Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 40, 2020 - Issue 6
374
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Synthesis of Fe-Doped TiO2 for Photocatalytic Processes under UV-Visible Light: Effect of Preparation Methods on Crystal Size—A Systematic Review Study

&

References

  • Mostafaii, G. R.; Moravveji, A.; Hajirostamloo, B.; Hesami Arani, M.; Dehghani, M.; Heidarinejad, Z.; Fakhri, Y.; Khaneghah, A. M. The Concentration and Risk Assessment of Potentially Toxic Elements (Ptes) in Unrefined Salt: A Case Study of Aran and Bidgol Lake, Iran. Int. J. Environ. Anal. Chem. 2020, 1–13. DOI: 10.1080/03067319.2020.1734195.
  • Kujlu, R.; Moslemzadeh, M.; Rahimi, S.; Aghayani, E.; Ghanbari, F.; Mahdavianpour, M. Selecting the Best Stabilization/solidification Method for the Treatment of Oil-contaminated Soils Using Simple and Applied Best-worst Multi-criteria Decision-making Method, Environ. Pollut. 2020, 263, 114447. DOI: 10.1016/j.envpol.2020.114447.
  • Taghavi, K.; Naghipour, D.; Mohagheghian, A.; Moslemzadeh, M. Photochemical Degradation of 2,4-dichlorophenol in Aqueous Solutions by Fe2+/Peroxydisulfate/UV Process. Int. J. Eng. 2017, 30, 15–22. DOI: 10.5829/idosi.ije.2017.30.01a.03.
  • Esrafili, A.; Bagheri, S.; Kermani, M.; Gholami, M.; Moslemzadeh, M. Simultaneous Adsorption of Heavy Metal Ions (Cu2+ and Cd2+) from Aqueous Solutions by Magnetic Silica Nanoparticles (Fe3o4@sio2) Modified Using Edta. Desalin. Water Treat. 2019, 158, 207–215. DOI: 10.5004/dwt.2019.24274.
  • Jafari, A. J.; Moslemzadeh, M. Investigation of Phosphorus Removal Using Steel Slag from Aqueous Solutions : A Systematic Review Study. Int. J. Environ. Anal. Chem. 2020, 00, 1–13. DOI: 10.1080/03067319.2020.1726900.
  • Castro, C. A.; Centeno, A.; Giraldo, S. A. Iron Promotion of the TiO2 Photosensitization Process Towards the Photocatalytic Oxidation of Azo Dyes under Solar-simulated Light Irradiation. Mater. Chem. Phys. 2011, 129, 1176–1183. DOI: 10.1016/j.matchemphys.2011.05.082.
  • Carneiro, J. O.; Teixeira, V.; Portinha, A.; Dupák, L.; Magalhães, A.; Coutinho, P. Study of the Deposition Parameters and Fe-dopant Effect in the Photocatalytic Activity of TiO2 Films Prepared by Dc Reactive Magnetron Sputtering. Vacuum. 2005, 78, 37–46. DOI: 10.1016/j.vacuum.2004.12.012.
  • Li, K.; Wang, H.; Pan, C.; Wei, J.; Xiong, R.; Shi, J. Enhanced Photoactivity of Fe + N Codoped Anatase-rutile TiO 2 Nanowire Film under Visible Light Irradiation. Int. J. Photoenergy. 2012, 2012. DOI: 10.1155/2012/398508.
  • Kim, T. K.; Lee, M. N.; Lee, S. H.; Park, Y. C.; Jung, C. K.; Boo, J. H. Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification. Thin Solid Films. 2005, 475, 171–177. DOI: 10.1016/j.tsf.2004.07.021.
  • Nahar, M. S.; Hasegawa, K.; Kagaya, S. Photocatalytic Degradation of Phenol by Visible Light-responsive Iron-doped TiO2 and Spontaneous Sedimentation of the TiO2 Particles. Chemosphere. 2006, 65, 1976–1982. DOI: 10.1016/j.chemosphere.2006.07.002.
  • Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R. Correlation between Crystallite Size and Photocatalytic Performance of Micrometer-sized Monoclinic WO3 Particles. Arab. J. Chem. 2020, 13, 1283–1296. DOI: 10.1016/j.arabjc.2017.10.010.
  • Tanaka, K.; Capule, M. F. V.; Hisanaga, T. Effect of Crystallinity of TiO2 on Its Photocatalytic Action. Chem. Phys. Lett. 1991, 187, 73–76. DOI: 10.1016/0009-2614(91)90486-S.
  • Ohtani, B.; Ogawa, Y.;, Nishimoto, S. Instructions for use Photocatalytic Activity of Amorphous - Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions, J. Phys. Chem. B. 101 (1997) 3746–3752. doi: 10.1021/jp962702.
  • Vamvasakis, I.; Georgaki, I.; Vernardou, D.; Kenanakis, G.; Katsarakis, N. Synthesis of WO3 Catalytic Powders: Evaluation of Photocatalytic Activity under NUV/visible Light Irradiation and Alkaline Reaction pH. J. Sol-Gel Sci. Technol. 2015, 76, 120–128. DOI: 10.1007/s10971-015-3758-5.
  • Arias, L. M. F.; Duran, A. A.; Cardona, D.; Camps, E.; Gómez, M. E.; Zambrano, G. Effect of Annealing Treatment on the Photocatalytic Activity of TiO2 Thin Films Deposited by Dc Reactive Magnetron Sputtering. J. Phys. Conf. Ser. 2015, 614. DOI: 10.1088/1742-6596/614/1/012008.
  • Peng, T.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity. J. Phys. Chem. B. 2005, 109, 4947–4952. DOI: 10.1021/jp044771r.
  • Kim, D. S.; Kwak, S. Y. The Hydrothermal Synthesis of Mesoporous TiO2 with High Crystallinity, Thermal Stability, Large Surface Area, and Enhanced Photocatalytic Activity. Appl. Catal. A Gen. 2007, 323, 110–118. DOI: 10.1016/j.apcata.2007.02.010.
  • Devi, L. G.; Murthy, B. N.; Kumar, S. G. Photocatalytic Activity of TiO2 Doped with Zn2+ and V5+ Transition Metal Ions: Influence of Crystallite Size and Dopant Electronic Configuration on Photocatalytic Activity. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2010, 166, 1–6. DOI: 10.1016/j.mseb.2009.09.008.
  • Marotti, R. E.; Giorgi, P.; Machado, G.; Dalchiele, E. A. Crystallite Size Dependence of Band Gap Energy for Electrodeposited ZnO Grown at Different Temperatures. Sol. Energy Mater. Sol. Cells. 2006, 90, 2356–2361. DOI: 10.1016/j.solmat.2006.03.008.
  • Armaković, S. J.; Grujić-Brojčin, M.; Šćepanović, M.; Armaković, S.; Golubović, A.; Babić, B.; Abramović, B. F. Efficiency of La-doped TiO2 Calcined at Different Temperatures in Photocatalytic Degradation of β-blockers. Arab. J. Chem. 2019, 12, 5355–5369. DOI: 10.1016/j.arabjc.2017.01.001.
  • Nandiyanto, A. B. D.; Munawaroh, H. S. H.; Kurniawan, T.; Mudzakir, A. Influences of Temperature on the Conversion of Ammonium Tungstate Pentahydrate to Tungsten Oxide Particles with Controllable Sizes, Crystallinities, and Physical Properties. Indones. J. Chem. 2016, 16, 124–129. DOI: 10.14499/ijc-v16i2p124-129.
  • Harifi, T.; Montazer, M. Fe3+:Ag/TiO2nanocomposite: Synthesis, Characterization and Photocatalytic Activity under UV and Visible Light Irradiation. Appl. Catal. A Gen. 2014, 473, 104–115. DOI: 10.1016/j.apcata.2014.01.005.
