Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 3
296
Views
1
CrossRef citations to date
0
Altmetric
Review Article

α- Cyclodextrin based Chemosensors: A Review

&

References

  • Villers, M. A. Sur la fermentation de la fécule par ľ action du ferment butyrique. Compt. Rend.1891, 112, 536–537. French.
  • Schardinger, F., and Untersurh, Z. Nahr. U. Genussm, 6 (1903). Isolation of alpha and beta-dextrins, 865.
  • Schardinger, F. Wien. klin. Wochschr., 17 (1904) 207.
  • Schardinger, F. Zentr. Bakteriol. Parasitenk, Abt. II. 1911. Empirical formula of alpha-detrins, 29, 188.
  • French, D. The Schardingerdextrins. Adv. Carbohyd. Chem. 1957, 12, 189–260. DOI: 10.1016/s0096-5332(08)60209-x.
  • Loftsson, T.; Duchêne, D. Cyclodextrins and Their Pharmaceutical Applications. Int. J. Pharmaceutics. 2007, 329(1–2), 1–11. DOI: 10.1016/j.ijpharm.2006.10.044.
  • Freudenberg, K.; Jacobi, R. Über Schardingers Dextrine aus Stärke. Justus Liebig’s Annalen der Chemie. 1935, 518(1), 102. DOI: 10.1002/jlac.19355180107.
  • Freudenberg, K.; Schaaf, E.; Dumpert, G.; Ploetz, T. Neue Ansichten über die Stärke. Die Naturwissenschaften. 1939, 27(51), 850. DOI: 10.1007/BF01489430.
  • Von Dietrich, H.; Cramer, F. Über Einschlußverbindungen, VII. Mitteil.): Zur Struktur der Jodketten in Kanal-Einschlußverbindungen. Chem. Ber. 1954, 87(6), 806. DOI: 10.1002/cber.19540870604.
  • Sicard, P. J., and Saniez, M.-H. Biosynthesis of Cycloglycosyltransferase and Obtention of Its Enzymatic Reaction Products. In Cyclodextrins and Their Industrial Uses; Duchene, D. Ed.;(Paris: Editions de Sante), 1987; pp 75–103.
  • Schmid, G. Preparation and Application of γ-cyclodextrin. In New Trends in Cyclodextrins and Derivatives; Duchene, D. Ed.;(Paris: Editions de Sante), 1991; pp 25–54.
  • Rendleman, J. A. Enhanced Production of γ-cyclodextrin from Corn Syrup Solids by Means of Cyclodecanone as Selective Complexant. Carboh. Res. 1993, 247, 223–237. DOI: 10.1016/0008-6215(93)84255-5.
  • Flaschel, E.; Landert, J. P.; Spiesser, D.; Renken, A. The Production of alpha-cyclodextrin by Enzymatic Degradation of Starch. Ann. N.Y. Acad. Sci. 1984, 434(1), 70–77. DOI: 10.1111/j.1749-6632.1984.tb29802.x.
  • Rajput, K. N.; Patel, K. C.; Trivedi, U. B. A Novel Cyclodextrin Glucotransferase from an alkaliphileMicrobacterium Terrae KNR 9: Purification and Properties. 3 Biotech. 2016, 6(2), 168. DOI: 10.1007/s13205-016-0495-6.
  • Rendleman, J. A. Enhanced Production of Cyclomaltooctaose (γ-cyclodextrin) through Selective Complexation with C12 Cyclic Compounds. Carbohyd. Res. 1992, 230(2), 343–359. DOI: 10.1016/0008-6215(92)84043-R.
  • Schmid, G. Preparation and Industrial Production of Cyclodextrins. In Comprehensive Supermolecular Chemistry, Atwood, J., Davis, E. D., MacNicol, D. D., Vogtle, F.(Eds.); Cyclodextrins Newyork: Pergamon: 1996; Vol. 3, pp 41–56.
  • Shieh, W. Process for Producing gamma-cyclodextrin, US Patent 5550222, (1996).
  • Larsen, D.; Beeren, S. R. Building up Cyclodextrins from scratch-templated Enzymatic Synthesis of Cyclodextrins Directly from Maltose. Chem. Commun. 2021, 57(20), 2503–2506. DOI: 10.1039/D1CC00137J.
  • Shieh, W. J.; Hedges, A. R. Properties and Applications of Cyclodextrins. J. Macromol. Sci., Part A: Pure Appl. Chem. 1996, 33(5), 673–683. DOI: 10.1080/10601329608010886.
  • Poulson, B. G.; Alsulami, Q. A.; Sharfalddin, A.; ElAgammy, E. F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural. Chem. Phys. Prop. Applicat. Polysaccharid. 2022, 3, 1–31.
  • Betzel, C.; Saenger, W.; Hingerty, B. E.; Brown, G. M. Topography of Cyclodextrin Inclusion Complexes, Part 20. Circular and flip-flop Hydrogen Bonding in beta-cyclodextrin Undecahydrate: A Neutron Diffraction Study. J. Am. Chem. Soc. 1984, 106(24), 7545–7557. DOI: 10.1021/ja00336a039.
