. 2019, 58, 18547–18551. DOI: 10.1002/anie.201910428.
  • Odom, A. L.; Cummins, C. C.; Protasiewicz, J. D. Nitric Oxide Cleavage: Synthesis of Terminal Chromium(VI) Nitrido Complexes via Nitrosyl Deoxygenation. J. Am. Chem. Soc. 1995, 117, 6613–6614. DOI: 10.1021/ja00129a034.
  • Morimoto, Y.; Shimaoka, Y.; Ishimizu, Y.; Fujii, H.; Itoh, S. Direct Observation of Primary C−H Bond Oxidation by an Oxido-Iron(IV) Porphyrin π-Radical Cation Complex in a Fluorinated Carbon Solvent. Angew. Chem. Int. Ed. 2019, 58, 10863–10866. DOI: 10.1002/anie.201901608.
  • Schaub, S.; Miska, A.; Becker, J.; Zahn, S.; Mollenhauer, D.; Sakshath, S.; Schünemann, V.; Schindler, S. Synthesis of an Iron(IV) Aqua–Oxido Complex Using Ozone as an Oxidant. Angew. Chem. Int. Ed. 2018, 57, 5355–5358. DOI: 10.1002/anie.201800475.
  • Werlé, C.; Goddard, R.; Fürstner, A. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium-to-Gold Transmetalation. Angew. Chem. Int. Ed. 2015, 54, 15452–15456. DOI: 10.1002/anie.201506902.
  • Seidel, G.; Fürstner, A. Structure of a Reactive Gold Carbenoid. Angew. Chem. Int. Ed. 2014, 53, 4807–4811. DOI: 10.1002/anie.201402080.
  • Maxwell, J.; Kodadek, T. Organometallic Chemistry of Porphyrins: Spectroscopic and Chemical Characterization of a Rhodium Porphyrin-Ethyl Diazoacetate Adduct. Organometallics. 1991, 10, 4–6. DOI: 10.1021/om00047a003.
  • Caballero, A.; Pérez, P. J. Dimensioning the Term Carbenoid. Chem. Eur. J. 2017, 23, 14389–14393. DOI: 10.1002/chem.201702392.
  • Sarkar, S. K.; Sawai, A.; Kanahara, K.; Wentrup, C.; Abe, M.; Gudmundsdottir, A. D. Direct Detection of a Triplet Vinylnitrene, 1,4-Naphthoquinone-2-ylnitrene, in Solution and Cryogenic Matrices. J. Am. Chem. Soc. 2015, 137, 4207–4214. DOI: 10.1021/jacs.5b00998.
  • Pan, Z.; Wang, Q.; Sheng, X.; Horner, J. H.; Newcomb, M. Highly Reactive Porphyrin−Iron−Oxo Derivatives Produced by Photolyses of Metastable Porphyrin−Iron(IV) Diperchlorates. J. Am. Chem. Soc. 2009, 131, 2621–2628. DOI: 10.1021/ja807847q.
  • Zhang, R.; Newcomb, M. Laser Flash Photolysis Generation of High-Valent Transition Metal−Oxo Species: Insights from Kinetic Studies in Real Time. Acc. Chem. Res. 2008, 41, 468–477. DOI: 10.1021/ar700175k.
  • Newcomb, M.; Zhang, R.; Pan, Z.; Harischandra, D. N.; Chandrasena, R. E. P.; Horner, J. H.; Martinez, E. Laser Flash Photolysis Production of Metal-Oxo Derivatives and Direct Kinetic Studies of Their Oxidation Reactions. Catal. Today. 2006, 117, 98–104. DOI: 10.1016/j.cattod.2006.05.007.
  • Zhang, R.; Horner, J. H.; Newcomb, M. Laser Flash Photolysis Generation and Kinetic Studies of Porphyrin−Manganese−Oxo Intermediates. Rate Constants for Oxidations Effected by Porphyrin−MnV−Oxo Species and Apparent Disproportionation Equilibrium Constants for Porphyrin−MnIV−Oxo Species. J. Am. Chem. Soc. 2005, 127, 6573–6582. DOI: 10.1021/ja045042s.
  • Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coordination Chemistry of Organic Azides and Amination Reactions Catalyzed by Transition Metal Complexes. Coord. Chem. Rev. 2006, 250, 1234–1253. DOI: 10.1016/j.ccr.2005.10.002.
  • Albertin, G.; Antoniutti, S.; Baldan, D.; Castro, J.; García-Fontán, S. Preparation of Benzyl Azide Complexes of Iridium(III). Inorg. Chem. 2008, 47, 742–748. DOI: 10.1021/ic701907y.
  • Vaddypally, S.; McKendry, I. G.; Tomlinson, W.; Hooper, J. P.; Zdilla, M. J. Electronic Structure of Manganese Complexes of the Redox-Non-innocent Tetrazene Ligand and Evidence for the Metal-Azide/Imido Cycloaddition Intermediate. Chem. Eur. J. 2016, 22, 10548–10557. DOI: 10.1002/chem.201600531.
  • Proulx, G.; Bergman, R. G. Synthesis and Structure of a Terminal Metal Azide Complex: An Isolated Intermediate in the Formation of Imidometal Complexes from Organic Azides. J. Am. Chem. Soc. 1995, 117, 6382–6383. DOI: 10.1021/ja00128a038.
  • Grant, L. N.; Carroll, M. E.; Carroll, P. J.; Mindiola, D. J. An Unusual Cobalt Azide Adduct that Produces a Nitrene Species for Carbon–Hydrogen Insertion Chemistry. Inorg. Chem. 2016, 55, 7997–8002. DOI: 10.1021/acs.inorgchem.6b01114.
  • Dash, C.; Yousufuddin, M.; Cundari, T. R.; Dias, H. V. R. Gold-Mediated Expulsion of Dinitrogen from Organic Azides. J. Am. Chem. Soc. 2013, 135, 15479–15488. DOI: 10.1021/ja406027x.
  • Barz, M.; Herdtweck, E.; Thiel, W. R. Transition Metal Complexes with Organoazide Ligands: Synthesis, Structural Chemistry, and Reactivity. Angew. Chem. Int. Ed. 1998, 37, 2262–2265. DOI: 10.1002/(SICI)1521-3773(19980904)37:16<2262::AID-ANIE2262>3.0.CO;2-X.
  • Harman, W. H.; Lichterman, M. F.; Piro, N. A.; Chang, C. J. Well-Defined Vanadium Organoazide Complexes and Their Conversion to Terminal Vanadium Imides: Structural Snapshots and Evidence for a Nitrene Capture Mechanism. Inorg. Chem. 2012, 51, 10037–10042. DOI: 10.1021/ic301673g.
  • Wolff, M. E.;. Cyclization of N-Halogenated Amines (The Hofmann-Löffler Reaction). Chem. Rev. 1963, 63, 55–64. DOI: 10.1021/cr60221a004.
  • Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C–H Amination. J. Am. Chem. Soc. 2018, 140, 10412–10415. DOI: 10.1021/jacs.8b05599.
  • Andrews, L.; Citra, A.; Chertihin, G. V.; Bare, W. D.; Neurock, M. Reactions of Laser-Ablated Co and Ni Atoms with Nitrogen Atoms and Molecules. Infrared Spectra and DFT Calculations of Metal Nitride Molecular Species and Complexes. J. Phys. Chem. A. 1998, 102, 2561–2571. DOI: 10.1021/jp9802836.
  • Citra, A.; Andrews, L. Reactions of Laser-Ablated Osmium and Ruthenium Atoms with Nitrogen. Matrix Infrared Spectra and Density Functional Calculations of Osmium and Ruthenium Nitrides and Dinitrides. J. Phys. Chem. A. 2000, 104, 1152–1161. DOI: 10.1021/jp993338s.
  • Musch Long, A. K.; Yu, R. P.; Timmer, G. H.; Berry, J. F. Aryl C−H Bond Amination by an Electrophilic Diruthenium Nitride. J. Am. Chem. Soc. 2010, 132, 12228–12230. DOI: 10.1021/ja1062955.
