Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 4
379
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals

ORCID Icon, , & ORCID Icon

References

  • Kitagawa, S. Metal–organic Frameworks (Mofs). Chem. Soc. Rev. 2014, 43(16), 5415–5418. DOI: 10.1039/C4CS90059F.
  • James, S. L. Metal-organic Frameworks. Chem. Soc. Rev. 2003, 32(5), 276–288. DOI: 10.1039/b200393g.
  • Rowsell, J. L., and Yaghi, O. M. Metal–organic Frameworks: A New Class of Porous Materials. Microporous Mesoporous Mater. 2004, 73(1–2), 3–14.
  • Furukawa, H.; Cordova, K. E.; O’Keeffe, M., and Yaghi, O. M. The Chemistry and Applications of metal-organic Frameworks. Science. 2013, 341(6149), 1230444. DOI: 10.1126/science.1230444.
  • Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A., and Zhou, H. C. Metal–organic Frameworks Based on Multicarboxylate Linkers. Coord. Chem. Rev. 2021, 426, 213542.
  • Razavi, S. A. A., and Morsali, A. Linker Functionalized metal-organic Frameworks. Coord. Chem. Rev. 2019, 399, 213023.
  • Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q., and Gentle, T.,sIII, et al. Tuning the Structure and Function of metal–organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43(16), 5561–5593. DOI: 10.1039/c4cs00003j.
  • Tanabe, K. K., and Cohen, S. M. Postsynthetic Modification of metal–organic frameworks—a Progress Report. Chem. Soc. Rev. 2011, 40(2), 498–519. DOI: 10.1039/C0CS00031K.
  • Zhou, H.-C.; Long, J. R., and Yaghi, O. M. Introduction to metal–organic Frameworks; Chem. Rev.: ACS Publications, 2012; pp 673–674.
  • Butova, V. V. E.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A., and Lamberti, C. Metal-organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85(3), 280. DOI: 10.1070/RCR4554.
  • Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A., and Zhou, H. C. From Fundamentals to Applications: A Toolbox for Robust and Multifunctional MOF Materials. Chem. Soc. Rev. 2018, 47(23), 8611–8638. DOI: 10.1039/C8CS00688A.
  • Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T., and Farha, O. K. Best Practices for the Synthesis, Activation, and Characterization of metal–organic Frameworks. Chem. Mater. 2017, 29(1), 26–39. DOI: 10.1021/acs.chemmater.6b02626.
  • Barsukova, M. O.; Sapchenko, S. A.; Dybtsev, D. N., and Fedin, V. P. Scandium-organic Frameworks: Progress and Prospects. Russ. Chem. Rev. 2018, 87(11), 1139. DOI: 10.1070/RCR4826.
  • Devic, T., and Serre, C. High Valence 3p and Transition Metal Based MOFs. Chem. Soc. Rev. 2014, 43(16), 6097–6115. DOI: 10.1039/C4CS00081A.
  • Nasalevich, M. A.; Hendon, C. H.; Santaclara, J. G.; Svane, K.; Van Der Linden, B.; Veber, S. L.; Fedin, M. V.; Houtepen, A. J.; Van Der Veen, M. A., and Kapteijn, F., et al. Electronic Origins of Photocatalytic Activity in d0 Metal Organic Frameworks. Sci. Rep. 2016, 6(1), 1–9.
  • Erxleben, A. Structures and Properties of Zn (II) Coordination Polymers. Coord. Chem. Rev. 2003, 246(1–2), 203–228. DOI: 10.1016/S0010-8545(03)00117-6.
  • Yan, Y.; Yang, S.; Blake, A. J., and Schröder, M. Studies on metal–organic Frameworks of Cu (II) with Isophthalate Linkers for Hydrogen Storage. Acc. Chem. Res. 2014, 47(2), 296–307. DOI: 10.1021/ar400049h.
  • Lu, J. Y. Crystal Engineering of Cu-containing metal–organic Coordination Polymers under Hydrothermal Conditions. Coord. Chem. Rev. 2003, 246(1–2), 327–347. DOI: 10.1016/j.cct.2003.08.005.
  • Cui, Y.; Chen, B., and Qian, G. Lanthanide metal-organic Frameworks for Luminescent Sensing and light-emitting Applications. Coord. Chem. Rev. 2014, 273, 76–86. DOI: 10.1016/j.ccr.2013.10.023.
  • Pagis, C.; Ferbinteanu, M.; Rothenberg, G., and Tanase, S. Lanthanide-based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catal. 2016, 6(9), 6063–6072. DOI: 10.1021/acscatal.6b01935.
