Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 1
665
Views
5
CrossRef citations to date
0
Altmetric
Comment

Titania Derived from NH2-MIL-125(Ti) Metal–Organic Framework for Selective Photocatalytic Conversion of CO2 to Propylene Carbonate

, , , , , & show all

References

  • Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C Photochem. Rev. Sep 2012, 13(3), 169–189. doi:10.1016/j.jphotochemrev.2012.06.001
  • Hu, H.; Lin, Y.; Hu, Y. H. Synthesis, Structures and Applications of Single Component core-shell Structured TiO2: A Review. Chem. Eng. J. Nov 2019, 375, 122029. DOI: 10.1016/j.cej.2019.122029.
  • Pasquale, S.; Zimbone, M.; Ruffino, F.; Stella, G.; Gueli, A. M. Evaluation of the Photocatalytic Activity of Water-Based TiO2 Nanoparticle Dispersions Applied on Historical Painting Surfaces. Heritage. 2021 Sep, 4(3, Art. no. 3), 1854–1867. doi:10.3390/heritage4030104.
  • Mohd, N. B. R.; Alkaf, A. A.; Zuhan, M. K. N. B. M. Formulation of water-based White Colour Paint from Waste Titanium Dioxide. Mater. Today Proc. Jan 2022, 48, 1905–1909. DOI: 10.1016/j.matpr.2021.09.360.
  • Yorov, K. E., et al. Engineering SiO2–TiO2 Binary Aerogels for Sun Protection and Cosmetic Applications. J. Supercrit. Fluids. Feb 2021, 169, 105099. DOI: 10.1016/j.supflu.2020.105099.
  • Al-Gamal, A. Q.; Falath, W. S.; Saleh, T. A. Enhanced Efficiency of Polyamide Membranes by Incorporating TiO2-Graphene Oxide for Water Purification. J. Mol. Liq. Feb 2021, 323, 114922. DOI: 10.1016/j.molliq.2020.114922.
  • Shen, S.; Fu, J. J.; Wang, H. B. Unravelling the Favorable Photocatalytic Effect of Hydrogenation Process on the Novel g-C3N4-TiO2 Catalysts for Water Purification. Diam. Relat. Mater. Apr 2021, 114, 108292. DOI: 10.1016/j.diamond.2021.108292.
  • Zhang, R.; Elzatahry, A. A.; Al-Deyab, S. S.; Zhao, D. Mesoporous Titania: From Synthesis to Application. Nano Today. 2012 Aug, 7(4), 344–366. doi:10.1016/j.nantod.2012.06.012.
  • Zulfiqar, M.; Sufian, S.; Bahadar, A.; Lashari, N.; Rabat, N. E.; Mansor, N. Surface-fluorination of TiO2 Photocatalysts for Remediation of Water Pollution: A Review. J. Clean. Prod. Oct 2021, 317, 128354. DOI: 10.1016/j.jclepro.2021.128354.
  • Gupta, P.; Rathore, V. Study of TiO2 Material: A Photocatalyst for Contrary Pollutants. Mater. Today Proc. Jan 2021, 42, 1345–1352. DOI: 10.1016/j.matpr.2020.12.1198.
  • Hou, X.; Aitola, K.; Lund, P. D. TiO2 Nanotubes for dye-sensitized Solar cells—A Review. Energy Sci. Eng. 2021, 9(7), 921–937. DOI: 10.1002/ese3.831.
  • Ge, Z., et al. Investigation of the TiO2 Nanoparticles Aggregation with High Light Harvesting for high-efficiency dye-sensitized Solar Cells. Mater. Res. Bull. Mar 2021, 135, 111148. DOI: 10.1016/j.materresbull.2020.111148.
  • Obregón, S.; Rodríguez-González, V. Photocatalytic TiO2 Thin Films and Coatings Prepared by sol–gel Processing: A Brief Review. J. Sol-Gel Sci. Technol. 2021 Oct, 10.1007/s10971-021-05628-5
  • Moridon, S. N. F.; Arifin, K.; Yunus, R. M.; Minggu, L. J.; Kassim, M. B. Photocatalytic Water Splitting Performance of TiO2 Sensitized by Metal Chalcogenides: A Review. Ceram. Int. 2021 Nov, 10.1016/j.ceramint.2021.11.199
  • Cano-Casanova, L.; Amorós-Pérez, A.; Lillo-Ródenas, M. Á.; Del C. Román-Martínez, M. Effect of the Preparation Method (Sol-Gel or Hydrothermal) and Conditions on the TiO2 Properties and Activity for Propene Oxidation. Materials. 2018 Nov, 11(11, Art. no. 11), 2227. doi:10.3390/ma11112227.