  • Long, A. K. M.; Timmer, G. H.; Pap, J. S.; Snyder, J. L.; Yu, R. P.; Berry, J. F. Aryl C–H Amination by Diruthenium Nitrides in the Solid State and in Solution at Room Temperature: Experimental and Computational Study of the Reaction Mechanism. J. Am. Chem. Soc. 2011, 133, 13138–13150. DOI: 10.1021/ja203993p.
  • Pap, J. S.; DeBeer George, S.; Berry, J. F. Delocalized Metal–Metal and Metal–Ligand Multiple Bonding in a Linear Ru–Ru≡N Unit: Elongation of a Traditionally Short Ru≡N Bond. Angew. Chem. Int. Ed. 2008, 47, 10102–10105. DOI: 10.1002/anie.200804397.
  • Timmer, G. H.; Berry, J. F. Electrophilic Aryl C–H Amination by Dimetal Nitrides: Correlating Electronic Structure with Reactivity. Chem. Sci. 2012, 3, 3038–3052. DOI: 10.1039/c2sc20688a.
  • Zolnhofer, E. M.; Käß, M.; Khusniyarov, M. M.; Heinemann, F. W.; Maron, L.; van Gastel, M.; Bill, E.; Meyer, K. An Intermediate Cobalt(IV) Nitrido Complex and Its N-Migratory Insertion Product. J. Am. Chem. Soc. 2014, 136, 15072–15078. DOI: 10.1021/ja508144j.
  • Hu, X.; Meyer, K. Terminal Cobalt(III) Imido Complexes Supported by Tris(Carbene) Ligands: Imido Insertion into the Cobalt−Carbene Bond. J. Am. Chem. Soc. 2004, 126, 16322–16323. DOI: 10.1021/ja044271b.
  • Scheibel, M. G.; Wu, Y.; Stückl, A. C.; Krause, L.; Carl, E.; Stalke, D.; de Bruin, B.; Schneider, S. Synthesis and Reactivity of a Transient, Terminal Nitrido Complex of Rhodium. J. Am. Chem. Soc. 2013, 135, 17719–17722. DOI: 10.1021/ja409764j.
  • Scheibel, M. G.; Askevold, B.; Heinemann, F. W.; Reijerse, E. J.; de Bruin, B.; Schneider, S. Closed-Shell and Open-Shell Square-Planar Iridium Nitrido Complexes. Nat. Chem. 2012, 4, 552–558. DOI: 10.1038/nchem.1368.
  • Xiao, D. J.; Bloch, E. D.; Mason, J. A.; Queen, W. L.; Hudson, M. R.; Planas, N.; Borycz, J.; Dzubak, A. L.; Verma, P.; Lee, K.; et al. Oxidation of Ethane to Ethanol by N2O in a Metal–Organic Framework with Coordinatively Unsaturated Iron(II) Sites. Nat. Chem. 2014, 6, 590–595. DOI: 10.1038/nchem.1956.
  • Gallagher, A. T.; Lee, J. Y.; Kathiresan, V.; Anderson, J. S.; Hoffman, B. M.; Harris, T. D. A Structurally-Characterized Peroxomanganese(IV) Porphyrin from Reversible O2 Binding within A Metal–Organic Framework. Chem. Sci. 2018, 9, 1596–1603. DOI: 10.1039/C7SC03739B.
  • Pike, S. D.; Thompson, A. L.; Algarra, A. G.; Apperley, D. C.; Macgregor, S. A.; Weller, A. S. Synthesis and Characterization of a Rhodium(I) σ-Alkane Complex in the Solid State. Science. 2012, 337, 1648–1651. DOI: 10.1126/science.1225028.
  • Kawamichi, T.; Haneda, T.; Kawano, M.; Fujita, M. X-Ray Observation of a Transient Hemiaminal Trapped in a Porous Network. Nature. 2009, 461, 633–635. DOI: 10.1038/nature08326.
  • Ohashi, Y.;. Direct Observation of Unstable Reaction Intermediates by Acid-Base Complex Formation. Chem. Rec. 2013, 13, 303–325. DOI: 10.1002/tcr.201300002.
  • Zheng, S.-L.; Wang, Y.; Yu, Z.; Lin, Q.; Coppens, P. Direct Observation of a Photoinduced Nonstabilized Nitrile Imine Structure in the Solid State. J. Am. Chem. Soc. 2009, 131, 18036–18037. DOI: 10.1021/ja9094523.