  • Bon, V.; Senkovskyy, V.; Senkovska, I., Kaskel, S. Zr (IV) and Hf (IV) Based metal–organic Frameworks with reo-topology. Chem. Commun. 2012, 48(67), 8407–8409.
  • Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M., and Behrens, P. Modulated Synthesis of Zr‐based metal–organic Frameworks: From Nano to Single Crystals. Chemistry. 2011, 17(24), 6643–6651. DOI: 10.1002/chem.201003211.
  • Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B., and Farrusseng, D. Water Adsorption in MOFs: Fundamentals and Applications. Chem. Soc. Rev. 2014, 43(16), 5594–5617. DOI: 10.1039/C4CS00078A.
  • Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R., and Zhou, H. C. Zr-based metal–organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45(8), 2327–2367. DOI: 10.1039/C5CS00837A.
  • Yuan, S.; Qin, J. S.; Lollar, C. T., and Zhou, H. C. Stable metal–organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent. Sci. 2018, 4(4), 440–450. DOI: 10.1021/acscentsci.8b00073.
  • Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M., and Bahnemann, D. W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114(19), 9919–9986. DOI: 10.1021/cr5001892.
  • Zhu, J.; Li, P. Z.; Guo, W.; Zhao, Y., and Zou, R. Titanium-based metal–organic Frameworks for Photocatalytic Applications. Coord. Chem. Rev. 2018, 359, 80–101.
  • Ratnamala, A.; Reddy, G. D.; Noorjahaan, M.; Manjunatha, H.; Janardan, S.; Kumar, N. S.; Naidu, K. C. B.; Khan, A.; Asiri, A. M. Titanium-based metal-organic Frameworks for Photocatalytic Applications. In Metal-Organic Frameworks for Chemical Reactions; Elsevier, 2021; pp 37–63.
  • Ma, J.; Kalenak, A. P.; Wong‐Foy, A. G., and Matzger, A. J. Rapid Guest Exchange and Ultra‐Low Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angewandte Chemie. 2017, 129(46), 14810–14813. DOI: 10.1002/ange.201709187.
  • Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P., and Farha, O. K. A Historical Overview of the Activation and Porosity of metal–organic Frameworks. Chem. Soc. Rev. 2020, 49(20), 7406–7427. DOI: 10.1039/D0CS00997K.
  • Nelson, A. P.; Farha, O. K.; Mulfort, K. L., and Hupp, J. T. Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal− Organic Framework Materials. J. Am. Chem. Soc. 2009, 131(2), 458–460. DOI: 10.1021/ja808853q.
  • Yaghi, O., and Li, H. Hydrothermal Synthesis of a metal-organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117(41), 10401–10402. DOI: 10.1021/ja00146a033.
  • Yaghi, O.M. , Kalmutzki, M.J. , Diercks, C.S. Binary Metal-Organic Frameworks, in Introduction to Reticular Chemistry (eds O.M. Yaghi, M.J. Kalmutzki and C.S. Diercks); 2019. pp 83–119. https://doi.org/10.1002/9783527821099.ch4.
  • Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M., and Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science. 2002, 295(5554), 469–472. DOI: 10.1126/science.1067208.
  • Furukawa, H.; Go, Y. B.; Ko, N.; Park, Y. K.; Uribe-Romo, F. J.; Kim, J.; O’Keeffe, M., and Yaghi, O. M. Isoreticular Expansion of metal–organic Frameworks with Triangular and Square Building Units and the Lowest Calculated Density for Porous Crystals. Inorg. Chem. 2011, 50(18), 9147–9152. DOI: 10.1021/ic201376t.
  • Grzesiak, A. L.; Uribe, F. J.; Ockwig, N. W.; Yaghi, O. M., and Matzger, A. J. Polymer‐induced Heteronucleation for the Discovery of New Extended Solids. Angewandte Chemie. 2006, 118(16), 2615–2618. DOI: 10.1002/ange.200504312.
  • Manos, M. J.; Moushi, E. E.; Papaefstathiou, G. S., and Tasiopoulos, A. J. New Zn2+ Metal Organic Frameworks with Unique Network Topologies from the Combination of Trimesic Acid and amino-alcohols. Cryst. Growth Des. 2012, 12(11), 5471–5480. DOI: 10.1021/cg301047w.
  • Kim, D.; Liu, X.; Oh, M.; Song, X.; Zou, Y.; Singh, D.; Kim, K. S., Lah, M. S. Isoreticular MOFs Based on a Rhombic Dodecahedral MOP as a Tertiary Building Unit. CrystEngComm. 2014, 16(28), 6391–6397.
  • Wang, Z.; Kravtsov, V. C., and Zaworotko, M. J. Ternary Nets Formed by Self‐assembly of Triangles, Squares, and Tetrahedra. Angew. Chem. Int. Ed. 2005, 44(19), 2877–2880. DOI: 10.1002/anie.200500156.