  • Qin, L.; Pan, X.; Wang, L.; Sun, X.; Zhang, G.; Guo, X. Facile Preparation of Mesoporous TiO2(B) Nanowires with Well-dispersed Fe2O3 Nanoparticles and Their Photochemical Catalytic Behavior. Appl. Catal. B Environ. 2014, 150–151, 544–553. DOI: 10.1016/j.apcatb.2013.12.055.
  • Zhang, X.; Xie, Y.; Chen, H.; Guo, J.; Meng, A.; Li, C. One-dimensional Mesoporous Fe 2 O 3 @tio 2 Core-shell Nanocomposites: Rational Design, Synthesis and Application as High-performance Photocatalyst in Visible and UV Light Region. Appl. Surf. Sci. 2014, 317, 43–48. DOI: 10.1016/j.apsusc.2014.08.099.
  • Zhao, H.; Kang, J.; Nan, H.; Yang, G.; Wei, H.; Chen, H.; Wang, G.; Lin, H. Preparation and Enhanced UV-Visible Light Photoelectrocatalytic Activity of TiO 2 -fe 2 O 3/Cu Ternary Nanocomposites. ChemistrySelect. 2019, 4, 2892–2897. DOI: 10.1002/slct.201803345.
  • Munikrishnappa, C.; Kumar, S.; Shivakumara, S.; Mohan Rao, G.; Munichandraiah, N.; TiO, T. 2 -graphene oxide-Hemin Ternary Hybrid Composite Material as an Efficient Heterogeneous Catalyst for the Degradation of Organic Contaminants. J. Sci. Adv. Mater. Devices. 2019, 4, 80–88. DOI: 10.1016/j.jsamd.2018.12.003.
  • Kakavandi, B.; Bahari, N.; Rezaei Kalantary, R.; Dehghani Fard, E. Enhanced Sono-photocatalysis of Tetracycline Antibiotic Using TiO2 Decorated on Magnetic Activated Carbon (MAC@T) Coupled with US and UV: A New Hybrid System. Ultrason. Sonochem. 2019, 55, 75–85. DOI: 10.1016/j.ultsonch.2019.02.026.
  • Hao, H.; Zhang, J. The Study of Iron (III) and Nitrogen Co-doped Mesoporous TiO2 Photocatalysts: Synthesis, Characterization and Activity. Microporous Mesoporous Mater. 2009, 121, 52–57. DOI: 10.1016/j.micromeso.2009.01.002.
  • Ji, R.; Lu, X.; Zhang, J. Preparation of Nanoscaled TiO2 Films with High Visible Light Photocatalytic Activity at Low Temperature. J. Nanosci. Nanotechnol. 2009, 9, 5134–5140. DOI: 10.1166/jnn.2009.1209.
  • Stan, M. S.; Nica, I. C.; Dinischiotu, A.; Varzaru, E.; Iordache, O. G.; Dumitrescu, I.; Popa, M.; Chifiriuc, M. C.; Pircalabioru, G. G.; Lazar, V.; et al. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-doped Titanium Dioxide Nanoparticles. Materials (Basel). 2016, 9. DOI: 10.3390/ma9090789.
  • Vijayalakshmi, K.; Jereil, S. D. Influence of Fe Catalytic Doping on the Properties of TiO2 Nanoparticles Synthesized by Microwave Method. J. Mater. Sci. Mater. Electron. 2014, 25, 5089–5094. DOI: 10.1007/s10854-014-2276-5.
  • Katal, R.; Masudy-panah, S.; Tanhaei, M. A Review on the Synthesis of the Various Types of Anatase TiO 2 Facets and Their Applications for Photocatalysis. Chem. Eng. J. 2020, 384, 123384. DOI: 10.1016/j.cej.2019.123384.
