Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 41, 2021 - Issue 3
754
Views
32
CrossRef citations to date
0
Altmetric
Review Article

Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview

ORCID Icon & ORCID Icon

References

  • Olveira, S.; Forster, S. P.; Seeger, S. Nanocatalysis: Academic Discipline and Industrial Realities. J. Nanotechnol. 2014, 2014, 1–19. DOI: 10.1155/2014/324089.
  • Varma, R. S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng. 2012, 1(2), 123–128. DOI: 10.1016/j.coche.2011.12.002.
  • Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Green Chemistry: Science and Politics of Change. Science. 2002, 297, 807–810. DOI: 10.1126/science.297.5582.807.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomater. (Basel). 2020, 10, 1784. DOI: 10.3390/nano10091784.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Green-synthesized Nanocatalysts and Nanomaterials for Water Treatment: Current Challenges and Future Perspectives. J. Hazard. Mater. 2021, 401, 123401.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Carbon-based Sustainable Nanomaterials for Water Treatment: State-of-art and Future Perspectives. Chemosphere. 2021, 263, 128005. DOI: 10.1016/j.chemosphere.2020.128005.
  • Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. S. Starch, Cellulose, Pectin, Gum, Alginate, Chitin and Chitosan Derived (Nano) Materials for Sustainable Water Treatment: A Review. Carbohydr. Polym. 2021, 251, 116986.
  • Fang, Y.; Zheng, Y.; Fang, T.; Chen, Y.; Zhu, Y.; Liang, Q.; Sheng, H.; Li, Z.; Chen, C.; Wang, X. Photocatalysis: An Overview of Recent Developments and Technological Advancements. Sci. China Chem. 2020, 63, 149–181.
  • Miri, A.; Sarani, M.; Khatami, M. Nickel-doped Cerium Oxide Nanoparticles: Biosynthesis, Cytotoxicity and UV Protection Studies. RSC Adv. 2020, 10, 3967–3977. DOI: 10.1039/C9RA09076B.
  • Lima, C. G. S.; Jorge, E. Y. C.; Batinga, L. G. S.; Lima, T. D. M.; Paixao, M. W. ZSM-5 Zeolite as a Promising Catalyst for the Preparation and Upgrading of Lignocellulosic Biomass-derived Chemicals. Curr. Opin. Green Sustain. Chem. 2019, 15, 13–19. DOI: 10.1016/j.cogsc.2018.08.001.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. DOI: 10.1039/c1gc15386b.
  • Iravani, S.; Varma, R. S. Sustainable Synthesis of Cobalt and Cobalt Oxide Nanoparticles and Their Catalytic and Biomedical Applications. Green Chem. 2020, 22(9), 2643–2661. DOI: 10.1039/D0GC00885K.
  • Iravani, S.; Varma, R. S. Greener Synthesis of Lignin Nanoparticles and Their Applications. Green Chem. 2020, 22, 612–636. DOI: 10.1039/C9GC02835H.
  • Iravani, S.; Varma, R. S. Green Synthesis, Biomedical and Biotechnological Applications of Carbon and Graphene Quantum Dots. A Review. Environ. Chem. Lett. 2020, 18, 703–727. DOI: 10.1007/s10311-020-00984-0.
  • Wang, Y.; Hu, A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C. 2014, 2, 6921–6939. DOI: 10.1039/C4TC00988F.
  • Madni, A.; Noreen, S.; Maqbool, I.; Rehman, F.; Batool, A.; Kashif, P. M.; Rehman, M.; Tahir, N.; Khan, M. I. Graphene-based Nanocomposites: Synthesis and Their Theranostic Applications. J. Drug Targeting. 2018, 26, 858–883. DOI: 10.1080/1061186X.2018.1437920.
  • Iravani, S.; Varma, R. S. Biofactories: Engineered Nanoparticles via Genetically Engineered Organisms. Green Chem. 2019, 21, 4583–4603. DOI: 10.1039/C9GC01759C.
  • Suárez-Cerda, J.; Alonso-Nuñez, G.; Espinoza-Gómez, H.; Flores-López, L. Z. Synthesis, Kinetics and Photocatalytic Study of “Ultra-small” Ag-NPs Obtained by a Green Chemistry Method Using an Extract of Rosa ‘Andeli’ Double Delight Petals. J. Colloid Interface Sci. 2015, 458, 169–177. DOI: 10.1016/j.jcis.2015.07.049.
  • Tamuly, C.; Hazarika, M.; Bordoloi, M.; Bhattacharyya, P. K.; Kar, R. Biosynthesis of Ag Nanoparticles Using Pedicellamide and Its Photocatalytic Activity: An Eco-friendly Approach. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2014, 132, 687–691. DOI: 10.1016/j.saa.2014.05.024.
  • Arunachalam, R.; Dhanasingh, S.; Kalimuthu, B.; Uthirappan, M.; Rose, C.; Mandal, A. B. Phytosynthesis of Silver Nanoparticles Using Coccinia Grandis Leaf Extract and Its Application in the Photocatalytic Degradation. Colloids Surf. B. 2012, 94, 226–230. DOI: 10.1016/j.colsurfb.2012.01.040.
  • Kathiravan, V. Green Synthesis of Silver Nanoparticles Using Different Volumes of Trichodesma Indicum Leaf Extract and Their Antibacterial and Photocatalytic Activities. Res. Chem. Intermed. 2018, 44, 4999–5012. DOI: 10.1007/s11164-018-3405-1.
  • Miri, A.; Shahraki Vahed, H. O.; Sarani, M. Biosynthesis of Silver Nanoparticles and Their Role in Photocatalytic Degradation of Methylene Blue Dye. Res. Chem. Intermed. 2018, 44, 6907–6915. DOI: 10.1007/s11164-018-3529-3.
  • Momin, B.; Rahman, S.; Jha, N.; Annapure, U. S. Valorization of Mutant Bacillus Licheniformis M09 Supernatant for Green Synthesis of Silver Nanoparticles: Photocatalytic Dye Degradation, Antibacterial Activity, and Cytotoxicity. Bioprocess Biosyst. Eng. 2019, 42, 541–553. DOI: 10.1007/s00449-018-2057-2.
  • Ravichandran, V.; Vasanthi, S.; Shalini, S.; Ali Shah, S. A.; Tripathy, M.; Paliwal, N. Green Synthesis, Characterization, Antibacterial, Antioxidant and Photocatalytic Activity of Parkia Speciosa Leaves Extract Mediated Silver Nanoparticles. Results Phys. 2019, 15, 102565. DOI: 10.1016/j.rinp.2019.102565.
  • Bhagat, M.; Anand, R.; Datt, R.; Gupta, V.; Arya, S. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Rosa Brunonii Lindl and Their Morphological, Biological and Photocatalytic Characterizations. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1039–1047. DOI: 10.1007/s10904-018-0994-5.
  • Chand, K.; Cao, D.; Fouad, D. E.; Shah, A. H.; Dayo, A. Q.; Zhu, K.; Lakhan, M. N.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arabian J. Chem. 2020, 13, 8248–8261. DOI: 10.1016/j.arabjc.2020.01.009.
  • Kadam, J.; Dhawal, P.; Barve, S.; Kakodkar, S. Green Synthesis of Silver Nanoparticles Using Cauliflower Waste and Their Multifaceted Applications in Photocatalytic Degradation of Methylene Blue Dye and Hg2+ Biosensing. SN Appl. Sci. 2020, 2, 738. DOI: 10.1007/s42452-020-2543-4.
  • Rashmi, B. N.; Harlapur, S. F.; Avinash, B.; Ravikumar, C. R.; Nagaswarupa, H. P.; Anil Kumar, M. R.; Gurushantha, K.; Santosh, M. S. Facile Green Synthesis of Silver Oxide Nanoparticles and Their Electrochemical, Photocatalytic and Biological Studies. Inorg. Chem. Commun. 2020, 111, 107580. DOI: 10.1016/j.inoche.2019.107580.
  • Shah, A.; Haq, S.; Rehman, W.; Waseem, M.; Shoukat, S.; Rehman, M. Photocatalytic and Antibacterial Activities of Paeonia Emodi Mediated Silver Oxide Nanoparticles. Mater. Res. Express. 2019, 6, 045045. DOI: 10.1088/2053-1591/aafd42.
  • Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 107, 2007, 2891–2959. DOI: 10.1021/cr0500535
  • Goutam, S. P.; Saxena, G.; Singh, V.; Yadav, A. K.; Bharagava, R. N.; Thapa, K. B. Green Synthesis of TiO2 Nanoparticles Using Leaf Extract of Jatropha Curcas L. For Photocatalytic Degradation of Tannery Wastewater. Chem. Eng. J. 2018, 336, 386–396. DOI: 10.1016/j.cej.2017.12.029.
  • Kaur, H.; Kaur, S.; Singh, J.; Rawat, M.; Kumar, S. Expanding Horizon: Green Synthesis of TiO2 Nanoparticles Using Carica Papaya Leaves for Photocatalysis Application. Mater. Res. Express. 2019, 6, 095034. DOI: 10.1088/2053-1591/ab2ec5.
  • Sher Shah, M. S. A.; Park, A. R.; Zhang, K.; Park, J. H.; Yoo, P. J. Green Synthesis of Biphasic TiO2–Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces. 2012, 4, 3893–3901. DOI: 10.1021/am301287m.
  • Sharma, M.; Behl, K.; Nigam, S.; Joshi, M. TiO2-GO Nanocomposite for Photocatalysis and Environmental Applications: A Green Synthesis Approach. Vacuum. 2018, 156, 434–439. DOI: 10.1016/j.vacuum.2018.08.009.
  • Zhang, D.; Li, G.; Wang, F.; Yu, J. C. Green Synthesis of a Self-assembled Rutile Mesocrystalline Photocatalyst. CrystEngComm. 2010, 12, 1759–1763. DOI: 10.1039/b922477g.
  • He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Enhanced Photocatalytic H2-production Activity of WO3/TiO2 Step-scheme Heterojunction by Graphene Modification. Chin. J. Catal. 2020, 41, 9–20. DOI: 10.1016/S1872-2067(19)63382-6.
  • Ezhilarasi, A. A.; Vijaya, J. J.; Kaviyarasu, K.; Kennedy, L. J.; Ramalingam, R. J.; Al-Lohedan, H. A. Green Synthesis of NiO Nanoparticles Using Aegle Marmelos Leaf Extract for the Evaluation of In-vitro Cytotoxicity, Antibacterial and Photocatalytic Properties. J. Photochem. Photobiol. B: Biol. 2018, 180, 39–50. DOI: 10.1016/j.jphotobiol.2018.01.023.
  • Karthik, K.; Shashank, M.; Revathi, V.; Tatarchuk, T. Facile Microwave-assisted Green Synthesis of NiO Nanoparticles from Andrographis Paniculata Leaf Extract and Evaluation of Their Photocatalytic and Anticancer Activities. Mol. Cryst. Liq. Cryst. 2019, 673, 70–80. DOI: 10.1080/15421406.2019.1578495.
  • Sabouri, Z.; Akbari, A.; Hosseini, H. A.; Darroudi, M. Facile Green Synthesis of NiO Nanoparticles and Investigation of Dye Degradation and Cytotoxicity Effects. J. Mol. Struct. 2018, 1173, 931–936. DOI: 10.1016/j.molstruc.2018.07.063.
  • Akbari, A.; Sabouri, Z.; Hosseini, H. A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of Nickel Oxide Nanoparticles as a Photocatalyst in Dyes Degradation and Evaluation of Effective Parameters in Their Removal from Aqueous Environments. Inorg. Chem. Commun. 2020, 115, 107867. DOI: 10.1016/j.inoche.2020.107867.
  • Ghazal, S.; Akbari, A.; Hosseini, H. A.; Sabouri, Z.; Forouzanfar, F.; Khatami, M.; Darroudi, M. Sol-gel Biosynthesis of Nickel Oxide Nanoparticles Using Cydonia Oblonga Extract and Evaluation of Their Cytotoxicity and Photocatalytic Activities. J. Mol. Struct. 2020, 1217, 128378. DOI: 10.1016/j.molstruc.2020.128378.
  • Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Fardood, S. T. Green Synthesis of Zinc Oxide and Copper Oxide Nanoparticles Using Aqueous Extract of Oak Fruit Hull (Jaft) and Comparing Their Photocatalytic Degradation of Basic Violet 3. Int. J. Environ. Res. 2018, 12, 29–37. DOI: 10.1007/s41742-018-0064-4.
  • Pakzad, K.; Alinezhad, H.; Nasrollahzadeh, M. Green Synthesis of Ni@Fe3O4 and CuO Nanoparticles Using Euphorbia Maculata Extract as Photocatalysts for the Degradation of Organic Pollutants under UV-irradiation. Ceram. Int. 2019, 45, 17173–17182. DOI: 10.1016/j.ceramint.2019.05.272.
  • Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K. S.; Ravikumar, V. Green Synthesis of Colloidal Copper Oxide Nanoparticles Using Carica Papaya and Its Application in Photocatalytic Dye Degradation. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2014, 121, 746–750. DOI: 10.1016/j.saa.2013.12.020.
  • Singh, J.; Kumar, V.; Kim, K.-H.; Rawat, M. Biogenic Synthesis of Copper Oxide Nanoparticles Using Plant Extract and Its Prodigious Potential for Photocatalytic Degradation of Dyes. Environ. Res. 2019, 177, 108569. DOI: 10.1016/j.envres.2019.108569.
  • Rafique, M.; Shafiq, F.; Ali Gillani, S. S.; Shakil, M.; Bilal Tahir, M.; Sadaf, I. Eco-friendly Green and Biosynthesis of Copper Oxide Nanoparticles Using Citrofortunella Microcarpa Leaves Extract for Efficient Photocatalytic Degradation of Rhodamin B Dye Form Textile Wastewater. Optik. 2020, 208, 164053. DOI: 10.1016/j.ijleo.2019.164053.
  • Zaman, M. B.; Poolla, R.; Singh, P.; Gudipati, T. Biogenic Synthesis of CuO Nanoparticles Using Tamarindus Indica L. And a Study of Their Photocatalytic and Antibacterial Activity. Environ. Nanotechnol. Monit. Manage. 2020, 14, 100346. DOI: 10.1016/j.enmm.2020.100346.
  • Singh, S.; Kumar, N.; Kumar, M.; Agarwal, A.; Mizaikoff, B. Electrochemical Sensing and Remediation of 4-nitrophenol Using Bio-synthesized Copper Oxide Nanoparticles. Chem. Eng. J. 2017, 313, 283–292. DOI: 10.1016/j.cej.2016.12.049.
  • Ijaz, F.; Shahid, S.; Khan, S. A.; Ahmad, W.; Zaman, S. Green Synthesis of Copper Oxide Nanoparticles Using Abutilon Indicum Leaf Extract: Antimicrobial, Antioxidant and Photocatalytic Dye Degradation Activities. Trop. J. Pharm. Res. 2017, 16, 743–753. DOI: 10.4314/tjpr.v16i4.2.
  • Jafarirad, S.; Rasoulpour, I.; Divband, B.; Torghabe, I. H.; Kosari-Nasab, M. Innovative Biocapped CuO Nano-photocatalysts: A Rapid and Green Method for Photocatalytic Degradation of 4-nitrophenol. Mater. Res. Innovations. 2018, 22, 415–421.
  • Manjari, G.; Saran, S.; Arun, T.; Rao, A. V. B.; Devipriya, S. P. Catalytic and Recyclability Properties of Phytogenic Copper Oxide Nanoparticles Derived from Aglaia Elaeagnoidea Flower Extract. J. Saudi Chem. Soc. 2017, 21, 610–618. DOI: 10.1016/j.jscs.2017.02.004.
  • Mehr, E. S.; Sorbiun, M.; Ramazani, A.; Fardood, S. T. Plant-mediated Synthesis of Zinc Oxide and Copper Oxide Nanoparticles by Using Ferulago Angulata (Schlecht) Boiss Extract and Comparison of Their Photocatalytic Degradation of Rhodamine B (Rhb) under Visible Light Irradiation. J. Mater. Sci.: Mater. Electron. 2018, 29, 1333–1340.