  • Han, L.; Xu, L.-P., and Zhao, W.-N. A Novel 2D (3, 5)-connected Coordination Framework with Zn2 (COO) 3 SBU. J. Mol. Struct. 2011, 1000(1–3), 58–61. DOI: 10.1016/j.molstruc.2011.05.052.
  • Zhang, X.; Zhang, Y. Z.; Zhang, D. S.; Zhu, B., and Li, J. R. A Hydrothermally Stable Zn (Ii)-based metal–organic Framework: Structural Modulation and Gas Adsorption. Dalton Trans. 2015, 44(35), 15697–15702. DOI: 10.1039/C5DT01770J.
  • Wu, M.; Jiang, F.; Wei, W.; Gao, Q.; Huang, Y.; Chen, L., and Hong, M. A Porous Polyhedral metal-organic Framework Based on Zn2 (COO) 3 and Zn2 (COO) 4 SBUs. Cryst. Growth Des. 2009, 9(6), 2559–2561. DOI: 10.1021/cg900153m.
  • Yang, J.; Wang, X.; Dai, F.; Zhang, L.; Wang, R., and Sun, D. Improving the Porosity and Catalytic Capacity of a Zinc Paddlewheel metal-organic Framework (MOF) through metal-ion Metathesis in a single-crystal-to-single-crystal Fashion. Inorg. Chem. 2014, 53(19), 10649–10653. DOI: 10.1021/ic5017092.
  • Li, H.; Eddaoudi, M.; Groy, T. L., and Yaghi, O. M. Establishing Microporosity in Open Metal− Organic Frameworks: Gas Sorption Isotherms for Zn (BDC)(BDC= 1, 4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120(33), 8571–8572. DOI: 10.1021/ja981669x.
  • Chen, B.; Eddaoudi, M.; Reineke, T. M.; Kampf, J. W.; O’keeffe, M., and Yaghi, O. M. Cu2 (ATC)⊙ 6H2O: Design of Open Metal Sites in Porous Metal− Organic Crystals (ATC: 1, 3, 5, 7-Adamantane Tetracarboxylate). J. Am. Chem. Soc. 2000, 122(46), 11559–11560. DOI: 10.1021/ja003159k.
  • Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O’keeffe, M., and Yaghi, O. M. Porous Metal− Organic Polyhedra: 25 Å Cuboctahedron Constructed from 12 Cu2 (CO2) 4 paddle-wheel Building Blocks. J. Am. Chem. Soc. 2001, 123(18), 4368–4369. DOI: 10.1021/ja0104352.
  • Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M., and Yaghi, O. M. Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metal− Organic Frameworks and Polyhedra. J.Am. Chem. Soc. 2008, 130(35), 11650–11661. DOI: 10.1021/ja803783c.
  • Eddaoudi, M.; Kim, J.; Vodak, D.; Sudik, A.; Wachter, J.; O’Keeffe, M., and Yaghi, O. M. Geometric Requirements and Examples of Important Structures in the Assembly of Square Building Blocks. Proc. National Academy Sci. 2002, 99(8), 4900–4904. DOI: 10.1073/pnas.082051899.
  • Eddaoudi, M.; Kim, J.; O’Keeffe, M., and Yaghi, O. M. Cu2 [o-Br-C6H3 (CO2) 2] 2 (H2O) 2 ⊙ (DMF) 8 (H2O 2: A Framework Deliberately Designed to Have the NbO Structure Type. J. Am. Chem. Soc. 2002, 124(3), 376–377. DOI: 10.1021/ja017154e.
  • Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M., and Kim, J. Reticular Synthesis and the Design of New Materials. Nature. 2003, 423(6941), 705–714. DOI: 10.1038/nature01650.
  • Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P.; Orpen, A. G., and Williams, I. D. A Chemically Functionalizable Nanoporous Material [Cu3 (TMA) 2 (H2O) 3] N. Science. 1999, 283(5405), 1148–1150.
  • Delgado-Friedrichs, O.; O’Keeffe, M., and Yaghi, O. M. Three-periodic Nets and Tilings: Edge-transitive Binodal Structures. Acta Crystallograph. A: Foundat. Crystallograph. 2006, 62(5), 350–355. DOI: 10.1107/S0108767306022707.
  • Millward, A. R., and Yaghi, O. M. Metal− Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127(51), 17998–17999. DOI: 10.1021/ja0570032.
  • Li, H.; Davis, C. E.; Groy, T. L.; Kelley, D. G., and Yaghi, O. M. Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3 (BDC) 3⊙ 6CH3OH (BDC= 1, 4-Benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120(9), 2186–2187. DOI: 10.1021/ja974172g.