  • Harada, J.; Uekusa, H.; Ohashi, Y. X-Ray Analysis of Structural Changes in Photochromic Salicylideneaniline Crystals. Solid-State Reaction Induced by Two-Photon Excitation. J. Am. Chem. Soc. 1999, 121, 5809–5810. DOI: 10.1021/ja9842969.
  • Kawano, M.;. X-Ray Direct Observation of Reactions and Labile Species on the Basis of Crystal Design. Bull. Chem. Soc. Jpn. 2013, 87, 577–592. DOI: 10.1246/bcsj.20130217.
  • Kawano, M.; Kobayashi, Y.; Ozeki, T.; Fujita, M. Direct Crystallographic Observation of a Coordinatively Unsaturated Transition-Metal Complex in Situ Generated within a Self-Assembled Cage. J. Am. Chem. Soc. 2006, 128, 6558–6559. DOI: 10.1021/ja0609250.
  • Cole, J. M. Single-Crystal X-Ray Diffraction Studies of Photo-Induced Molecular Species. Chem. Soc. Rev. 2004, 33, 501–513. DOI: 10.1039/b205339j.
  • Novozhilova, I. V.; Coppens, P.; Lee, J.; Richter-Addo, G. B.; Bagley, K. A. Experimental and Density Functional Theoretical Investigations of Linkage Isomerism in Six-Coordinate {FeNO}6 Iron Porphyrins with Axial Nitrosyl and Nitro Ligands. J. Am. Chem. Soc. 2006, 128, 2093–2104. DOI: 10.1021/ja0567891.
  • Kovalevsky, A. Y.; Bagley, K. A.; Coppens, P. The First Photocrystallographic Evidence for Light-Induced Metastable Linkage Isomers of Ruthenium Sulfur Dioxide Complexes. J. Am. Chem. Soc. 2002, 124, 9241–9248. DOI: 10.1021/ja026045c.
  • Fomitchev, D. V.; Coppens, P. X-Ray Diffraction Analysis of Geometry Changes upon Excitation: The Ground-State and Metastable-State Structures of K2[Ru(NO2)4(OH)(NO)]. Inorg. Chem. 1996, 35, 7021–7026. DOI: 10.1021/ic9607144.
  • Kawano, M.; Sano, T.; Abe, J.; Ohashi, Y. The First In Situ Direct Observation of the Light-Induced Radical Pair from a Hexaarylbiimidazolyl Derivative by X-Ray Crystallography. J. Am. Chem. Soc. 1999, 121, 8106–8107. DOI: 10.1021/ja9903173.
  • Koshima, H.; Kawanishi, H.; Nagano, M.; Yu, H.; Shiro, M.; Hosoya, T.; Uekusa, H.; Ohashi, Y. Absolute Asymmetric Photocyclization of Isopropylbenzophenone Derivatives Using a Cocrystal Approach Involving Single-Crystal-to-Single-Crystal Transformation. J. Org. Chem. 2005, 70, 4490–4497. DOI: 10.1021/jo0500784.
  • Kawano, M.; Hirai, K.; Tomioka, H.; Ohashi, Y. Structure Analysis of a Transient Triplet Carbene Trapped in a Crystal. J. Am. Chem. Soc. 2001, 123, 6904–6908. DOI: 10.1021/ja0106366.
  • Kawano, M.; Takayama, T.; Uekusa, H.; Ohashi, Y.; Ozawa, Y.; Matsubara, K.; Imabayashi, H.; Mitsumi, M.; Toriumi, K. Structure Analysis of Photo-induced Triplet Phenylnitrene Using Synchrotron Radiation. Chem. Lett. 2003, 32, 922–923. DOI: 10.1246/cl.2003.922.
  • Novozhilova, I. V.; Volkov, A. V.; Coppens, P. Theoretical Analysis of the Triplet Excited State of the [Pt2(H2P2O5)4]4- Ion and Comparison with Time-Resolved X-Ray and Spectroscopic Results. J. Am. Chem. Soc. 2003, 125, 1079–1087. DOI: 10.1021/ja027857b.