  • Bordbar, M.; Sharifi-Zarchi, Z.; Khodadadi, B. Green Synthesis of Copper Oxide Nanoparticles/clinoptilolite Using Rheum Palmatum L. Root Extract: High Catalytic Activity for Reduction of 4-nitro Phenol, Rhodamine B, and Methylene Blue. J. Sol-Gel Sci. Technol. 2017, 81, 724–733. DOI: 10.1007/s10971-016-4239-1.
  • Sreeju, N.; Rufus, A.; Philip, D. Studies on Catalytic Degradation of Organic Pollutants and Anti-bacterial Property Using Biosynthesized CuO Nanostructures. J. Mol. Liq. 2017, 242, 690–700. DOI: 10.1016/j.molliq.2017.07.077.
  • Tabrizi Hafez Moghaddas, S. M.; Elahi, B.; Javanbakht, V. Biosynthesis of Pure Zinc Oxide Nanoparticles Using Quince Seed Mucilage for Photocatalytic Dye Degradation. J. Alloys Compd. 2020, 821, 153519. DOI: 10.1016/j.jallcom.2019.153519.
  • Chen, L.; Batjikh, I.; Hurh, J.; Han, Y.; Huo, Y.; Ali, H.; Li, J. F.; Rupa, E. J.; Ahn, J. C.; Mathiyalagan, R.; et al. Green Synthesis of Zinc Oxide Nanoparticles from Root Extract of Scutellaria Baicalensis and Its Photocatalytic Degradation Activity Using Methylene Blue. Optik. 2019, 184, 324–329. DOI: 10.1016/j.ijleo.2019.03.051.
  • Kaviya, S.; Prasad, E. Biogenic Synthesis of ZnO–Ag Nano Custard Apples for Efficient Photocatalytic Degradation of Methylene Blue by Sunlight Irradiation. RSC Adv. 2015, 5, 17179–17185. DOI: 10.1039/C4RA15293J.
  • Nava, O. J.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Mota-González, M. L.; Olivas, A. Influence of Camellia Sinensis Extract on Zinc Oxide Nanoparticle Green Synthesis. J. Mol. Struct. 2017, 1134, 121–125. DOI: 10.1016/j.molstruc.2016.12.069.
  • Rathnasamy, R.; Thangasamy, P.; Thangamuthu, R.; Sampath, S.; Alagan, V. Green Synthesis of ZnO Nanoparticles Using Carica Papaya Leaf Extracts for Photocatalytic and Photovoltaic Applications. J. Mater. Sci.: Mater. Electron. 2017, 28, 10374–10381.
  • Sohrabnezhad, S.; Seifi, A. The Green Synthesis of Ag/ZnO in Montmorillonite with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2016, 386, 33–40. DOI: 10.1016/j.apsusc.2016.05.102.
  • Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N. S.; Kadaikunnan, S.; Al-anbr, M. N.; Khaled, J. M.; Benelli, G. Facile Green Synthesis of Zinc Oxide Nanoparticles Using Ulva Lactuca Seaweed Extract and Evaluation of Their Photocatalytic, Antibiofilm and Insecticidal Activity. J. Photochem. Photobiol. B: Biol. 2018, 178, 249–258. DOI: 10.1016/j.jphotobiol.2017.11.006.
  • Patil, S. S.; Mali, M. G.; Tamboli, M. S.; Patil, D. R.; Kulkarni, M. V.; Yoon, H.; Kim, H.; Al-Deyab, S. S.; Yoon, S. S.; Kolekar, S. S. Green Approach for Hierarchical Nanostructured Ag-ZnO and Their Photocatalytic Performance under Sunlight. Catal. Today. 2016, 260, 126–134. DOI: 10.1016/j.cattod.2015.06.004.
  • Essawy, A. A.; Alsohaimi, I. H.; Alhumaimess, M. S.; Hassan, H. M. A.; Kamel, M. M. Green Synthesis of Spongy Nano-ZnO Productive of Hydroxyl Radicals for Unconventional Solar-driven Photocatalytic Remediation of Antibiotic Enriched Wastewater. J. Environ. Manage. 2020, 271, 110961. DOI: 10.1016/j.jenvman.2020.110961.
  • Liu, Y. C.; Li, J. F.; Ahn, J. C.; Pu, J. Y.; Rupa, E. J.; Huo, Y.; Yang, D. C. Biosynthesis of Zinc Oxide Nanoparticles by One-pot Green Synthesis Using Fruit Extract of Amomum Longiligulare and Its Activity as a Photocatalyst. Optik. 2020, 218, 165245. DOI: 10.1016/j.ijleo.2020.165245.
  • Vinayagam, R.; Selvaraj, R.; Arivalagan, P.; Varadavenkatesan, T. Synthesis, Characterization and Photocatalytic Dye Degradation Capability of Calliandra Haematocephala-mediated Zinc Oxide Nanoflowers. J. Photochem. Photobiol. B: Biol. 2020, 203, 111760. DOI: 10.1016/j.jphotobiol.2019.111760.
  • Ravichandran, V.; Sumitha, S.; Ning, C. Y.; Xian, O. Y.; Yu, U. K.; Paliwal, N.; Ali Shah, S. A.; Tripathy, M. Durian Waste Mediated Green Synthesis of Zinc Oxide Nanoparticles and Evaluation of Their Antibacterial, Antioxidant, Cytotoxicity and Photocatalytic Activity. Green Chem. Lett. Rev. 2020, 13, 102–116. DOI: 10.1080/17518253.2020.1738562.
  • Rambabu, K.; Bharath, G.; Banat, F.; Show, P. L. Green Synthesis of Zinc Oxide Nanoparticles Using Phoenix Dactylifera Waste as Bioreductant for Effective Dye Degradation and Antibacterial Performance in Wastewater Treatment. J. Hazard. Mater. 2021, 402, 123560. DOI: 10.1016/j.jhazmat.2020.123560.
  • Nahi, J.; Radhakrishnan, A.; Beena, B. Green Synthesis of Zinc Oxide Incorporated Nanocellulose with Visible Light Photocatalytic Activity and Application for the Removal of Antibiotic Enrofloxacin from Aqueousmedia. Mater. Today Proc. 2020. DOI: 10.1016/j.matpr.2020.05.253.
  • Khan, Z. U. H.; Sadiq, H. M.; Shah, N. S.; Khan, A. U.; Muhammad, N.; Hassan, S. U.; Tahir, K.; Khan, F. U.; Imran, M.; Ahmad, N. Greener Synthesis of Zinc Oxide Nanoparticles Using Trianthema Portulacastrum Extract and Evaluation of Its Photocatalytic and Biological Applications. J. Photochem. Photobiol. B: Biol. 2019, 192, 147–157. DOI: 10.1016/j.jphotobiol.2019.01.013.
  • Kaliraj, L.; Ahn, J. C.; Rupa, E. J.; Abid, S.; Lu, J.; Yang, D. C. Synthesis of Panos Extract Mediated ZnO Nano-flowers as Photocatalyst for Industrial Dye Degradation by UV Illumination. J. Photochem. Photobiol. B: Biol. 2019, 199, 111588. DOI: 10.1016/j.jphotobiol.2019.111588.
  • Vidya, C.; Manjunatha, C.; Chandraprabha, M.; Rajshekar, M.; Mal, A. R. Hazard Free Green Synthesis of ZnO Nano-photo-catalyst Using Artocarpus Heterophyllus Leaf Extract for the Degradation of Congo Red Dye in Water Treatment Applications. J. Environ. Chem. Eng. 2017, 5, 3172–3180. DOI: 10.1016/j.jece.2017.05.058.
  • Sharma, S. ZnO Nano-flowers from Carica Papaya Milk: Degradation of Alizarin Red-S Dye and Antibacterial Activity against Pseudomonas Aeruginosa and Staphylococcus Aureus. Optik. 2016, 127, 6498–6512. DOI: 10.1016/j.ijleo.2016.04.036.
  • Ganesh, M.; Lee, S. G.; Jayaprakash, J.; Mohankumar, M.; Jang, H. T. Hydnocarpus Alpina Wt Extract Mediated Green Synthesis of ZnO Nanoparticle and Screening of Its Anti-microbial, Free Radical Scavenging, and Photocatalytic Activity. Biocatal. Agric. Biotechnol. 2019, 19, 101129. DOI: 10.1016/j.bcab.2019.101129.
  • Sudhaparimala, S.; Vaishnavi, M. Biological Synthesis of Nano Composite SnO2-ZnO–screening for Efficient Photocatalytic Degradation and Antimicrobial Activity. Mater. Today Proc. 2016, 3, 2373–2380.