  • Li, H.; Eddaoudi, M.; O’Keeffe, M., and Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous metal-organic Framework. Nature. 1999, 402(6759), 276–279.
  • Clegg, W.; Harbron, D. R.; Homan, C. D.; Hunt, P. A.; Little, I. R., and Straughan, B. P. Crystal Structures of Three Basic Zinc Carboxylates Together with Infrared and FAB Mass Spectrometry Studies in Solution. Inorg. Chim. Acta. 1991, 186(1), 51–60. DOI: 10.1016/S0020-1693(00)87930-X.
  • Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; YongBok, G.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M., and Yaghi, O. M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature. 2004, 427(6974), 523–527. DOI: 10.1038/nature02311.
  • Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M., and Kim, J., et al. Ultrahigh Porosity in metal-organic Frameworks. Science. 2010, 329(5990), 424–428. DOI: 10.1126/science.1192160.
  • Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S., and Zhou, H. C. Framework-catenation Isomerism in Metal− Organic Frameworks and Its Impact on Hydrogen Uptake. J. Am. Chem. Soc. 2007, 129(7), 1858–1859. DOI: 10.1021/ja067435s.
  • Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S., and Yaghi, O. M. High H2 Adsorption in a Microporous metal–organic Framework with Open Metal Sites. Angew. Chem. Int. Ed. 2005, 44(30), 4745–4749. DOI: 10.1002/anie.200462787.
  • Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’keeffe, M., and Yaghi, O. M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal− Organic Carboxylate Frameworks. Acc. Chem. Res. 2001, 34(4), 319–330. DOI: 10.1021/ar000034b.
  • Li, J.-R.; Timmons, D. J., and Zhou, H.-C. Interconversion between Molecular Polyhedra and Metal− Organic Frameworks. J. Am. Chem. Soc. 2009, 131(18), 6368–6369. DOI: 10.1021/ja901731z.
  • Moulton, B.; Lu, J.; Hajndl, R.; Hariharan, S., and Zaworotko, M. J. Crystal Engineering of a Nanoscale Kagomé Lattice. Angewandte Chemie. 2002, 114(15), 2945–2948. DOI: 10.1002/1521-3757(20020802)114:15<2945::AID-ANGE2945>3.0.CO;2-4.
  • Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M., and Yaghi, O. M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature. 2004, 427(6974), 523–527.
  • Schnobrich, J. K.; Lebel, O.; Cychosz, K. A.; Dailly, A.; Wong-Foy, A. G., and Matzger, A. J. Linker-directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity. J. Am. Chem. Soc. 2010, 132(39), 13941–13948. DOI: 10.1021/ja107423k.
  • Tan, Y.-X.; He, Y.-P., and Zhang, J. Pore Partition Effect on Gas Sorption Properties of an Anionic metal–organic Framework with Exposed Cu 2+ Coordination Sites. Chem. Commun. 2011, 47(38), 10647–10649. DOI: 10.1039/c1cc14118j.
  • Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J., and Kim, K. A Homochiral metal–organic Porous Material for Enantioselective Separation and Catalysis. Nature. 2000, 404(6781), 982–986. DOI: 10.1038/35010088.
  • Yang, S. Y.; Long, L. S.; Jiang, Y. B.; Huang, R. B., and Zheng, L. S. An Exceptionally Stable Metal− Organic Framework Constructed from the Zn8 (SiO4) Core. Chem. Mater. 2002, 14(8), 3229–3231. DOI: 10.1021/cm025572s.
  • Stoeck, U.; Krause, S.; Bon, V.; Senkovska, I., and Kaskel, S. A Highly Porous metal–organic Framework, Constructed from A Cuboctahedral super-molecular Building Block, with Exceptionally High Methane Uptake. Chem. Commun. 2012, 48(88), 10841–10843. DOI: 10.1039/c2cc34840c.
  • Stoeck, U.; Senkovska, I.; Bon, V.; Krause, S., and Kaskel, S. Assembly of metal–organic Polyhedra into Highly Porous Frameworks for Ethene Delivery. Chem. Commun. 2015, 51(6), 1046–1049. DOI: 10.1039/C4CC07920E.
  • An, J.; Farha, O. K.; Hupp, J. T.; Pohl, E.; Yeh, J. I., and Rosi, N. L. Metal-adeninate Vertices for the Construction of an Exceptionally Porous metal-organic Framework. Nat. Commun. 2012, 3(1), 1–6. DOI: 10.1038/ncomms1618.
  • Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J., and Eddaoudi, M. Supermolecular Building Blocks (Sbbs) for the Design and Synthesis of Highly Porous metal-organic Frameworks. J. Am. Chem. Soc. 2008, 130(6), 1833–1835. DOI: 10.1021/ja710123s.