  • Zhaofeng, L.; Chen, S.; Zhengbiao, G.; Chen, J.; Jing, W. Alpha-cyclodextrin: Enzymatic Production and Food Applications. Trends Food Sci. Technol. 2014, 35(2), 151–160. DOI: 10.1016/j.tifs.2013.11.005.
  • Blackwood, A. D.; Bucke, C. Addition of Polar Organic Solvents Can Improve the Product Selectivity of Cyclodextrin Glucosyltransferase, Solvent Effects on Cgtase. Enzyme Microb. Technol. 2000, 27(9), 704–708. DOI: 10.1016/S0141-0229(00)00270-2.
  • Armbruster, F. C.; Jacaway, W. A. Procedure for Production of alpha-cyclodextrin, United States Patent US 3640847, (1972).
  • Gawande, B. N.; Patkar, A. Y. Alpha-cyclodextrin Production Using Cyclodextrin Glucosyltransferase from Klebsiella Pneumoniae AS-22. Starch-Stärke. 2001, 53(2), 75–83. DOI: 10.1002/1521-379X(200102)53:2<75::AID-STAR75>3.0.CO;2-J.
  • Shieh, W. J.; Hedges, A. R. Process for Producing alpha-cyclodextrin Using Cyclomaltodextrin Glucanotransferase in Presence of Cyclohexane, United States Patent US 5,326,701, (1994).
  • Schmid, G. cyclodextrin. In Comprehensive Supramolecular Chemistry, 1st ed.; Atwood, J. L., Lehn, J. M., Eds.; Pergamon: Newyork, 2009; Vol. 3, pp 41–55.
  • Szejtli, J. Cyclodextrin Technology; Kluwer academic publishers: Dordrecht, Boston, 1988.
  • Buckley, J. D.; Coates, A. M.; Ranald, P., and Howe, C. Alpha-cyclodextrin. In Fiber Ingredients: Food Applications and Health Benefits; Cho, S. S., Samuel, P. (Boca Raton: CRC Press); Eds., 2009; 9–18.
  • Hamasaki, K.; Ueno, A.; Toda, F. A Fluorescent α-cyclodextrin as A Sensor for Detecting Aliphatic Alcohols by Dual Fluorescence Arising from Normal Planar and Twisted Intramolecular Charge Transfer Excited States. J. chem. soc. chem. commun. 1993, 3, 331–333. DOI: 10.1039/C39930000331.
  • Ikeda, H.; Ueno, A. Fluorescent alpha-cyclodextrin as a Chemosensor for Halomethanes. Chem. Commun. 2009, 28, 4281–4283.
  • Maniyazangan, M.; Rameshwaran, C.; Mariadasse, R.; Jeyakanthan, J.; Premkumar, K.; Stalin, T. Fluorescent Sensor for Hg2+ and Fe3+ Ions Using 3,3’-dihydroxybenzindine:α-cyclodextrin Supramolecular Complex: Characterization, in-silico and Cell Imaging Study. Sens. Actuators B Chem. 2017, 242, 1227–1238. DOI: 10.1016/j.snb.2016.09.093.
  • Yang, J.-H.; Kim, H. T., and Kim, H. A cyclodextrin-based Approach for Selective Detection of Catecholamine Harmone Mixtures. Micro Nano Syst. Lett. 2014, 2(1), 1.
  • Zor, E.; Saglam, M. E.; Alpaydin, S.; Bingol, H. A Reduced Graphene oxide/α-cyclodextrin Hybrid for the Detection of Methionine: Electrochemical, Fluorometric and Computational Studies. Anal. Methods. 2014, 6(16), 6522–6530. DOI: 10.1039/C4AY00984C.
  • Zor, E. Reduced Graphene oxide/α-cyclodextrin-based Electrochemical Sensor: Characterizarion and Simultaneous Detection of Adenine, Guanine and Thymine. J. Nat. Appl. Sci. 2017, 21(1), 146–152.
  • Wang, W.; Wong, N.-K.; Sun, M.; Yan, C.; Siyuan, M.; Yang, Q.; Yaoxian, L. Regenerable Fluorescent Nanosensors for Monitering and Recovering Metal Ions Based on Photoactivatable Monolayer self-assembly and host-guest Interactions. ACS Appl. Mater. Interfaces. 2015, 7(16), 8868–8875. DOI: 10.1021/acsami.5b01509.
  • Zhang, Y.; Qiang, L.; Guo, J.; Yaoxian, L.; Yang, Q.; Du, J. A Novel Magnetic Fluorescent Chemosensor for Cu 2+++ Based on self-assembled Systems of Azobenzene and α-cyclodextrin. RSC Adv. 2015, 5(82), 66674–66680. DOI: 10.1039/C5RA11251F.