  • Paul, B.; Vadivel, S.; Dhar, S. S.; Debbarma, S.; Kumaravel, M. One-pot Green Synthesis of Zinc Oxide Nano Rice and Its Application as Sonocatalyst for Degradation of Organic Dye and Synthesis of 2-benzimidazole Derivatives. J. Phys. Chem. Solids. 2017, 104, 152–159. DOI: 10.1016/j.jpcs.2017.01.007.
  • Maruthai, J.; Muthukumarasamy, A.; Baskaran, B. Optical, Biological and Catalytic Properties of ZnO/MgO Nanocomposites Derived via Musa Paradisiaca Bract Extract. Ceram. Int. 2018, 44, 13152–13160. DOI: 10.1016/j.ceramint.2018.04.138.
  • Varadavenkatesan, T.; Lyubchik, E.; Pai, S.; Pugazhendhi, A.; Vinayagam, R.; Selvaraj, R. Photocatalytic Degradation of Rhodamine B by Zinc Oxide Nanoparticles Synthesized Using the Leaf Extract of Cyanometra Ramiflora. J. Photochem. Photobiol. B: Biol. 2019, 199, 111621. DOI: 10.1016/j.jphotobiol.2019.111621.
  • Zare, M.; Namratha, K.; Thakur, M.; Byrappa, K. Biocompatibility Assessment and Photocatalytic Activity of Bio-hydrothermal Synthesis of ZnO Nanoparticles by Thymus Vulgaris Leaf Extract. Mater. Res. Bull. 2019, 109, 49–59. DOI: 10.1016/j.materresbull.2018.09.025.
  • Prasad, A. R.; Garvasis, J.; Oruvil, S. K.; Joseph, A. Bio-inspired Green Synthesis of Zinc Oxide Nanoparticles Using Abelmoschus Esculentus Mucilage and Selective Degradation of Cationic Dye Pollutants. J. Phys. Chem. Solids. 2019, 127, 265–274. DOI: 10.1016/j.jpcs.2019.01.003.
  • Muthukumar, H.; Gire, A.; Kumari, M.; Manickam, M. Biogenic Synthesis of Nano-biomaterial for Toxic Naphthalene Photocatalytic Degradation Optimization and Kinetics Studies. Int. Biodeterior. Biodegrad. 2017, 119, 587–594. DOI: 10.1016/j.ibiod.2016.10.036.
  • Malakootian, M.; Gharaghani, M. A.; Dehdarirad, A.; Khatami, M.; Ahmadian, M.; Heidari, M. R.; Mahdizadeh, H. ZnO Nanoparticles Immobilized on the Surface of Stones to Study the Removal Efficiency of 4-nitroaniline by the Hybrid Advanced Oxidation Process (Uv/zno/o3). J. Mol. Struct. 2019, 1176, 766–776. DOI: 10.1016/j.molstruc.2018.09.033.
  • Alkasir, M.; Samadi, N.; Sabouri, Z.; Mardani, Z.; Khatami, M.; Darroudi, M. Evaluation Cytotoxicity Effects of Biosynthesized Zinc Oxide Nanoparticles Using Aqueous Linum Usitatissimum Extract and Investigation of Their Photocatalytic Activityackn. Inorg. Chem. Commun. 2020, 119, 108066. DOI: 10.1016/j.inoche.2020.108066.
  • Malakootian, M.; Khatami, M.; Mahdizadeh, H.; Nasiri, A.; Gharaghani, M. A. A Study on the Photocatalytic Degradation of p-Nitroaniline on Glass Plates by Thermo-Immobilized ZnO Nanoparticle. Inorg. Nano-Metal Chem. 2020, 50, 124–135. DOI: 10.1080/24701556.2019.1662807.
  • Arularasu, M. V.; Devakumar, J.; Rajendran, T. V. An Innovative Approach for Green Synthesis of Iron Oxide Nanoparticles: Characterization and Its Photocatalytic Activity. Polyhedron. 2018, 156, 279–290. DOI: 10.1016/j.poly.2018.09.036.
  • Padhi, D. K.; Panigrahi, T. K.; Parida, K.; Singh, S. K.; Mishra, P. M. Green Synthesis of Fe3O4/RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustainable Chem. Eng. 2017, 5, 10551–10562. DOI: 10.1021/acssuschemeng.7b02548.
  • Kumar, B.; Smita, K.; Cumbal, L.; Debut, A.; Galeas, S.; Guerrero, V. H. Phytosynthesis and Photocatalytic Activity of Magnetite (Fe3o4) Nanoparticles Using the Andean Blackberry Leaf. Mater. Chem. Phys. 2016, 179, 310–315. DOI: 10.1016/j.matchemphys.2016.05.045.
  • Liu, X.; Fang, Z.; Zhang, X.; Zhang, W.; Wei, X.; Geng, B. Preparation and Characterization of Fe3O4/CdS Nanocomposites and Their Use as Recyclable Photocatalysts. Cryst. Growth Des. 2009, 9, 197–202. DOI: 10.1021/cg800213w.
  • Hossen Bhuiyan, M. S.; Yusuf Miah, M.; Paul, S. C.; Aka, T. D.; Saha, O.; Rahaman, M. M.; Sharif, M. J. I.; Habiba, O.; Ashaduzzaman, M. Green Synthesis of Iron Oxide Nanoparticle Using Carica Papaya Leaf Extract: Application for Photocatalytic Degradation of Remazol Yellow RR Dye and Antibacterial Activity. Heliyon. 2020, 6, e04603. DOI: 10.1016/j.heliyon.2020.e04603.
  • Shams, S.; Ullah Khan, A.; Yuan, Q.; Ahmad, W.; Wei, Y.; Haq Khan, Z. U.; Shams, S.; Ahmad, A.; Rahman, A. U.; Ullah, S. Facile and Eco-benign Synthesis of Au@Fe2O3 Nanocomposite: Efficient Photocatalytic, Antibacterial and Antioxidant Agent. J. Photochem. Photobiol. B: Biol. 2019, 199, 111632. DOI: 10.1016/j.jphotobiol.2019.111632.
  • Atrak, K.; Ramazani, A.; Taghavi Fardood, S. Green Synthesis of Zn0.5Ni0.5AlFeO4 Magnetic Nanoparticles and Investigation of Their Photocatalytic Activity for Degradation of Reactive Blue 21 Dye. Environ. Technol. 2020, 41. DOI: 10.1080/09593330.09592019.01581841..
  • Chiou, J.-R.; Lai, B.-H.; Hsu, K.-C.; Chen, D.-H. One-pot Green Synthesis of Silver/iron Oxide Composite Nanoparticles for 4-nitrophenol Reduction. J. Hazard. Mater. 2013, 248-249, 394–400. DOI: 10.1016/j.jhazmat.2013.01.030.
  • Rajabi, H. R.; Sajadiasl, F.; Karimi, H.; Moradi Alvand, Z. Green Synthesis of Zinc Sulfide Nanophotocatalysts Using Aqueous Extract of Ficus Johannis Plant for Efficient Photodegradation of Some Pollutants. J. Mater. Res. Technol. 2020, 9, 15638–15647. DOI: 10.1016/j.jmrt.2020.11.017.
  • Kannan, S.; Subiramaniyam, N. P.; Sathishkumar, M. A Novel Green Synthesis Approach for Improved Photocatalytic Activity and Antibacterial Properties of Zinc Sulfide Nanoparticles Using Plant Extract of Acalypha Indica and Tridax Procumbens. J. Mater. Sci.: Mater. Electron. 2020, 31, 9846–9859.
  • Mansur, A. A. P.; Mansur, H. S.; Ramanery, F. P.; Oliveira, L. C.; Souza, P. P. “Green” Colloidal ZnS Quantum Dots/chitosan Nano-photocatalysts for Advanced Oxidation Processes: Study of the Photodegradation of Organic Dye Pollutants. Appl. Catal. B Environ. 2014, 158-159, 269–279. DOI: 10.1016/j.apcatb.2014.04.026.
  • Jacob, J. M.; Sinharoy, A.; Lens, P. N. L. Photocatalytic Degradation of Congo Red by Zinc Sulfide Quantum Dots Produced by Anaerobic Granular Sludge. Environ. Technol. 2020, 1–10. DOI: 10.1080/09593330.2020.1856940.