  • Eubank, J. F.; Nouar, F.; Luebke, R.; Cairns, A. J.; Wojtas, L.; Alkordi, M.; Bousquet, T.; Hight, M. R.; Eckert, J., and Embs, J. P., et al. On Demand: The Singular Rht Net, an Ideal Blueprint for the Construction of a metal–organic Framework (MOF) Platform. Angewandte Chemie. 2012, 124(40), 10246–10250. DOI: 10.1002/ange.201201202.
  • Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. O., and Hupp, J. T. Metal–organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134(36), 15016–15021. DOI: 10.1021/ja3055639.
  • Perry, J. J.,sIV; Kravtsov, V. C.; McManus, G. J., and Zaworotko, M. J. Bottom up Synthesis that Does Not Start at the Bottom: Quadruple Covalent cross-linking of Nanoscale Faceted Polyhedra. J. Am. Chem. Soc. 2007, 129(33), 10076–10077. DOI: 10.1021/ja0734952.
  • An, J.; Geib, S. J., and Rosi, N. L. Cation-triggered Drug Release from a Porous Zinc− Adeninate Metal− Organic Framework. J. Am. Chem. Soc. 2009, 131(24), 8376–8377. DOI: 10.1021/ja902972w.
  • Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S., and Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130(42), 13850–13851. DOI: 10.1021/ja8057953.
  • Gándara, F.; Furukawa, H.; Lee, S., and Yaghi, O. M. High Methane Storage Capacity in Aluminum metal–organic Frameworks. J. Am. Chem. Soc. 2014, 136(14), 5271–5274. DOI: 10.1021/ja501606h.
  • Sumida, K.; Hill, M. R.; Horike, S.; Dailly, A., and Long, J. R. Synthesis and Hydrogen Storage Properties of Be12 (OH) 12 (1, 3, 5-benzenetribenzoate) 4. J. Am. Chem. Soc. 2009, 131(42), 15120–15121. DOI: 10.1021/ja9072707.
  • Kang, M.; Luo, D.; Luo, X.; Chen, Z., and Lin, Z. Crystalline Beryllium Carboxylate Frameworks with rutile-type and cubic-C 3 N 4 Topologies. CrystEngComm. 2012, 14(1), 95–97. DOI: 10.1039/C1CE06224G.
  • Kaskel, S. The Chemistry of metal-organic Frameworks, 2 Volume Set: Synthesis, Characterization, and Applications; Wiley: John Wiley & Sons, 2016; Vol. 1.
  • Kang, M.; Luo, D.; Lin, Z.; Thiele, G., and Dehnen, S. Crystalline Beryllium Carboxylate Frameworks Containing Inorganic Chains of BeO 4 Tetrahedra. CrystEngComm. 2013, 15(10), 1845–1848. DOI: 10.1039/c3ce26983c.
  • Osaki, K.; Nakai, Y., and Watanabé, T. The Crystal Structures of Magnesium Formate Dihydrate and Manganous Formate Dihydrate. J. Phys. Soc. Jpn. 1964, 19(5), 717–723. DOI: 10.1143/JPSJ.19.717.
  • Malard, C.; Pezerat, H.; Herpin, P., and Toledano, P. Structure et stabilité thermique des deux formes du formiate de magnesium dihydraté. J. Solid State Chem. 1982, 41(1), 67–74. DOI: 10.1016/0022-4596(82)90036-6.
  • Viertelhaus, M.; Anson, C. E., and Powell, A. K. Solvothermal Synthesis and Crystal Structure of One‐Dimensional Chains of Anhydrous Zinc and Magnesium Formate. Zeitschrift für anorganische und allgemeine Chemie. 2005, 631(12), 2365–2370. DOI: 10.1002/zaac.200500202.
  • Viertelhaus, M.; Henke, H.; Anson, C. E., and Powell, A. K. Solvothermal Synthesis and Structure of Anhydrous Manganese (II) Formate, and Its Topotactic Dehydration from Manganese (II) Formate Dihydrate. Eur. J. Inorg. Chem. 2003, 2003(12), 2283–2289. DOI: 10.1002/ejic.200200699.
  • Dinca, M., and Long, J. R. Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3 (O2C-C10H6-CO2) 3. J. Am. Chem. Soc. 2005, 127(26), 9376–9377. DOI: 10.1021/ja0523082.