  • Pressprich, M. R.; White, M. A.; Coppens, P. Single-Crystal X-Ray Analysis of an Electronic Excited State: The Structure Determination of a Metastable State of Sodium Nitroprusside. J. Am. Chem. Soc. 1993, 115, 6444–6445. DOI: 10.1021/ja00067a083.
  • Kovalevsky, A. Y.; King, G.; Bagley, K. A.; Coppens, P. Photoinduced Oxygen Transfer and Double-Linkage Isomerism in a cis-(NO)(NO2) Transition-Metal Complex by Photocrystallography, FT-IR Spectroscopy and DFT Calculations. Chem. Eur. J. 2005, 11, 7254–7264. DOI: 10.1002/chem.200500653.
  • Baek, Y.; Das, A.; Zheng, S.-L.; Reibenspies, J. H.; Powers, D. C.; Betley, T. A. C–H Amination Mediated by Cobalt Organoazide Adducts and the Corresponding Cobalt Nitrenoid Intermediates. Submitted.
  • Weik, M.; Ravelli, R. B. G.; Kryger, G.; McSweeney, S.; Raves, M. L.; Harel, M.; Gros, P.; Silman, I.; Kroon, J.; Sussman, J. L. Specific Chemical and Structural Damage to Proteins Produced by Synchrotron Radiation. Proc. Natl. Acad. Sci. 2000, 97, 623–628. DOI: 10.1073/pnas.97.2.623.
  • Ohashi, Y.; Sasada, Y. X-Ray Analysis of Co–C Bond Cleavage in the Crystalline State. Nature. 1977, 267, 142–144. DOI: 10.1038/267142a0.
  • Christensen, J.; Horton, P. N.; Bury, C. S.; Dickerson, J. L.; Taberman, H.; Garman, E. F.; Coles, S. J. Radiation Damage in Small-Molecule Crystallography: Fact Not Fiction. IUCrJ. 2019, 6, 703–713. DOI: 10.1107/S2052252519006948.
  • Harman, W. H.; Chang, C. J. N2O Activation and Oxidation Reactivity from a Non-Heme Iron Pyrrole Platform. J. Am. Chem. Soc. 2007, 129, 15128–15129. DOI: 10.1021/ja076842g.
  • Tolman, W. B. Binding and Activation of N2O at Transition-Metal Centers: Recent Mechanistic Insights. Angew. Chem. Int. Ed. 2010, 49, 1018–1024. DOI: 10.1002/anie.200905364.
  • Zhuravlev, V.; Malinowski, P. J. A Stable Crystalline Copper(I)–N2O Complex Stabilized as the Salt of a Weakly Coordinating Anion. Angew. Chem. Int. Ed. 2018, 57, 11697–11700. DOI: 10.1002/anie.201806836.
  • Mokhtarzadeh, C. C.; Chan, C.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. Side-On Coordination of Nitrous Oxide to a Mononuclear Cobalt Center. J. Am. Chem. Soc. 2019, 141, 15003–15007. DOI: 10.1021/jacs.9b08241.
  • Gyton, M. R.; Leforestier, B.; Chaplin, A. B. Rhodium(I) Pincer Complexes of Nitrous Oxide. Angew. Chem. Int. Ed. 2019, 58, 15295–15298. DOI: 10.1002/anie.201908333.
  • Neu, R. C.; Otten, E.; Stephan, D. W. Bridging Binding Modes of Phosphine-Stabilized Nitrous Oxide to Zn(C6F5)2. Angew. Chem. Int. Ed. 2009, 48, 9709–9712. DOI: 10.1002/anie.200905650.
  • Piro, N. A.; Lichterman, M. F.; Harman, W. H.; Chang, C. J. A Structurally Characterized Nitrous Oxide Complex of Vanadium. J. Am. Chem. Soc. 2011, 133, 2108–2111. DOI: 10.1021/ja110798w.
  • Andino, J. G.; Caulton, K. G. Mechanism of N/O Bond Scission of N2O by an Unsaturated Rhodium Transient. J. Am. Chem. Soc. 2011, 133, 12576–12583. DOI: 10.1021/ja202439g.