  • Kocijan, M.; Ćurković, L.; Radošević, T.; Podlogar, M. Enhanced Photocatalytic Activity of Hybrid rGO@TiO2/CN Nanocomposite for Organic Pollutant Degradation under Solar Light Irradiation. Catalysts. 2021 Sep, 11(9, Art. no. 9), 1023. doi:10.3390/catal11091023.
  • Coelho, L. L.; Hotza, D.; Estrella, A. S.; de Amorim, S. M.; Li Puma, G.; de F. P. M. Moreira, R. Modulating the Photocatalytic Activity of TiO2 (P25) with Lanthanum and Graphene Oxide. J. Photochem. Photobiol. Chem. Mar 2019, 372, 1–10. 10.1016/j.jphotochem.2018.11.048.
  • Han, H., et al. Enhanced Photoelectrochemical Characteristic of TiO2 Nanotubes via Surface Plasma Treatment. Ceram. Int. Nov 2021, 47(21), 30741–30746. DOI: 10.1016/j.ceramint.2021.07.253.
  • Wang, Y.; He, Y.; Lai, Q.; Fan, M. Review of the Progress in Preparing Nano TiO2: An Important Environmental Engineering Material. J. Environ. Sci. 2014 Nov, 26(11), 2139–2177. doi:10.1016/j.jes.2014.09.023.
  • Mamaghani, A. H.; Haghighat, F.; Lee, C.-S. Hydrothermal/solvothermal Synthesis and Treatment of TiO2 for Photocatalytic Degradation of Air Pollutants: Preparation, Characterization, Properties, and Performance. Chemosphere. Mar 2019, 219, 804–825. DOI: 10.1016/j.chemosphere.2018.12.029.
  • Guo, R.; Bao, Y.; Kang, Q.; Liu, C.; Zhang, W.; Zhu, Q. Solvent-controlled Synthesis and Photocatalytic Activity of Hollow TiO2 Microspheres Prepared by the Solvothermal Method. Colloids Surf. Physicochem. Eng. Asp. Jan 2022, 633, 127931. 10.1016/j.colsurfa.2021.127931.
  • Lu, X.; Li, M.; Hoang, S.; Suib, S. L.; Gao, P.-X. Solvent Effects on the Heterogeneous Growth of TiO2 Nanostructure Arrays by Solvothermal Synthesis. Catal. Today. Jan 2021, 360, 275–283. DOI: 10.1016/j.cattod.2020.02.044.
  • Imoisili, P. E.; Jen, T.-C.; Safaei, B. Microwave-assisted sol–gel Synthesis of TiO2-mixed Metal Oxide Nanocatalyst for Degradation of Organic Pollutant. Nanotechnol. Rev. 2021 Jan, 10(1), 126–136. doi:10.1515/ntrev-2021-0016.
  • de Oliveira, C. R. S.; Batistella, M. A.; Ulson de Souza, A. A.; Ulson de Souza, S. M. A. G. Synthesis of Superacid Sulfated TiO2 Prepared by sol-gel Method and Its Use as a Titania Precursor in Obtaining a kaolinite/TiO2 nano-hybrid Composite. Powder Technol. Mar 2021, 381, 366–380. DOI: 10.1016/j.powtec.2020.11.063.
  • Maver, K.; Arčon, I.; Fanetti, M.; Emin, S.; Valant, M.; Lavrenčič Štangar, U. Improved Photocatalytic Activity of anatase-rutile Nanocomposites Induced by low-temperature sol-gel Sn-modification of TiO2. Catal. Today. Feb 2021, 361, 124–129. DOI: 10.1016/j.cattod.2020.01.045.
  • Saif, M., Aboul-Fotouh, S.M.K., El-Molla, S.A. et al. 2020. Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater. J Nanopart Res 14, 1227 (2012). https://doi.org/10.1007/s11051-012-1227-4
  • Pang, Y. L.; Lim, S.; Ong, H. C.; Chong, W. T. A Critical Review on the Recent Progress of Synthesizing Techniques and Fabrication of TiO2-based Nanotubes Photocatalysts. Appl. Catal. Gen. Jul 2014, 481, 127–142. DOI: 10.1016/j.apcata.2014.05.007.