  • Senkovska, I., and Kaskel, S. Solvent‐Induced Pore‐Size Adjustment in the Metal‐Organic Framework [Mg3 (Ndc) 3 (Dmf) 4](ndc= Naphthalenedicarboxylate). Eur. J. Inorg. Chem; Wiley Online Library, 2006, 4564-4569. https://doi.org/10.1002/ejic.200600635
  • Senkovska, I.; Fritsch, J.; Kaskel, S. New Polymorphs of Magnesium‐Based Metal–Organic Frameworks Mg3 (Ndc) 3 (Ndc= 2, 6‐Naphthalenedicarboxylate); Wiley Online Library, 2007.
  • Kaduk, J. A. Terephthalate Salts of Dipositive Cations. Acta Crystallograph. B: Struct. Sci. 2002, 58(5), 815–822. DOI: 10.1107/s0108768102009102.
  • Rood, J. A.; Noll, B. C., and Henderson, K. W. Cubic Networks and 3 6 Tilings Assembled from Isostructural Trimeric Magnesium Aryldicarboxylates. Main Group Chem. 2006, 5(1), 21–30. DOI: 10.1080/10241220600815718.
  • Davies, R. P.; Less, R. J.; Lickiss, P. D., and White, A. J. Framework Materials Assembled from Magnesium Carboxylate Building Units. Dalton Trans. 2007, 24, 2528–2535.
  • Banerjee, D.; Finkelstein, J.; Smirnov, A.; Forster, P. M.; Borkowski, L. A.; Teat, S. J., and Parise, J. B. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Cryst. Growth Des. 2011, 11(6), 2572–2579. DOI: 10.1021/cg200327y.
  • Mallick, A.; Saha, S.; Pachfule, P.; Roy, S., and Banerjee, R. Selective CO 2 and H 2 Adsorption in a Chiral magnesium-based Metal Organic Framework (Mg-MOF) with Open Metal Sites. J. Mater. Chem. 2010, 20(41), 9073–9080. DOI: 10.1039/c0jm01125h.
  • Banerjee, D., and Parise, J. B. Recent Advances in s-block Metal Carboxylate Networks. Cryst. Growth Des. 2011, 11(10), 4704–4720. DOI: 10.1021/cg2008304.
  • Fromm, K. M. Coordination Polymer Networks with s-block Metal Ions. Coord. Chem. Rev. 2008, 252(8–9), 856–885. DOI: 10.1016/j.ccr.2007.10.032.
  • Watanabe, T., and Matsui, M. A Redetermination of the Crystal Structures of α-calcium Formate, α-strontium Formate and Barium Formate by X-ray Analyses. Acta Crystallograph. B: Struct. Crystallograph Cryst. Chem. 1978, 34(9), 2731–2736. DOI: 10.1107/S0567740878009127.
  • Comel, C., and Mentzen, B. F. Comparative Study of the Polymorphic Species of Strontium and Calcium Formates. I. Differential Thermal Analysis (DTA). J. Solid State Chem. 1974, 9(3), 210–213. DOI: 10.1016/0022-4596(74)90076-0.
  • Mentzen, B. F., and Comel, C. Comparative Study of the Polymorphic Species of Strontium and Calcium Formates. II. X-ray Diffraction. J. Solid State Chem. 1974, 9(3), 214–223. DOI: 10.1016/0022-4596(74)90077-2.
  • Matsui, M. A. S. A. N. O. R. I.; Watanabe, T.; Kamijo, N.; Lapp, R. L., and Jacobson, R. A. The Structures of Calcium Formate β-Ca (HCOO) 2 and δ-Ca (HCOO) 2, and the Tetragonal Mixed Crystals Ca (HCOO) 2–Sr (HCOO) 2. Acta Crystallograph. B: Struct. Crystallograph Cryst. Chem. 1980, 36(5), 1081–1086. DOI: 10.1107/S056774088000533X.
  • Porter, W. W.; Wong-Foy, A.; Dailly, A., and Matzger, A. J. Beryllium Benzene Dicarboxylate: The First Beryllium Microporous Coordination Polymer. J. Mater. Chem. 2009, 19(36), 6489–6491. DOI: 10.1039/b912092k.
  • Caskey, S. R.; Wong-Foy, A. G., and Matzger, A. J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J. Am. Chem. Soc. 2008, 130(33), 10870–10871. DOI: 10.1021/ja8036096.
  • Samsonenko, D. G.; Kim, H.; Sun, Y.; Kim, G. H.; Lee, H. S., and Kim, K. Microporous Magnesium and Manganese Formates for Acetylene Storage and Separation. Chemistry–An Asian J. 2007, 2(4), 484–488. DOI: 10.1002/asia.200600390.
  • Cheon, Y. E.; Park, J., and Suh, M. P. Selective Gas Adsorption in a magnesium-based metal–organic Framework. Chem. Commun. 2009(36), 5436–5438.