  • Mamaghani, A. H.; Haghighat, F.; Lee, C. Chemosphere Hydrothermal/solvothermal Synthesis and Treatment of TiO 2 for Photocatalytic Degradation of Air Pollutants : Preparation, Characterization, Properties, and Performance. Chemosphere. 2019, 219, 804–825. DOI: 10.1016/j.chemosphere.2018.12.029.
  • Sabari Arul, N.; Mangalaraj, D.; In Han, J. Enhanced Photocatalytic Property of Self-assembled Fe-doped CeO2 Hierarchical Nanostructures. Mater. Lett. 2015, 145, 189–192. DOI: 10.1016/j.matlet.2015.01.075.
  • Gan, Y. X.; Jayatissa, A. H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 2020, 2020. DOI: 10.1155/2020/8917013.
  • Hu, H.; Lin, Y.; Hang, Y. Synthesis, Structures and Applications of Single Component Core-shell Structured TiO 2 : A Review. Chem. Eng. J. 2019, 375, 122029. DOI: 10.1016/j.cej.2019.122029.
  • Mudhafar Mohammed, A.; Sebek, M.; Kreyenschulte, C.; Lund, H.; Rabeah, J.; Langer, P.; Strunk, J.; Steinfeldt, N. Effect of Metal Ion Addition on Structural Characteristics and Photocatalytic Activity of Ordered Mesoporous Titania. J. Sol-Gel Sci. Technol. 2019, 91, 539–551. DOI: 10.1007/s10971-019-05052-w.
  • Umapathy, V.; Manikandan, A.; Ramu, P.; Antony, S. A.; Neeraja, P. Synthesis and Characterization of Fe2(MoO4-3 Nano-Photocatalyst by Simple Sol-gel Method. J. Nanosci. Nanotechnol. 2016, 16, 987–993. DOI: 10.1166/jnn.2016.10616.
  • Ahsan, R.; Mitra, A.; Omar, S.; Rahman Khan, M. Z.; Basith, M. A. Sol-gel Synthesis of DyCrO3 and 10% Fe-doped DyCrO3 Nanoparticles with Enhanced Photocatalytic Hydrogen Production Abilities. RSC Adv. 2018, 8, 14258–14267. DOI: 10.1039/c8ra01585f.
  • Zhou, M.; Yu, J.; Cheng, B. Effects of Fe-doping on the Photocatalytic Activity of Mesoporous TiO2 Powders Prepared by an Ultrasonic Method. J. Hazard. Mater. 2006, 137, 1838–1847. DOI: 10.1016/j.jhazmat.2006.05.028.
  • Rasoulnezhad, H.; Hosseinzadeh, G.; Ghasemian, N.; Hosseinzadeh, R.; Keihan, A. H. Transparent Nanostructured Fe-doped TiO2 Thin Films Prepared by Ultrasonic Assisted Spray Pyrolysis Technique. Mater. Res. Express. 2018, 5. DOI: 10.1088/2053-1591/aabe5e.
  • Rezaei Kalantary, R.; Jaffarzadeh, N.; Rezapour, M.; Hesami Arani, M. Association between Exposure to Polycyclic Aromatic Hydrocarbons and Attention Deficit Hyperactivity Disorder in Children: A Systematic Review and Meta-analysis. Environ. Sci. Pollut. Res. 2020, 27, 11531–11540. DOI: 10.1007/s11356-020-08134-3.
  • Christoforidis, K. C.; Iglesias-Juez, A.; Figueroa, S. J. A.; Di Michiel, M.; Newton, M. A.; Fernández-García, M. Structure and Activity of Iron-doped TiO2-anatase Nanomaterials for Gas-phase Toluene Photo-oxidation. Catal. Sci. Technol. 2013, 3, 626–634. DOI: 10.1039/c2cy20405c.
  • Zhang, H.; Wu, X.; Wang, Y.; Chen, X.; Li, Z.; Yu, T.; Ye, J.; Zou, Z. Preparation of Fe2O3/SrTiO3 Composite Powders and Their Photocatalytic Properties. J. Phys. Chem. Solids. 2007, 68, 280–283. DOI: 10.1016/j.jpcs.2006.11.007.
  • Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen Production by Photocatalytic Water-splitting Using Cr- or Fe-doped TiO2 Composite Thin Films Photocatalyst. Int. J. Hydrogen Energy. 2009, 34, 5337–5346. DOI: 10.1016/j.ijhydene.2009.05.011.
  • Vijayan, P.; Mahendiran, C.; Suresh, C.; Shanthi, K. Photocatalytic Activity of Iron Doped Nanocrystalline Titania for the Oxidative Degradation of 2,4,6-trichlorophenol. Catal. Today. 2009, 141, 220–224. DOI: 10.1016/j.cattod.2008.04.016.
  • An, H.; Li, J.; Zhou, J.; Li, K.; Zhu, B.; Huang, W. Iron-coated TiO2 Nanotubes and Their Photocatalytic Performance. J. Mater. Chem. 2010, 20, 603–610. DOI: 10.1039/b908226c.
  • Qi, K.; Fei, B.; Xin, J. H. Visible Light-active Iron-doped Anatase Nanocrystallites and Their Self-cleaning Property. Thin Solid Films. 2011, 519, 2438–2444. DOI: 10.1016/j.tsf.2010.11.046.
  • Mao, A.; Meng, X.; Kim, M. S.; Yu, J.-B.; Han, G. Y.; Park, J. H. Enhanced Photoelectrochemical Cell Property from α-Fe 2O 3 Nanoparticle Decoration on Vertically Grown TiO 2 Nanotubes Arrays. J. Nanosci. Nanotechnol. 2011, 11, 7290–7293. DOI: 10.1166/jnn.2011.4784.
  • Nguyen, V. N.; Nguyen, N. K. T.; Nguyen, P. H. Hydrothermal Synthesis of Fe-doped TiO2 Nanostructure Photocatalyst. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2. DOI: 10.1088/2043-6262/2/3/035014.
  • Karbassi, M.; Nemati, A.; Zari, M. H.; Ahadi, K. Effect of Iron Oxide and Silica Doping on Microstructure, Bandgap and Photocatalytic Properties of Titania by Water-in-oil Microemulsion Technique. Trans. Indian Ceram. Soc. 2011, 70, 227–232. DOI: 10.1080/0371750X.2011.10600173.
  • Sun, T.; Fan, J.; Liu, E.; Liu, L.; Wang, Y.; Dai, H.; Yang, Y.; Hou, W.; Hu, X.; Jiang, Z. Fe and Ni Co-doped TiO2 Nanoparticles Prepared by Alcohol-thermal Method: Application in Hydrogen Evolution by Water Splitting under Visible Light Irradiation. Powder Technol. 2012, 228, 210–218. DOI: 10.1016/j.powtec.2012.05.018.
  • Yu, Q.; Jin, X.; Li, S.; Wang, L.; Liang, K. The Photocatalytic Properties of Fe3+ and N Co-doped TiO 2 Micro/nanofiber Film for Dye Waste Water Decomposition. 2012, 356–360, 853–856. DOI: 10.4028/www.scientific.net/AMR.356-360.853.
  • Abdulla-Al-Mamun, M.; Kusumoto, Y.; Islam, M. S. Enhanced Photocatalytic Cytotoxic Activity of Ag@Fe-doped TiO 2 Nanocomposites against Human Epithelial Carcinoma Cells. J. Mater. Chem. 2012, 22, 5460–5469. DOI: 10.1039/c2jm15636a.
  • Sun, H.; Zhou, G.; Liu, S.; Ang, H. M.; Tadé, M. O.; Wang, S. Visible Light Responsive Titania Photocatalysts Codoped by Nitrogen and Metal (Fe, Ni, Ag, or Pt) for Remediation of Aqueous Pollutants. Chem. Eng. J. 2013, 231, 18–25. DOI: 10.1016/j.cej.2013.07.019.