  • Dong, Y.; Fei, X. Effect of Isopropanol on Crystal Growth and Photocatalytic Properties Regulation of Anatase TiO2 Single Crystals. Mater. Technol. 2020 Jan, 35(2), 102–111. doi:10.1080/10667857.2019.1659526.
  • Gan, Y. X.; Jayatissa, A. H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. Jan 2020, 2020, e8917013. DOI: 10.1155/2020/8917013.
  • Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R. T.; Zinya, S. Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. Titan. Dioxide - Mater. Sustain. Environ. 2018. DOI: 10.5772/INTECHOPEN.75425.
  • Carter, C. B., and Norton, M. G. Eds., Sols, Gels, and Organic Chemistry. Ceramic Materials: Science and Engineering, Springer: New York, NY. 2007; pp. 400–411. https://link.springer.com/book/10.1007/978-1-4614-3523-5#about-book-content.
  • Mackenzie, J. D. Applications of the sol-gel Process. J. Non-Cryst. Solids. 1988 Mar, 100(1), 162–168. doi:10.1016/0022-3093(88)90013-0.
  • Wu, L.; Shi, S.; Li, Q.; Zhang, X.; Cui, X. TiO2 Nanoparticles Modified with 2D MoSe2 for Enhanced Photocatalytic Activity on Hydrogen Evolution. Int. J. Hydrog. Energy. 2019 Jan, 44(2), 720–728. doi:10.1016/j.ijhydene.2018.10.214.
  • Wanag, A.; Sienkiewicz, A.; Rokicka-Konieczna, P.; Kusiak-Nejman, E.; Morawski, A. W. Influence of Modification of Titanium Dioxide by Silane Coupling Agents on the Photocatalytic Activity and Stability. J. Environ. Chem. Eng. 2020 Aug, 8(4), 103917. doi:10.1016/j.jece.2020.103917.
  • Bala, S.; Mondal, I.; Goswami, A.; Pal, U.; Mondal, R. Co-MOF as a Sacrificial Template: Manifesting a New Co3O4/TiO2 System with a p–n Heterojunction for Photocatalytic Hydrogen Evolution. J. Mater. Chem. A. 2015 Oct, 3(40), 20288–20296. doi:10.1039/C5TA05210F.
  • Pan, L., et al. MOF-derived C-doped ZnO Prepared via a two-step Calcination for Efficient Photocatalysis. Appl. Catal. B. Jul 2016, 189, 181–191. DOI: 10.1016/j.apcatb.2016.02.066.
  • Cedeño Morales, E. M.; Kharisov, B. I.; Méndez-Rojas, M. A. CO2 Photoreduction by MOF-derived Carbon Nanomaterials: A Review. Mater. Today Proc. Jan 2021, 46, 2982–2997. DOI: 10.1016/j.matpr.2020.12.702.
  • Zhao, S., et al. Ce-based Heterogeneous Catalysts by Partial Thermal Decomposition of Ce-MOFs in Activation of Peroxymonosulfate for the Removal of Organic Pollutants under Visible Light. Chemosphere. Oct 2021, 280, 130637. DOI: 10.1016/j.chemosphere.2021.130637.
  • Wang, A.; Ni, J.; Wang, W.; Wang, X.; Liu, D.; Zhu, Q. MOF-derived N-doped ZnO Carbon Skeleton@hierarchical Bi2MoO6 S-scheme Heterojunction for Photodegradation of SMX: Mechanism, Pathways and DFT Calculation. J. Hazard. Mater. Mar 2022, 426, 128106. DOI: 10.1016/j.jhazmat.2021.128106.
  • Yue, K., et al. Recent Advances in Strategies to Modify MIL-125 (Ti) and Its Environmental Applications. J. Mol. Liq. Aug 2021, 335, 116108. DOI: 10.1016/j.molliq.2021.116108.
  • Hendon, C. H., et al. Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. J. Am. Chem. Soc. Jul 2013, 135(30), 10942–10945. DOI: 10.1021/ja405350u.
  • Fu, Y., et al. An Amine-Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angew. Chem. Int. Ed. 2012, 51(14), 3364–3367. DOI: 10.1002/anie.201108357.