  • Elango, G.; Kumaran, S. M.; Kumar, S. S.; Muthuraja, S.; Roopan, S. M. Green Synthesis of SnO2 Nanoparticles and Its Photocatalytic Activity of Phenolsulfonphthalein Dye. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2015, 145, 176–180. DOI: 10.1016/j.saa.2015.03.033.
  • Karthik, K.; Revathi, V.; Tatarchuk, T. Microwave-assisted Green Synthesis of SnO2 Nanoparticles and Their Optical and Photocatalytic Properties. Mol. Cryst. Liq. Cryst. 2018, 671, 17–23. DOI: 10.1080/15421406.2018.1542080.
  • Manjula, P.; Boppella, R.; Manorama, S. V. A Facile and Green Approach for the Controlled Synthesis of Porous SnO2 Nanospheres: Application as an Efficient Photocatalyst and an Excellent Gas Sensing Material. ACS Appl. Mater. Interfaces. 2012, 4, 6252–6260. DOI: 10.1021/am301840s.
  • Bhattacharjee, A.; Ahmaruzzaman, M. Facile Synthesis of SnO2 Quantum Dots and Its Photocatalytic Activity in the Degradation of Eosin Y Dye: A Green Approach. Mater. Lett. 2015, 139, 418–421. DOI: 10.1016/j.matlet.2014.10.121.
  • Begum, S.; Ahmaruzzaman, M. Green Synthesis of SnO2 Quantum Dots Using Parkia Speciosa Hassk Pods Extract for the Evaluation of Anti-oxidant and Photocatalytic Properties. J. Photochem. Photobiol. B: Biol. 2018, 184, 44–53. DOI: 10.1016/j.jphotobiol.2018.04.041.
  • Haritha, E.; Roopan, S. M.; Madhavi, G.; Elango, G.; Al-Dhabi, N. A.; Valan Arasu, M. Green Chemical Approach Towards the Synthesis of SnO2 NPs in Argument with Photocatalytic Degradation of Diazo Dye and Its Kinetic Studies. J. Photochem. Photobiol. B: Biol. 2016, 162, 441–447. DOI: 10.1016/j.jphotobiol.2016.07.010.
  • Honarmand, M.; Golmohammadi, M.; Naeimi, A. Green Synthesis of SnO2-bentonite Nanocomposites for the Efficient Photodegradation of Methylene Blue and Eriochrome black-T. Mater. Chem. Phys. 2020, 241, 122416. DOI: 10.1016/j.matchemphys.2019.122416.
  • Bui, D. P.; Nguyen, M. T.; Tran, H. H.; You, S.-J.; Wang, Y.-F.; Viet, P. V. Green Synthesis of Ag@SnO2 Nanocomposites for Enhancing Photocatalysis of Nitrogen Monoxide Removal under Solar Light Irradiation. Catal. Commun. 2020, 136, 105902. DOI: 10.1016/j.catcom.2019.105902.
  • Sinha, T.; Ahmaruzzaman, M.; Adhikari, P. P.; Bora, R. Green and Environmentally Sustainable Fabrication of Ag-SnO2 Nanocomposite and Its Multifunctional Efficacy as Photocatalyst and Antibacterial and Antioxidant Agent. ACS Sustainable Chem. Eng. 2017, 5, 4645–4655. DOI: 10.1021/acssuschemeng.6b03114.
  • Shi, H.; Wei, X.; Zhang, J.; Long, Q.; Liu, W.; Zhou, Y.; Ding, Y. Green Synthesis and Direct Z‐Scheme CdSe/BiOCl Heterojunctions for Enhanced Photocatalytic Performance. Chem. Sel. 2020, 5, 6230–6235.
  • Han, J.; Dai, F.; Liu, Y.; Zhao, R.; Wang, L.; Feng, S. Synthesis of CdSe/SrTiO3 Nanocomposites with Enhanced Photocatalytic Hydrogen Production Activity. Appl. Surf. Sci. 2019, 467-468, 1033–1039. DOI: 10.1016/j.apsusc.2018.10.267.
  • Cao, K.; Chen, -M.-M.; Chang, F.-Y.; Cheng, -Y.-Y.; Tian, L.-J.; Li, F.; Deng, G.-Z.; Wu, C. The Biosynthesis of Cadmium Selenide Quantum Dots by Rhodotorula Mucilaginosa PA-1 for Photocatalysis. Biochem. Eng. J. 2020, 156, 107497. DOI: 10.1016/j.bej.2020.107497.
  • Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. Strongly Coupled 2D-2D Nanojunctions between P-doped Ni2S (Ni2sp) Cocatalysts and CdS Nanosheets for Efficient Photocatalytic H2 Evolution. Chem. Eng. J. 2020, 390, 124496. DOI: 10.1016/j.cej.2020.124496.
  • Shen, R.; Zhang, L.; Chen, X.; Jaroniec, M.; Li, N.; Li, X. Integrating 2D/2D CdS/α-Fe2O3 Ultrathin Bilayer Z-scheme Heterojunction with Metallic β-NiS Nanosheet-based Ohmic-junction for Efficient Photocatalytic H2 Evolution. Appl. Catal. B Environ. 2020, 266, 118619. DOI: 10.1016/j.apcatb.2020.118619.
  • Rao, M. D.; Pennathur, G. Green Synthesis and Characterization of Cadmium Sulphide Nanoparticles from Chlamydomonas Reinhardtii and Their Application as Photocatalysts. Mater. Res. Bull. 2017, 85, 64–73. DOI: 10.1016/j.materresbull.2016.08.049.
  • Ma, S.; Xu, X.; Xie, J.; Li, X. Improved Visible-light Photocatalytic H2 Generation over CdS Nanosheets Decorated by NiS2 and Metallic Carbon Black as Dual Earth-abundant Cocatalysts. Chin. J. Catal. 2017, 38, 1970–1980. DOI: 10.1016/S1872-2067(17)62965-6.
  • Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile Synthesis of Fluorescent Carbon Dots Using Watermelon Peel as a Carbon Source. Mater. Lett. 2012, 66, 222–224. DOI: 10.1016/j.matlet.2011.08.081.
  • Yin, B.; Deng, J.; Peng, X.; Long, Q.; Zhao, J.; Lu, Q.; Chen, Q.; Li, H.; Tang, H.; Zhang, Y. Green Synthesis of Carbon Dots with Down-and Up-conversion Fluorescent Properties for Sensitive Detection of Hypochlorite with a Dual-readout Assay. Analyst. 2013, 138, 6551–6557. DOI: 10.1039/c3an01003a.
  • De, B.; Karak, N. A Green and Facile Approach for the Synthesis of Water Soluble Fluorescent Carbon Dots from Banana Juice. RSC Adv. 2013, 3, 8286–8290. DOI: 10.1039/c3ra00088e.
  • Lai, C.-W.; Hsiao, Y.-H.; Peng, Y.-K.; Chou, P.-T. Facile Synthesis of Highly Emissive Carbon Dots from Pyrolysis of Glycerol; Gram Scale Production of Carbon dots/mSiO 2 for Cell Imaging and Drug Release. J. Mater. Chem. 2012, 22, 14403–14409. DOI: 10.1039/c2jm32206d.
  • Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, X. Easy Synthesis of Highly Fluorescent Carbon Quantum Dots from Gelatin and Their Luminescent Properties and Applications. Carbon. 2013, 60, 421–428. DOI: 10.1016/j.carbon.2013.04.055.
  • Shukla, D.; Pandey, F. P.; Kumari, P.; Basu, N.; Tiwari, M. K.; Lahiri, J.; Kharwar, R. N.; Parmar, A. S. Label‐Free Fluorometric Detection of Adulterant Malachite Green Using Carbon Dots Derived from the Medicinal Plant Source Ocimum Tenuiflorum. ChemistrySelect. 2019, 4, 4839–4847. DOI: 10.1002/slct.201900530.
  • Du, W.; Xu, X.; Hao, H.; Liu, R.; Zhang, D.; Gao, F.; Lu, Q. Green Synthesis of Fluorescent Carbon Quantum Dots and Carbon Spheres from Pericarp. Sci. China Chem. 2015, 58, 863–870. DOI: 10.1007/s11426-014-5256-y.