  • Murugan, M.; Subasri, R.; Rao, T. N.; Gandhi, A. S.; Murty, B. S. Synthesis, Characterization and Demonstration of Self-cleaning TiO 2 Coatings on Glass and Glazed Ceramic Tiles. Prog. Org. Coatings. 2013, 76, 1756–1760. DOI: 10.1016/j.porgcoat.2013.05.012.
  • Lee, G.; Kang, M. Physicochemical Properties of Core/shell Structured Pyrite FeS2/anatase TiO2 Composites and Their Photocatalytic Hydrogen Production Performances. Curr. Appl. Phys. 2013, 13, 1482–1489. DOI: 10.1016/j.cap.2013.05.002.
  • Jo, W.-K.; Lee, J. Y. Iron-impregnated Titania Composites for the Decomposition of Low-concentration Aromatic Organic Pollutants under UV and Visible Light Irradiation. Chin. J. Catal. 2013, 34, 2209–2216. DOI: 10.1016/S1872-2067(12)60688-3.
  • Shirsath, S. R.; Pinjari, D. V.; Gogate, P. R.; Sonawane, S. H.; Pandit, A. B. Ultrasound Assisted Synthesis of Doped TiO2 Nano-particles: Characterization and Comparison of Effectiveness for Photocatalytic Oxidation of Dyestuff Effluent. Ultrason. Sonochem. 2013, 20, 277–286. DOI: 10.1016/j.ultsonch.2012.05.015.
  • Guo, A. H.; Su, W. B.; Zhang, C. N.; Yuan, F. The Preparation of nano-TiO2 Films Doped with ZnO or Fe2O3. 2013, 700, 15–18. DOI: 10.4028/www.scientific.net/AMR.700.15.
  • Khun-Ngern, S.; Mekla, V.; Raksasri, E. Structural and Photocatalytic Properties of Fe-dope TiO2 Nanostructure Using the Hydrothermal Treatment Method. 2013, 634–638, 2261–2263. DOI: 10.4028/www.scientific.net/AMR.634-638.2261.
  • Teng, H.; Xu, S.; Sun, D.; Zhang, Y. Preparation of Fe-doped TiO2 Nanotubes and Their Photocatalytic Activities under Visible Light. Int. J. Photoenergy. 2013, 2013. DOI: 10.1155/2013/981753.
  • Vignesh, K.; Suganthi, A.; Min, B. K.; Kang, M. Photocatalytic Activity of Magnetically Recoverable MnFe2O4/g-C3N4/TiO2 Nanocomposite under Simulated Solar Light Irradiation. J. Mol. Catal. A Chem. 2014, 395, 373–383. DOI: 10.1016/j.molcata.2014.08.040.
  • Yuan, R.; Zhou, B.; Ma, L. Removal of Toluene from Water by Photocatalytic Oxidation with Activated Carbon Supported Fe(3+)-doped TiO2 Nanotubes. Water Sci. Technol. 2014, 70, 642–648. DOI: 10.2166/wst.2014.239.
  • Wang, J.; Liu, H.; Xu, Y.; Zhang, X. Preparation of Fe2O3-TiO2 and Its Photocatalytic Reduction of CO2 to Methanol. Asian J. Chem. 2014, 26, 3875–3878. DOI: 10.14233/ajchem.2014.15984.
  • Hung, W.-H.; Chien, T.-M.; Lo, A.-Y.; Tseng, C.-M.; Li, D. Spatially Controllable Plasmon Enhanced Water Splitting Photocurrent in Au/TiO2-Fe2O3 Cocatalyst System. RSC Adv. 2014, 4, 45710–45714. DOI: 10.1039/c4ra05143b.
  • Niu, J.; Dai, P.; Wu, B.; Yao, B.; Yu, X.; Zhang, Q. Preparation and Application of Fe(III) Doped Titania Photocatalyst with Hollow Structure, Integr. Ferroelectr. 2015, 167, 123–136. DOI: 10.1080/10584587.2015.1106905.