  • Chen, X.; Peng, X.; Jiang, L.; Yuan, X.; Fei, J.; Zhang, W. Photocatalytic Removal of Antibiotics by MOF-derived Ti3+- and Oxygen vacancy-doped anatase/rutile TiO2 Distributed in a Carbon Matrix. Chem. Eng. J. Jan 2022, 427, 130945. DOI: 10.1016/j.cej.2021.130945.
  • Ghosh, T. B.; Dhabal, S.; Datta, A. K. On Crystallite Size Dependence of Phase Stability of Nanocrystalline TiO2. J. Appl. Phys. 2003 Oct, 94(7), 4577–4582. doi:10.1063/1.1604966.
  • Liu, Z., et al. Effective Elimination of As(III) via Simultaneous Photocatalytic Oxidation and Adsorption by a Bifunctional cake-like TiO2 Derived from MIL-125(Ti). Catal. Sci. Technol. Apr 2018, 8(7), 1936–1944. DOI: 10.1039/C8CY00125A.
  • Qiu, J.; Dai, D.; Zhang, L.; Li, M.; Xu, J.; Yao, J. Photocatalytic Conversion of Sodium Lignosulfonate into Vanillin Using Mesoporous TiO2 Derived from MIL-125. Microporous Mesoporous Mater. May 2021, 319, 111043. DOI: 10.1016/j.micromeso.2021.111043.
  • Oar-Arteta, L.; Wezendonk, T.; Sun, X.; Kapteijn, F.; Gascon, J. Metal Organic Frameworks as Precursors for the Manufacture of Advanced Catalytic Materials. Mater. Chem. Front. 2017, 1(9), 1709–1745. DOI: 10.1039/C7QM00007C.
  • Xue, C., et al. MIL-125 and NH2-MIL-125 Modified TiO2 Nanotube Array as Efficient Photocatalysts for Pollute Degradation. Chem. Lett. Mar, 2018. 10.1246/cl.180010.
  • Zhang, Y.; Chen, J.; Li, X. Preparation and Photocatalytic Performance of Anatase/Rutile Mixed-Phase TiO2 Nanotubes. Catal. Lett. 2010 Nov, 139(3), 129–133. doi:10.1007/s10562-010-0425-x.
  • Tao, T., et al. Porous TiO2 with a Controllable Bimodal Pore Size Distribution from Natural Ilmenite. CrystEngComm. Feb 2011, 13(5), 1322–1327. DOI: 10.1039/C0CE00533A.
  • Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why Is Anatase a Better Photocatalyst than Rutile? - Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2014 Feb, 4(1), 4043. doi:10.1038/srep04043.
  • Hussein Ahmed, S.; Bakiro, M.; Alzamly, A. Photocatalytic Activities of FeNbO4/NH2-MIL-125(Ti) Composites toward the Cycloaddition of CO2 to Propylene Oxide. Molecules. 2021 Jan, 26(6, Art. no. 6), 1693. doi:10.3390/molecules26061693.
  • Wilson, J. N.; Idriss, H. Effect of Surface Reconstruction of TiO2(001) Single Crystal on the Photoreaction of Acetic Acid. J. Catal. 2003 Feb, 214(1), 46–52. doi:10.1016/S0021-9517(02)00172-0.
  • Wilson, J. N.; Idriss, H. Structure Sensitivity and Photocatalytic Reactions of Semiconductors. Effect of the Last Layer Atomic Arrangement. J. Am. Chem. Soc. 2002 Sep, 124(38), 11284–11285. doi:10.1021/ja027155m.
  • Suram, S. K.; Newhouse, P. F.; Gregoire, J. M. High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS Comb. Sci. Nov 2016, 18(11), 673–681. doi:10.1021/acscombsci.6b00053
  • He, Y.; Zhang, X.; Wei, Y.; Chen, X.; Wang, Z.; Yu, R. Ti-MOF Derived N-Doped TiO2 Nanostructure as Visible-light-driven Photocatalyst. Chem. Res. Chin. Univ. Jun 2020, 36(3), 447–452. doi:10.1007/s40242-020-0106-2
  • Prajapati, P. K.; Kumar, A.; Jain, S. L. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 and Epoxides Using CoPc/TiO2 Hybrid under Mild Conditions. ACS Sustain. Chem. Eng. 2018 Jun, 6(6), 7799–7809. doi:10.1021/acssuschemeng.8b00755.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.