  • Yang, W.; Krantz, K. E.; Dickie, D. A.; Molino, A.; Wilson, D. J. D.; Gilliard, R. J., Jr. Crystalline BP-Doped Phenanthryne via Photolysis of the Elusive Boraphosphaketene. Angew. Chem. Int. Ed. 2020, 59, 3971–3975.
  • Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A Singlet Phosphinidene Stable at Room Temperature. Chem. 2016, 1, 147–153. DOI: 10.1016/j.chempr.2016.04.001.
  • Hansmann, M. M.; Bertrand, G. Transition-Metal-like Behavior of Main Group Elements: Ligand Exchange at a Phosphinidene. J. Am. Chem. Soc. 2016, 138, 15885–15888. DOI: 10.1021/jacs.6b11496.
  • Abbenseth, J.; Delony, D.; Neben, M. C.; Würtele, C.; de Bruin, B.; Schneider, S. Interconversion of Phosphinyl Radical and Phosphinidene Complexes by Proton Coupled Electron Transfer. Angew. Chem. Int. Ed. 2019, 58, 6338–6341. DOI: 10.1002/anie.201901470.
  • Transue, W. J.; Velian, A.; Nava, M.; García-Iriepa, C.; Temprado, M.; Cummins, C. C. Mechanism and Scope of Phosphinidene Transfer from Dibenzo-7-phosphanorbornadiene Compounds. J. Am. Chem. Soc. 2017, 139, 10822–10831. DOI: 10.1021/jacs.7b05464.
  • Hansmann, M. M.; Jazzar, R.; Bertrand, G. Singlet (Phosphino)phosphinidenes are Electrophilic. J. Am. Chem. Soc. 2016, 138, 8356–8359. DOI: 10.1021/jacs.6b04232.
  • Courtemanche, M.-A.; Transue, W. J.; Cummins, C. C. Phosphinidene Reactivity of a Transient Vanadium P≡N Complex. J. Am. Chem. Soc. 2016, 138, 16220–16223. DOI: 10.1021/jacs.6b10545.
  • Geeson, M. B.; Transue, W. J.; Cummins, C. C. Organoiron- and Fluoride-Catalyzed Phosphinidene Transfer to Styrenic Olefins in a Stereoselective Synthesis of Unprotected Phosphiranes. J. Am. Chem. Soc. 2019, 141, 13336–13340. DOI: 10.1021/jacs.9b07069.
  • Murahashi, S.-I.; Kitani, Y.; Hosokawa, T.; Miki, K.; Kasai, N. Synthesis and Structure of α-Diazomethyl Palladium σ-Complexes; X-Ray Crystal Structure of Chloro[diazo(ethoxycarbonyl)methyl]bistriphenylphosphinepalladium. J. Chem. Soc., Chem. Commun. 1979, 450–451. DOI: 10.1039/C39790000450.
  • Menu, M. J.; Desrosiers, P.; Dartiguenave, M.; Dartiguenave, Y.; Bertrand, G. Reaction of the (Trimethylsilyl)diazomethane Anion with Metal Complexes: Synthesis and X-Ray Study of Iodomethyltris(trimethylphosphine)rhodium(III) (Trimethylsilyl)diazomethane, RhICH3(PMe3)3{C(N2)SiMe3}. Organometallics. 1987, 6, 1822–1824. DOI: 10.1021/om00151a039.
  • Deydier, E.; Menu, M.-J.; Dartiguenave, M.; Dartiguenave, Y. Wolff Rearrangement in a Transition-Metal Diazoalkane Complex. Synthesis of the First η1-Ketenyl Rhodium Complex [Rh{C(CO)SiMe3}(CO)(PEt3)2]. J. Organomet. Chem. 1993, 458, 225–228. DOI: 10.1016/0022-328X(93)80478-T.
  • Mizobe, Y.; Ishii, Y.; Hidai, M. Synthesis and Reactivities of Diazoalkane Complexes. Coord. Chem. Rev. 1995, 139, 281–311. DOI: 10.1016/0010-8545(94)01118-U.
  • Sutton, D. Organometallic Diazo Compounds. Chem. Rev. 1993, 93, 995–1022. DOI: 10.1021/cr00019a008.