  • Xu, H.; Yang, X.; Li, G.; Zhao, C.; Liao, X. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples. J. Agric. Food Chem. 2015, 63, 6707–6714. DOI: 10.1021/acs.jafc.5b02319.
  • Khan, Z. M.; Rahman, R. S.; Islam, S.; Zulfequar, M. Hydrothermal Treatment of Red Lentils for the Synthesis of Fluorescent Carbon Quantum Dots and Its Application for Sensing Fe3+. Opt. Mater. 2019, 91, 386–395. DOI: 10.1016/j.optmat.2019.03.054.
  • Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Troganis, A.; Stalikas, C. Two of a Kind but Different: Luminescent Carbon Quantum Dots from Citrus Peels for Iron and Tartrazine Sensing and Cell Imaging. Talanta. 2017, 175, 305–312. DOI: 10.1016/j.talanta.2017.07.053.
  • Mondal, T. K.; Mondal, S.; Ghorai, U. K.; Saha, S. K. White Light Emitting Lanthanide Based Carbon Quantum Dots as Toxic Cr (VI) and pH Sensor. J. Colloid Interface Sci. 2019, 553, 177–185. DOI: 10.1016/j.jcis.2019.06.009.
  • Rashidi, A.; Ghobadian, B.; Najafi, G.; Khoshtaghaza, M. H.; Sidik, N. A. C.; Yadegari, A.; Xian, H. W. Experimental Investigation of Conduction and Convection Heat Transfer Properties of a Novel Nanofluid Based on Carbon Quantum Dots. Int. Commun. Heat Mass Transfer. 2018, 90, 85–92. DOI: 10.1016/j.icheatmasstransfer.2017.10.002.
  • Kuang, X.; Kuang, R.; Dong, Y.; Wang, Z.; Sun, X.; Zhang, Y.; Wei, Q. Hollow Polyhedral Arrays Composed of a Co3O4 Nanocrystal Ensemble on a Honeycomb-like Carbon Hybrid for Boosting Highly Active and Stable Evolution Oxygen. Inorg. Chem. 2019, 58, 3683–3689. DOI: 10.1021/acs.inorgchem.8b03236.
  • Mondal, T. K.; Saha, S. K. Facile Approach to Synthesize Nitrogen-and Oxygen-Rich Carbon Quantum Dots for pH Sensor, Fluorescent Indicator, and Invisible Ink Applications. ACS Sustainable Chem. Eng. 2019, 7, 19669–19678. DOI: 10.1021/acssuschemeng.9b04817.
  • Zhan, J.; Peng, R.; Wei, S.; Chen, J.; Peng, X.; Xiao, B. Ethanol-Precipitation-Assisted Highly Efficient Synthesis of Nitrogen-Doped Carbon Quantum Dots from Chitosan. ACS Omega. 2019. DOI: 10.1021/acsomega.9b03318.
  • Zhao, J.; Song, Q.; Wu, F.; Guo, X.; Xu, T. Green Synthesis of N-doped Carbon Quantum Dots for the Detection of Nitrite Ion in Water Sample. IOP Conference Series: Earth and Environmental Science, IOP Publishing, Macao, China. , 2019, 012068.
  • Liao, S.; Huang, X.; Yang, H.; Chen, X. Nitrogen-doped Carbon Quantum Dots as a Fluorescent Probe to Detect Copper Ions, Glutathione, and Intracellular pH. Anal. Bioanal. Chem. 2018, 410, 7701–7710. DOI: 10.1007/s00216-018-1387-x.
  • Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z. One-pot Hydrothermal Synthesis of Highly Luminescent Nitrogen-doped Amphoteric Carbon Dots for Bioimaging from Bombyx Mori Silk–natural Proteins. J. Mater Chem. B. 2013, 1, 2868–2873. DOI: 10.1039/c3tb20418a.
  • Campbell, E.; Hasan, M. T.; Gonzalez Rodriguez, R.; Akkaraju, G. R.; Naumov, A. V. Doped Graphene Quantum Dots for Intracellular Multicolor Imaging and Cancer Detection. ACS Biomater. Sci. Eng. 2019, 5, 4671–4682. DOI: 10.1021/acsbiomaterials.9b00603.
  • Lyu, B.; Li, H.-J.; Xue, F.; Sai, L.; Gui, B.; Qian, D.; Wang, X.; Yang, J. Facile, Gram-scale and Eco-friendly Synthesis of Multi-color Graphene Quantum Dots by Thermal-driven Advanced Oxidation Process. Chem. Eng. J. 2020, 388, 124285. DOI: 10.1016/j.cej.2020.124285.
  • Sun, Y.; Zheng, Y.; Pan, H.; Chen, J.; Zhang, W.; Fu, L.; Zhang, K.; Tang, N.; Du, Y. Magnetism of Graphene Quantum Dots. Npj Quantum Mater. 2017, 2, 1–7. DOI: 10.1038/s41535-017-0010-2.
  • Yan, C.; Hu, X.; Guan, P.; Hou, T.; Chen, P.; Wan, D.; Zhang, X.; Wang, J.; Wang, C. Highly Biocompatible Graphene Quantum Dots: Green Synthesis, Toxicity Comparison and Fluorescence Imaging. J. Mater. Sci. 2020, 55, 1198–1215. DOI: 10.1007/s10853-019-04079-2.
  • Fan, T.; Li, Y.; Shen, J.; Ye, M. Novel GQD-PVP-CdS Composite with Enhanced Visible-light-driven Photocatalytic Properties. Appl. Surf. Sci. 2016, 367, 518–527. DOI: 10.1016/j.apsusc.2016.01.194.
  • Zhang, D.; Wen, L.; Huang, R.; Wang, H.; Hu, X.; Xing, D. Mitochondrial Specific Photodynamic Therapy by Rare-earth Nanoparticles Mediated Near-infrared Graphene Quantum Dots. Biomaterials. 2018, 153, 14–26. DOI: 10.1016/j.biomaterials.2017.10.034.
  • Tyagi, A.; Tripathi, K. M.; Singh, N.; Choudhary, S.; Gupta, R. K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016, 6, 72423–72432. DOI: 10.1039/C6RA10488F.
  • Ahmadian-Fard-Fini, S.; Salavati-Niasari, M.; Safardoust-Hojaghan, H. Hydrothermal Green Synthesis and Photocatalytic Activity of Magnetic CoFe2O4–carbon Quantum Dots Nanocomposite by Turmeric Precursor. J. Mater. Sci.: Mater. Electron. 2017, 28, 16205–16214.
  • Sargin, I.; Yanalak, G.; Arslan, G.; Patir, I. H. Green Synthesized Carbon Quantum Dots as TiO2 Sensitizers for Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy. 2019, 44, 21781–21789. DOI: 10.1016/j.ijhydene.2019.06.168.
  • Ramar, V.; Moothattu, S.; Balasubramanian, K. Metal Free, Sunlight and White Light Based Photocatalysis Using Carbon Quantum Dots from Citrus Grandis: A Green Way to Remove Pollution. Solar Energy. 2018, 169, 120–127. DOI: 10.1016/j.solener.2018.04.040.
  • Shahba, H.; Sabet, M. Two-Step and Green Synthesis of Highly Fluorescent Carbon Quantum Dots and Carbon Nanofibers from Pine Fruit. J. Fluoresc. 30, 2020, 927–938. DOI: 10.1007/s10895-020-02562-7
  • Yuan, A.; Lei, H.; Xi, F.; Liu, J.; Qin, L.; Chen, Z.; Dong, X. Graphene Quantum Dots Decorated Graphitic Carbon Nitride Nanorods for Photocatalytic Removal of Antibiotics. J. Colloid Interface Sci. 2019, 548, 56–65. DOI: 10.1016/j.jcis.2019.04.027.
  • Sheik Mydeen, S.; Raj Kumar, R.; Sivakumar, R.; Sambathkumar, S.; Kottaisamy, M.; Vasantha, V. S. Graphene Quantum dots/ZnO Nanocomposite: Synthesis, Characterization, Mechanistic Investigations of Photocatalytic and Antibacterial Activities. Chem. Phys. Lett. 2020, 761, 138009. DOI: 10.1016/j.cplett.2020.138009.