  • Li, R.; Jia, Y.; Wu, J.; Zhen, Q. Photocatalytic Degradation and Pathway of Oxytetracycline in Aqueous Solution by Fe2O3-TiO2 Nanopowder. RSC Adv. 2015, 5, 40764–40771. DOI: 10.1039/c5ra04540a.
  • Zhao, G.; Liu, L.; Li, J.; Liu, Q. Efficient Removal of Dye MB: Through the Combined Action of Adsorption and Photodegradation from NiFe2O4/Ag3PO4. J. Alloys Compd. 2016, 664, 169–174. DOI: 10.1016/j.jallcom.2016.01.004.
  • Lee, J. Y.; Jo, W.-K. Simplified Sonochemical Preparation of Titania Embedded with Selected Metals for Purification of Benzene and Toluene. Ultrason. Sonochem. 2016, 28, 250–256. DOI: 10.1016/j.ultsonch.2015.07.025.
  • Ma, J.; Xu, S.; Chu, J.; Xue, J.; Tang, J.; Qiang, L. Effect of Metal-support Interaction on the Structural and Enhanced Photocatalytic Performance of Mesoporous M–TiO2/SBA-16 (M = Ag and Fe). J. Porous Mater. 2017, 24, 45–54. DOI: 10.1007/s10934-016-0235-7.
  • Chen, P.; Cai, Y.; Wang, J.; Wang, K.; Tao, Y.; Xue, J.; Wang, H. Preparation of Protonized Titanate nanotubes/Fe3O4/TiO2 Ternary Composites and Dye Self-sensitization for Visible-light-driven Photodegradation of Rhodamine B. Powder Technol. 2018, 326, 272–280. DOI: 10.1016/j.powtec.2017.12.010.
  • Han, F.; Kambala, V. S. R.; Dharmarajan, R.; Liu, Y.; Naidu, R. Photocatalytic Degradation of Azo Dye Acid Orange 7 Using Different Light Sources over Fe3+-doped TiO2 Nanocatalysts. Environ. Technol. Innovations. 2018, 12, 27–42. DOI: 10.1016/j.eti.2018.07.004.
  • Barkhade, T.; Banerjee, I. Photocatalytic Degradation of Rhodamine B Dye Using Fe Doped TiO2 Nanocomposites. In 2018. DOI: 10.1063/1.5035218.
  • Shifu, C.; Xiaoling, Y.; Huaye, Z.; Wei, L. Preparation and Photocatalytic Activity Evaluation of Composite Fe- TiO2/TiO2 Photocatalyst. J. Electrochem. Soc. 2010, 157, K96–K102. DOI: 10.1149/1.3328177.
  • Xu, C.; Huang, J.; Tan, X.; Yu, T.; Cui, Z.; Zhao, L. Preparation, Characteristics, and Photocatalytic Tests of Fe-doped Tio2 Films Prepared by a Sol-gel Drain Coating via Homemade Devices. J. Dispers. Sci. Technol. 2010, 31, 1732–1739. DOI: 10.1080/01932690903543097.
  • Narayana, R. L.; Matheswaran, M.; Aziz, A. A.; Saravanan, P. Photocatalytic Decolourization of Basic Green Dye by Pure and Fe, Co Doped TiO2 under Daylight Illumination. Desalination. 2011, 269, 249–253. DOI: 10.1016/j.desal.2010.11.007.
  • Lei, J.; Li, X.; Li, W.; Sun, F.; Lu, D.; Lin, Y. Photocatalytic Degradation of Methyl Orange on Arrayed Porous Iron-doped Anatase TiO 2. J. Solid State Electrochem. 2012, 16, 625–632. DOI: 10.1007/s10008-011-1388-6.
  • Qamar, M.; Merzougui, B.; Anjum, D.; Hakeem, A. S.; Yamani, Z. H.; Bahnemann, D. Synthesis and Photocatalytic Activity of Mesoporous Nanocrystalline Fe-doped Titanium Dioxide. Catal. Today. 2014, 230, 158–165. DOI: 10.1016/j.cattod.2013.10.040.