  • Zhang, H.; Zhou, C.; Sun, J.; Xiao, L.; Tang, J. A Nanofibrous Membrane Fluorescent Sensor for Fluoride Ions Prepared by Electrospinning and host-guest Interaction. Matéria (Rio de Janerio). 2021, 26(2).
  • Lai, C. S. I.; Moody, G. J.; Thomas, J. D. R.; Mulligan, D. C.; Stoddart, J. F.; Zarzycki, R. Piezoelectric Quartz Crystal Detection of Benzene Vapour Using Chemically Modified Cyclodextrins. J. Chem. Soc. Perkin Trans. I. 1988, 2(3), 319–324. DOI: 10.1039/p29880000319.
  • Mahato, P.; Amrita Ghosh, S. K.; Mishra, A. S.; Mishra, S.; Das, A. Zn(II)-Cyclam Based Chromogenic Sensor for Recognition of ATP in Aqueous Solution under Physiological Conditions and Their Application as Viable Staining Agent for Microorganism. Inorg. Chem. 2011, 50(9), 4162–4170. DOI: 10.1021/ic200223g.
  • Sasan, S.; Chopra, T.; Gupta, A.; Tsering, D.; Kapoor, K. K., and Parkesh, R. Fluorescence “Turn-Off” and Colorimetric Sensor for Fe 2+, Fe 3+, and Cu 2+ Ions Based on a 2,5,7-Triarylimidazopyridine Scaffold. ACS Omega. 2022, 7(13), 11114–11125. DOI: 10.1021/acsomega.1c07193.
  • Hsieh, Y.-C.; Chir, J.-L.; Yang, S.-T.; Chen, S.-J.; Ching-Han, H.; An-Tai, W. A sugar-aza-crown ether-based Fluorescent Sensor for Cu2+ and Hg2+ Ions. Carbohydr. Res. 2011, 346(7), 978–981. DOI: 10.1016/j.carres.2011.03.010.
  • Xumeng, W.; Guo, Z.; Yongzhen, W.; Shiqin Zhu, T. D.; James, T. D.; Zhu, W. Near-Infrared Colorimetric and Fluorescent Cu 2+++ Sensors Based on Indoline–Benzothiadiazole Derivatives via Formation of Radical Cations. ACS Appl. Mater. Interf. 2013, 5(22), 12215–12220. DOI: 10.1021/am404491f.
  • Wang, D.; Marin, L.; Cheng, X. Fluorescent chitosan-BODIPY Macromolecular Chemosensors for Detection and Removal of Hg2+ and Fe3+ Ions. Int. J. Biol. Macromol. 2022, 198, 194–203. DOI: 10.1016/j.ijbiomac.2021.12.075.
  • Anu Prathapa, M. U.; Srivastavaa, R.; Satpati, B. Simultaneous Detection of Guanine, Adenine, Thymine, and Cytosine at polyaniline/MnO2 Modified Electrode. Electrochim. Acta. 2013, 114, 285–295. DOI: 10.1016/j.electacta.2013.10.064.
  • Hui, Y.; Xiaoyan, M.; Hou, X.; Chen, F.; Jie, Y. Silver nanoparticles-β-cyclodextrin-graphene Nanocomposites Based Biosensor for Guanine and Adenine Sensing. Ionics. 2015, 21(6), 1751–1759. DOI: 10.1007/s11581-014-1343-5.
  • Thangaraj, R.; Kumar, A. S. Simultaneous Detection of Guanine and Adenine in DNA and Meat Samples Using Graphitized Mesoporous Carbon Modified Electrode. J. Solid State Electrochem. 2013, 17(3), 583–590. DOI: 10.1007/s10008-012-1895-0.
  • Chen, J.-Y.; Chen, S.-M.; Weng, W.-H.; Li, Y.; Yeh, S.-D. Simultaneous Detection of DNA Bases on Electrodes Chemically Modified with Graphene-New Fuchsin. Int. J. Electrochem. Sci. 2013, 8, 3963–3973.
  • Sivakumar, K., and Parinamachivayam, G. Review on β-cyclodextrin Inclusion Complex Based Chemosensors for Heavy Metals. J. Incl. Phenom. Macrocycl. Chem. 2022, 102(7–8), 603–618. DOI: 10.1007/s10847-022-01153-2.
  • Alice, G.; Wheate, N. J. Macrocycles as drug-enhancing Excipients in Pharmaceutical Formulations. J. Inclusion Phenom. Macrocyclic Chem. 2021, 100(1–2), 55–69. DOI: 10.1007/s10847-021-01055-9.
  • Sivakumar, K.; Nichodemus, M.; Sankaran, K. R. Steric Effect Is a Decisive Factor on the Orientation Preference of Guest into Host: Evidence from 5-indanol/ β-CD Model. Mol. Phys. 2014, 112(14), 1879–1891. DOI: 10.1080/00268976.2013.868057.
  • Ogoshi, T.; Harada, A. Chemical Sensors Based on Cyclodextrin Derivatives. Sensors. 2008, 8(8), 4961–4982. DOI: 10.3390/s8084961.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.