  • Tam, T. V.; Altahtamouni, T. M.; Minh, V. L.; Phuong Ha, H. K.; Chung, N. T. K.; Thuan, D. V. One-pot Microwave-assisted Green Synthesis of Amine-functionalized Graphene Quantum Dots for High Visible Light Photocatalytic Application. C. R. Chim. 2019, 22, 822–828. DOI: 10.1016/j.crci.2019.10.005.
  • Wang, J.; Li, Y.; Ge, J.; Zhang, B.-P.; Wan, W. Improving Photocatalytic Performance of ZnO via Synergistic Effects of Ag Nanoparticles and Graphene Quantum Dots. Phys. Chem. Chem. Phys. 2015, 17, 18645–18652. DOI: 10.1039/C5CP02352A.
  • Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent Developments of Doped g-C3N4 Photocatalysts for the Degradation of Organic Pollutants. Crit. Rev. Environ. Sci. Technol. 2020. DOI: 10.1080/10643389.2020.1734433.
  • Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and Application of Active Sites in g-C3N4-based Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88. DOI: 10.1016/j.jmst.2020.03.033.
  • Zhang, J.; Lv, J.; Dai, K.; Liu, Q.; Liang, C.; Zhu, G. Facile and Green Synthesis of Novel Porous g-C3N4/Ag3PO4 Composite with Enhanced Visible Light Photocatalysis. Ceram. Int. 2017, 43, 1522–1529.
  • Zhang, X.; Wu, Q.; Du, Z.; Zheng, Y.; Li, Q. Green Synthesis of g-C3N4-Pt Catalyst and Application to Photocatalytic Hydrogen Evolution from Water Splitting. Fullerenes Nanotubes and Carbon Nanostruct. 2018, 26, 688–695. DOI: 10.1080/1536383X.2018.1469006.
  • Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. S-scheme Sb2WO6/g-C3N4 Photocatalysts with Enhanced Visible-light-induced Photocatalytic NO Oxidation Performance. Chin. J. Catal. 2021, 42, 69–77. DOI: 10.1016/S1872-2067(20)63631-2.
  • Ren, D.; Zhang, W.; Ding, Y.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. In Situ Fabrication of Robust Cocatalyst‐Free CdS/g‐C3N4 2D–2D Step‐Scheme Heterojunctions for Highly Active H2 Evolution. Solar RRL. 2020, 4, 1900423. DOI: 10.1002/solr.201900423.
  • Lu, X.; Xie, J.; Liu, S.-Y.; Adamski, A.; Chen, X.; Li, X. Low-Cost Ni3B/Ni(OH)2 as an Ecofriendly Hybrid Cocatalyst for Remarkably Boosting Photocatalytic H2 Production over g-C3N4 Nanosheets. ACS Sustainable Chem. Eng. 2018, 6, 13140–13150. DOI: 10.1021/acssuschemeng.8b02653.
  • Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal-organic Frameworks for Photocatalysis Physics. Chem. Chem. Phys. 18, 2016, 7563–7572. DOI: 10.1039/C5CP05885F
  • Xiao, J.-D.; Jiang, H.-L. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. Acc. Chem. Res. 2019, 52, 356–366. DOI: 10.1021/acs.accounts.8b00521.
  • Hao, M.; Qiu, M.; Yang, H.; Hu, B.; Wang, X. Recent Advances on Preparation and Environmental Applications of MOF-derived Carbons in Catalysis. Sci. Total Environ. 2021, 760, 143333. DOI: 10.1016/j.scitotenv.2020.143333.
  • Shi, Y.; Yang, A.-F.; Cao, C.-S.; Zhao, B. Applications of MOFs: Recent Advances in Photocatalytic Hydrogen Production from Water. Coord. Chem. Rev. 2019, 390, 50–75. DOI: 10.1016/j.ccr.2019.03.012.
  • Oveisi, M.; Mahmoodi, N. M.; Asli, M. A. Facile and Green Synthesis of Metal-organic Framework/inorganic Nanofiber Using Electrospinning for Recyclable Visible-light Photocatalysis. J. Cleaner Prod. 2019, 222, 669–684. DOI: 10.1016/j.jclepro.2019.03.066.
  • Singh, K.; Kukkar, D.; Singh, R.; Kukkar, P.; Bajaj, N.; Singh, J.; Rawat, M.; Kumar, A.; Kim, K.-H. In Situ Green Synthesis of Au/Ag Nanostructures on a Metal-organic Framework Surface for Photocatalytic Reduction of P-nitrophenol. J. Ind. Eng. Chem. 2020, 81, 196–205. DOI: 10.1016/j.jiec.2019.09.008.
  • Kang, X.; Wu, X.; Han, X.; Yuan, C.; Liu, Y.; Cui, Y. Rational Synthesis of Interpenetrated 3D Covalent Organic Frameworks for Asymmetric Photocatalysis. Chem. Sci. 2020, 11, 1494–1502. DOI: 10.1039/C9SC04882K.
  • Liu, X.; Pang, H.; Liu, X.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M.; Hu, B.; Yang, H.; Wang, X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation. 2, 2021, 100076.
  • Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X.; et al. Covalent Organic Framework Photocatalysts: Structures and Applications Chem. Soc. Rev. 49, 2020, 4135–4165. DOI: 10.1039/D0CS00278J
  • Bagheri, A. R.; Aramesh, N. Towards the Room-temperature Synthesis of Covalent Organic Frameworks: A Mini-review. J. Mater. Sci. 2021, 56, 1116–1132. DOI: 10.1007/s10853-020-05308-9.
  • Wang, G.-B.; Li, S.; Yan, C.-X.; Zhu, F.-C.; Lin, -Q.-Q.; Xie, K.-H.; Geng, Y.; Dong, Y.-B. Covalent Organic Frameworks: Emerging High-performance Platforms for Efficient Photocatalytic Applications J. Mater. Chem. A. 2020, 8, 6957–6983. DOI: 10.1039/D0TA00556H.
  • Martín-Illán, J. Á.; Rodríguez-San-Miguel, D.; Franco, C.; Imaz, I.; Maspoch, D.; Puigmartí-Luis, J.; Zamora, F. Green Synthesis of Imine-based Covalent Organic Frameworks in Water. Chem. Commun. 2020, 56, 6704–6707. DOI: 10.1039/D0CC02033H.
  • Zinatloo-Ajabshir, S.; Morassaei, M. S.; Salavati-Niasari, M. Nd2Sn2O7 Nanostructures as Highly Efficient Visible Light Photocatalyst: Green Synthesis Using Pomegranate Juice and Characterization. J. Cleaner Prod. 2018, 198, 11–18. DOI: 10.1016/j.jclepro.2018.07.031.
  • Hosseinpour-Mashkani, S. M.; Sobhani-Nasab, A. Green Synthesis and Characterization of NaEuTi2O6 Nanoparticles and Its Photocatalyst Application. J. Mater. Sci.: Mater. Electron. 2017, 28, 4345–4350.
  • Mehdizadeh, P.; Orooji, Y.; Amiri, O.; Salavati-Niasari, M.; Moayedi, H. Green Synthesis Using Cherry and Orange Juice and Characterization of TbFeO3 Ceramic Nanostructures and Their Application as Photocatalysts under UV Light for Removal of Organic Dyes in Water. J. Cleaner Prod. 2020, 252, 119765. DOI: 10.1016/j.jclepro.2019.119765.
  • Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Green Synthesis and Characterization of Dy2Ce2O7 Ceramic Nanostructures with Good Photocatalytic Properties under Visible Light for Removal of Organic Dyes in Water. J. Cleaner Prod. 2018, 192, 678–687. DOI: 10.1016/j.jclepro.2018.05.042.
  • Zinatloo-Ajabshir, S.; Morassaei, M. S.; Amiri, O.; Salavati-Niasari, M. Green Synthesis of Dysprosium Stannate Nanoparticles Using Ficus Carica Extract as Photocatalyst for the Degradation of Organic Pollutants under Visible Irradiation. Ceram. Int. 2020, 46, 6095–6107. DOI: 10.1016/j.ceramint.2019.11.072.
  • Fardood, S. T.; Moradnia, F.; Ramazani, A. Green Synthesis and Characterisation of ZnMn2O4 Nanoparticles for Photocatalytic Degradation of Congo Red Dye and Kinetic Study. Micro Nano Lett. 2019, 14, 986–991. DOI: 10.1049/mnl.2019.0071.