  • Dartiguenave, M.; Joëlle Menu, M.; Deydier, E.; Yves, D.; Siebald, H. Crystal and Molecular Structures of Transition Metal Complexes with N- and C-Bonded Diazoalkane Ligands. Coord. Chem. Rev. 1998, 178-180, 623–663. DOI: 10.1016/S0010-8545(98)00117-9.
  • Pike, S. D.; Weller, A. S. Organometallic Synthesis, Reactivity and Catalysis in the Solid State Using Well-Defined Single-Site Species. Philos. Trans. R. Soc., A 2015, 373. DOI: 10.1098/rsta.2014.0187.
  • Albrecht, M.; Lutz, M.; Schreurs, A. M. M.; Lutz, E. T. H.; Spek, A. L.; van Koten, G. Self-Assembled Organoplatinum(II) Supermolecules as Crystalline, SO2 Gas-Triggered Switches. J. Chem. Soc. Dalton Trans. 2000, 3797–3804. DOI: 10.1039/b006419j.
  • Libri, S.; Mahler, M.; Mínguez Espallargas, G.; Singh, D. C. N. G.; Soleimannejad, J.; Adams, H.; Burgard, M. D.; Rath, N. P.; Brunelli, M.; Brammer, L. Ligand Substitution within Nonporous Crystals of a Coordination Polymer: Elimination from and Insertion into Ag–O Bonds by Alcohol Molecules in a Solid–Vapor Reaction. Angew. Chem. Int. Ed. 2008, 47, 1693–1697. DOI: 10.1002/anie.200703194.
  • Brayshaw, S. K.; Ingleson, M. J.; Green, J. C.; Raithby, P. R.; Kociok-Köhn, G.; McIndoe, J. S.; Weller, A. S. Holding onto Lots of Hydrogen: A 12-Hydride Rhodium Cluster that Reversibly Adds Two Molecules of H2. Angew. Chem. Int. Ed. 2005, 44, 6875–6878. DOI: 10.1002/anie.200502221.
  • Huang, Z.; White, P. S.; Brookhart, M. Ligand Exchanges and Selective Catalytic Hydrogenation in Molecular Single Crystals. Nature. 2010, 465, 598–601. DOI: 10.1038/nature09085.
  • Zenkina, O. V.; Keske, E. C.; Wang, R.; Crudden, C. M. Double Single-Crystal-to-Single-Crystal Transformation and Small-Molecule Activation in Rhodium NHC Complexes. Angew. Chem. Int. Ed. 2011, 50, 8100–8104. DOI: 10.1002/anie.201103316.
  • Zheng, S.-L.; Vande Velde, C. M. L.; Messerschmidt, M.; Volkov, A.; Gembicky, M.; Coppens, P. Supramolecular Solids as a Medium for Single-Crystal-to-Single-Crystal E/Z Photoisomerization: Kinetic Study of the Photoreactions of Two Zn-Coordinated Tiglic Acid Molecules. Chem. Eur. J. 2008, 14, 706–713. DOI: 10.1002/chem.200701037.
  • Kim, C. D.; Pillet, S.; Wu, G.; Fullagar, W. K.; Coppens, P. Excited-State Structure by Time-Resolved X-Ray Diffraction. Acta Cryst. A. 2002, 58, 133–137. DOI: 10.1107/S0108767301017986.
  • Coppens, P.; Benedict, J.; Messerschmidt, M.; Novozhilova, I.; Graber, T.; Chen, Y.-S.; Vorontsov, I.; Scheins, S.; Zheng, S.-L. Time-Resolved Synchrotron Diffraction and Theoretical Studies of Very Short-Lived Photo-Induced Molecular Species. Acta Cryst. A. 2010, 66, 179–188. DOI: 10.1107/S0108767309055342.
  • Stein, P.; Dickson, M. K.; Roundhill, D. M. Raman and Infrared Spectra of Binuclear Platinum(II) and Platinum(III) Octaphosphite Complexes. A Characterization of the Intermetallic Bonding. J. Am. Chem. Soc. 1983, 105, 3489–3494. DOI: 10.1021/ja00349a020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.