  • Yang, S.-B.; Chun, -H.-H.; Tayade, R. J.; Jo, W.-K. Iron-functionalized Titanium Dioxide on Flexible Glass Fibers for Photocatalysis of Benzene, Toluene, Ethylbenzene, and O-xylene (BTEX) under Visible- or Ultraviolet-light Irradiation. J. Air Waste Manag. Assoc. 2015, 65, 365–373. DOI: 10.1080/10962247.2014.995838.
  • Ali, T.; Tripathi, P.; Azam, A.; Raza, W.; Ahmed, A. S.; Ahmed, A.; Muneer, M. Photocatalytic Performance of Fe-doped TiO2 Nanoparticles under Visible-light Irradiation. Mater. Res. Express. 2017, 4. DOI: 10.1088/2053-1591/aa576d.
  • Ibrahim, S. A.; Nazari, A. S. M.; Kamdi, Z.; Hatta, M. N. M.; Yunos, M. Z.; Rus, A. Z. M.; Harun, Z. Effect of Fe And/or N on the Photoactivity of TiO 2 Prepared by Sol-gel Method. AIP Conf. Proc. 2019, 2068. DOI: 10.1063/1.5089396.
  • Yadav, H. M.; Kolekar, T. V.; Pawar, S. H.; Kim, J.-S. Enhanced Photocatalytic Inactivation of Bacteria on Fe-containing TiO2 Nanoparticles under Fluorescent Light. J. Mater. Sci. Mater. Med. 2016, 27, 57. DOI: 10.1007/s10856-016-5675-8.
  • Vargas, X. M.; Marin, J. M.; Restrepo, G. Characterization and Photocatalytic Evaluation (Uv-visible) of Fe-doped TiO2 Systems Calcined at Different Temperatures. J. Adv. Oxid. Technol. 2015, 18, 129–138. DOI: 10.1515/jaots-2015-0116.
  • Nahar, M. S.; Hasegawa, K.; Kagaya, S.; Kuroda, S. Comparative Assessment of the Efficiency of Fe-doped TiO2 Prepared by Two Doping Methods and Photocatalytic Degradation of Phenol in Domestic Water Suspensions. Sci. Technol. Adv. Mater. 2007, 8, 286–291. DOI: 10.1016/j.stam.2007.04.005.
  • Maria Vinosel, V.; Anand, S.; Asisi Janifer, M.; Pauline, S. Photocatalytic and Antibacterial Applications of Magnetic Fe3O4–CuO Nanocomposite. Mater. Today Proc. 2019, 8, 301–309. DOI: 10.1016/j.matpr.2019.02.115.
  • Sayyar, Z.; Akbar Babaluo, A.; Shahrouzi, J. R. Kinetic Study of Formic Acid Degradation by Fe3+ Doped TiO2 Self-cleaning Nanostructure Surfaces Prepared by Cold Spray. Appl. Surf. Sci. 2015, 335, 1–10. DOI: 10.1016/j.apsusc.2015.01.014.
  • Ibrahim, S. A.; Anwar, M. K.; Ainuddin, A. R.; Hariri, A.; Rus, A. Z. M.; Kamdi, Z.; Yunos, M. Z.; Harun, Z. Synthesis and Characterization of Visible Light Active Fe-TiO2 Using Hydrothermal Method. Int. J. Integr. Eng. 2019, 11, 80–85. DOI: 10.30880/ijie.2019.11.05.011.
  • Vinosel, V. M.; Anand, S.; Janifer, M. A.; Pauline, S.; Dhanavel, S.; Praveena, P.; Stephen, A. Preparation and Performance of Fe3O4/TiO2 Nanocomposite with Enhanced photo-Fenton Activity for Photocatalysis by Facile Hydrothermal Method. Appl. Phys. A Mater. Sci. Process. 2019, 125. DOI: 10.1007/s00339-019-2622-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.