  • Naik, M. M.; Naik, H. S. B.; Nagaraju, G.; Vinuth, M.; Naika, H. R.; Vinu, K. Green Synthesis of Zinc Ferrite Nanoparticles in Limonia Acidissima Juice: Characterization and Their Application as Photocatalytic and Antibacterial Activities. Microchem. J. 2019, 146, 1227–1235. DOI: 10.1016/j.microc.2019.02.059.
  • Garg, S.; Yadav, M.; Chandra, A.; Sapra, S.; Gahlawat, S.; Ingole, P. P.; Todea, M.; Bardos, E.; Pap, Z.; Hernadi, K. Facile Green Synthesis of BiOBr Nanostructures with Superior Visible-Light-Driven Photocatalytic Activity. Materials. 2018, 11, 1273. DOI: 10.3390/ma11081273.
  • Yao, L.; Yang, H.; Chen, Z.; Qiu, M.; Hu, B.; Wang, X. Bismuth Oxychloride-based Materials for the Removal of Organic Pollutants in Wastewater. Chemosphere. 2020, 128576. DOI: 10.121016/j.chemosphere.122020.128576.
  • Wang, C.-Y.; Wu, T.; Lin, Y.-W. Preparation and Characterization of Bismuth Oxychloride/reduced Graphene Oxide for Photocatalytic Degradation of Rhodamine B under White-light Light-emitting-diode and Sunlight Irradiation. J. Photochem. Photobiol. A Chem. 2019, 371, 355–364. DOI: 10.1016/j.jphotochem.2018.11.043.
  • Eghbali-Arani, M.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Pourmasoud, S. Green Synthesis and Characterization of SmVO4 Nanoparticles in the Presence of Carbohydrates as Capping Agents with Investigation of Visible-Light Photocatalytic Properties. J. Electron. Mater. 2018, 47, 3757–3769. DOI: 10.1007/s11664-018-6236-3.
  • Luo, S.; Dong, S.; Lu, C.; Yu, C.; Ou, Y.; Luo, L.; Sun, J.; Sun, J. Rational and Green Synthesis of Novel Two-dimensional WS2/MoS2 Heterojunction via Direct Exfoliation in Ethanol-water Targeting Advanced Visible-light-responsive Photocatalytic Performance. J. Colloid Interface Sci. 2018, 513, 389–399. DOI: 10.1016/j.jcis.2017.11.044.
  • Liang, Z.; Shen, R.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. A Review on 2D MoS2 Cocatalysts in Photocatalytic H2 Production. J. Mater. Sci. Technol. 2020, 56, 89–121. DOI: 10.1016/j.jmst.2020.04.032.
  • Goudarzi, M.; Salavati-Niasari, M. Using Pomegranate Peel Powders as a New Capping Agent for Synthesis of CuO/ZnO/Al2O3 Nanostructures; Enhancement of Visible Light Photocatalytic Activity. Int. J. Hydrogen Energy. 2018, 43, 14406–14416. DOI: 10.1016/j.ijhydene.2018.06.034.
  • Malakootian, M.; Nasiri, A.; Asadipour, A.; Kargar, E. Facile and Green Synthesis of ZnFe2O4@CMC as a New Magnetic Nanophotocatalyst for Ciprofloxacin Degradation from Aqueous Media. Process Saf. Environ. Prot. 2019, 129, 138–151. DOI: 10.1016/j.psep.2019.06.022.
  • Shivaji, K.; Monica, E. S.; Devadoss, A.; Kirubakaran, D. D.; Dhas, C. R.; Jain, S. M.; Pitchaimuthu, S. Synthesizing Green Photocatalyst Using Plant Leaf Extract for Water Pollutant Treatment. In Green Photocatalysts. Environmental Chemistry for a Sustainable World; Naushad, M., Rajendran, S., Lichtfouse, E., Eds.; Springer: Cham, 2020,  25–46.
  • Yaqoob, A. A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M. N. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water. 2020, 12, 495. DOI: 10.3390/w12020495.
  • Lin, H.; Maggard, P. A. Synthesis and Structures of a New Series of Silver-vanadate Hybrid Solids and Their Optical and Photocatalytic Properties. Inorg. Chem. 2008, 47, 8044–8052. DOI: 10.1021/ic8004129.
  • Yu, Z. T.; Liao, Z. L.; Jiang, Y. S.; Li, G. H.; Chen, J. S. Water‐Insoluble Ag–U–Organic Assemblies with Photocatalytic Activity. Chemistry. 2005, 11, 2642–2650. DOI: 10.1002/chem.200401189.
  • Liao, Z.-L.; Li, G.-D.; Bi, M.-H.; Chen, J.-S. Preparation, Structures, and Photocatalytic Properties of Three New Uranyl− Organic Assembly Compounds. Inorg. Chem. 2008, 47, 4844–4853. DOI: 10.1021/ic800109y.
  • Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Efficient Hydrogen Production and Photocatalytic Reduction of Nitrobenzene over a Visible-light-responsive Metal–organic Framework Photocatalyst. Catal. Sci. Technol. 2013, 3, 2092–2097. DOI: 10.1039/c3cy00211j.
  • Zhang, X.; Wang, J.; Dong, -X.-X.; Lv, Y.-K. Functionalized Metal-organic Frameworks for Photocatalytic Degradation of Organic Pollutants in Environment. Chemosphere. 2020, 242, 125144. DOI: 10.1016/j.chemosphere.2019.125144.
  • Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés I Xamena, F. X.; Garcia, H. Semiconductor Behavior of a Metal‐organic Framework (MOF). Chemistry. 2007, 13, 5106–5112. DOI: 10.1002/chem.200601003.
  • Das, M. C.; Xu, H.; Wang, Z.; Srinivas, G.; Zhou, W.; Yue, Y.-F.; Nesterov, V. N.; Qian, G.; Chen, B. A Zn 4 O-containing Doubly Interpenetrated Porous Metal–organic Framework for Photocatalytic Decomposition of Methyl Orange. Chem. Commun. 2011, 47, 11715–11717. DOI: 10.1039/c1cc12802g.
  • Jiang, W.; Zong, X.; An, L.; Hua, S.; Miao, X.; Luan, S.; Wen, Y.; Tao, F. F.; Sun, Z. Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction. ACS Catal. 2018, 8, 2209–2217. DOI: 10.1021/acscatal.7b04323.
  • Meng, A.; Zhu, B.; Zhong, B.; Zhang, L.; Cheng, B. Direct Z-scheme TiO2/CdS Hierarchical Photocatalyst for Enhanced Photocatalytic H2-production Activity. Appl. Surf. Sci. 2017, 422, 518–527. DOI: 10.1016/j.apsusc.2017.06.028.
  • Koe, W. S.; Lee, J. W.; Chong, W. C.; Pang, Y. L.; Sim, L. C. An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565.
  • Pradhan, N.; Pal, A.; Pal, T. Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir. 2001, 17, 1800–1802. DOI: 10.1021/la000862d.
  • Sinha, A. K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T. Synthesis of Gold Nanochains via Photoactivation Technique and Their Catalytic Applications. J. Colloid Interface Sci. 2013, 398, 13–21. DOI: 10.1016/j.jcis.2013.01.061.
  • Xu, C.; Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Luque, R.; Puente-Santiago, A. R. Benign-by-design Nature-inspired Nanosystems in Biofuels Production and Catalytic Applications. Renewable Sustainable Energy Rev. 2019, 112, 195–252.
  • Zhang, X.; Lin, M.; Lin, X.; Zhang, C.; Wei, H.; Zhang, H.; Yang, B. Polypyrrole-enveloped Pd and Fe3O4 Nanoparticle Binary Hollow and Bowl-like Superstructures as Recyclable Catalysts for Industrial Wastewater Treatment. ACS Appl. Mater. Interfaces. 2014, 6, 450–458. DOI: 10.1021/am404440d.
  • Alharbi, N. S.; Hu, B.; Hayat, T.; Rabah, S. O.; Alsaedi, A.; Zhuang, L.; Wang, X. Efficient Elimination of Environmental Pollutants through Sorption-reduction and Photocatalytic Degradation Using Nanomaterials. Frontiers Chem. Sci. Eng. 14, 2020, 1124–1135. DOI:10.1007/s11705-020-1923-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.