  • Liu, H. K.; Tsao, T. H.; Zhang, Y. T., and Lin, C. H. Microwave Synthesis and single-crystal-to-single-crystal Transformation of Magnesium Coordination Polymers Exhibiting Selective Gas Adsorption and Luminescence Properties. CrystEngComm. 2009, 11(7), 1462–1468. DOI: 10.1039/b819559e.
  • Fracaroli, A. M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gándara, F.; Reimer, J. A., and Yaghi, O. M. Metal–organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. J. Am. Chem. Soc. 2014, 136(25), 8863–8866. DOI: 10.1021/ja503296c.
  • Liu, Y.; Chen, Y. P.; Liu, T. F.; Yakovenko, A. A.; Raiff, A. M., and Zhou, H. C. Selective Gas Adsorption and Unique Phase Transition Properties in a Stable Magnesium metal-organic Framework Constructed from Infinite Metal Chains. CrystEngComm. 2013, 15(45), 9688–9693. DOI: 10.1039/c3ce41106k.
  • Saha, D.; Maity, T.; Das, S., and Koner, S. A magnesium-based Multifunctional metal–organic Framework: Synthesis, Thermally Induced Structural Variation, Selective Gas Adsorption, Photoluminescence and Heterogeneous Catalytic Study. Dalton Trans. 2013, 42(38), 13912–13922. DOI: 10.1039/c3dt51509e.
  • He, Y.-P.; Tan, Y.-X., and Zhang, J. Stable Mg-metal–organic Framework (MOF) and Unstable Zn-MOF Based on Nanosized Tris ((4-carboxyl) Phenylduryl) Amine Ligand. Cryst. Growth Des. 2013, 13(1), 6–9. DOI: 10.1021/cg3013574.
  • Lin, Q.; Wu, T.; Zheng, S. T.; Bu, X., and Feng, P. A Chiral Tetragonal magnesium-carboxylate Framework with Nanotubular Channels. Chem. Commun. 2011, 47(43), 11852–11854. DOI: 10.1039/c1cc14836b.
  • Jayaramulu, K.; Kanoo, P.; George, S. J., and Maji, T. K. Tunable Emission from a Porous metal–organic Framework by Employing an excited-state Intramolecular Proton Transfer Responsive Ligand. Chem. Commun. 2010, 46(42), 7906–7908. DOI: 10.1039/c0cc02069a.
  • Guo, Z.; Li, G.; Zhou, L.; Su, S.; Lei, Y.; Dang, S., and Zhang, H. Magnesium-based 3D Metal− Organic Framework Exhibiting hydrogen-sorption Hysteresis. Inorg. Chem. 2009, 48(17), 8069–8071. DOI: 10.1021/ic901056d.
  • Banerjee, D.; Zhang, Z.; Plonka, A. M.; Li, J., and Parise, J. B. A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity. Cryst. Growth Des. 2012, 12(5), 2162–2165. DOI: 10.1021/cg300274n.
  • Miller, S. R.; Alvarez, E.; Fradcourt, L.; Devic, T.; Wuttke, S.; Wheatley, P. S.; Steunou, N.; Bonhomme, C.; Gervais, C., and Laurencin, D., et al. A Rare Example of A Porous Ca-MOF for the Controlled Release of Biologically Active NO. Chem. Commun. 2013, 49(71), 7773–7775. DOI: 10.1039/c3cc41987h.
  • Noh, K.; Ko, N.; Park, H. J.; Park, S., and Kim, J. Two Porous metal–organic Frameworks Containing zinc–calcium Clusters and Calcium Cluster Chains. CrystEngComm. 2014, 16(37), 8664–8668. DOI: 10.1039/C4CE01237B.
  • Mallick, A.; Schön, E. M.; Panda, T.; Sreenivas, K.; Díaz, D. D., and Banerjee, R. Fine-tuning the Balance between Crystallization and Gelation and Enhancement of CO 2 Uptake on Functionalized Calcium Based MOFs and Metallogels. J. Mater. Chem. 2012, 22(30), 14951–14963. DOI: 10.1039/c2jm30866e.
  • Yeh, C. T.; Lin, W. C.; Lo, S. H.; Kao, C. C.; Lin, C. H., and Yang, C. C. Microwave Synthesis and Gas Sorption of Calcium and Strontium metal–organic Frameworks with High Thermal Stability. CrystEngComm. 2012, 14(4), 1219–1222. DOI: 10.1039/c2ce05875h.
  • Foo, M. L.; Horike, S.; Inubushi, Y., and Kitagawa, S. An Alkaline Earth I3O0 Porous Coordination polymer:[Ba2TMA (NO3)(DMF)]. Angewandte Chemie. 2012, 124(25), 6211–6215. DOI: 10.1002/ange.201202285.
  • Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louër, D., and Férey, G. Very Large Breathing Effect in the First Nanoporous Chromium (Iii)-based Solids: MIL-53 or CrIII (OH)⊙{O2C− C6H4− CO2}⊙{HO2C− C6H4− CO2H} X⊙ H2O Y. J. Am. Chem. Soc. 2002, 124(45), 13519–13526. DOI: 10.1021/ja0276974.
  • Barthelet, K.; Marrot, J.; Férey, G., and Riou, D. V III (OH){O 2 C–C 6 H 4–CO 2}.(HO 2 C–C 6 H 4–CO 2 H) X (DMF) Y (H 2 O) Z (Or MIL-68), a New Vanadocarboxylate with a Large Pore Hybrid Topology: Reticular Synthesis with Infinite Inorganic Building Blocks? Chem. Commun. 2004, 5, 520–521. DOI: 10.1039/B312589K.
  • Barthelet, K.; Marrot, J.; Riou, D., and Férey, G. A Breathing Hybrid organic–inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie. 2002, 114(2), 291–294. DOI: 10.1002/1521-3757(20020118)114:2<291::AID-ANGE291>3.0.CO;2-I.
  • Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J. M.; Morcrette, M.; Tarascon, J. M.; Maurin, G., and Férey, G. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL‐68 (Fe) Solid. Eur. J. Inorg. Chem; Wiley Online Library, 2010, 3789-3794. https://doi.org/10.1002/ejic.201000486
  • Whitfield, T. R.; Wang, X.; Liu, L., and Jacobson, A. J. Metal-organic Frameworks Based on Iron Oxide Octahedral Chains Connected by Benzenedicarboxylate Dianions. Solid State Sci. 2005, 7(9), 1096–1103. DOI: 10.1016/j.solidstatesciences.2005.03.007.
  • Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A., and Greneche, J. M., et al. Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host− Guest Interactions. J. Am. Chem. Soc. 2010, 132(3), 1127–1136. DOI: 10.1021/ja9092715.
  • Devic, T.; Salles, F.; Bourrelly, S.; Moulin, B.; Maurin, G.; Horcajada, P.; Serre, C.; Vimont, A.; Lavalley, J. C., and Leclerc, H., et al. Effect of the Organic Functionalization of Flexible MOFs on the Adsorption of CO 2. J. Mater. Chem. 2012, 22(20), 10266–10273. DOI: 10.1039/c2jm15887f.
  • Serre, C.; Millange, F.; Surblé, S., and Férey, G. A Route to the Synthesis of Trivalent Transition‐metal Porous Carboxylates with Trimeric Secondary Building Units. Angew. Chem. Int. Ed. 2004, 43(46), 6285–6289. DOI: 10.1002/anie.200454250.
  • Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Millange, F., and Férey, G. A New Isoreticular Class of metal-organic-frameworks with the MIL-88 Topology. Chem. Commun. 2006(3), 284–286.
  • Biswas, S.; Couck, S.; Grzywa, M.; Denayer, J. F.; Volkmer, D., and Van Der Voort, P. Vanadium Analogues of Nonfunctionalized and Amino‐Functionalized MOFs with MIL‐101 Topology–Synthesis, Characterization, and Gas Sorption Properties. Eur. J. Inorg. Chem. 2012, 2012(15), 2481–2486. DOI: 10.1002/ejic.201200106.
  • Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S., and Margiolaki, I. A Chromium terephthalate-based Solid with Unusually Large Pore Volumes and Surface Area. Science. 2005, 309(5743), 2040–2042. DOI: 10.1126/science.1116275.
  • Lupu, D.; Ardelean, O.; Blanita, G.; Borodi, G.; Lazar, M. D.; Biris, A. R.; Ioan, C.; Mihet, M.; Misan, I., and Popeneciu, G. Synthesis and Hydrogen Adsorption Properties of a New Iron Based Porous metal-organic Framework. Int. J. Hydrogen Energy. 2011, 36(5), 3586–3592. DOI: 10.1016/j.ijhydene.2010.12.043.
  • Sudik, A. C.; Côté, A. P., and Yaghi, O. M. Metal-organic Frameworks Based on Trigonal Prismatic Building Blocks and the New “Acs” Topology. Inorg. Chem. 2005, 44(9), 2998–3000. DOI: 10.1021/ic050064g.
  • Yoon, J. H.; Choi, S. B.; Oh, Y. J.; Seo, M. J.; Jhon, Y. H.; Lee, T. B.; Kim, D.; Choi, S. H., and Kim, J. A Porous mixed-valent Iron MOF Exhibiting the Acs Net: Synthesis, Characterization and Sorption Behavior of Fe3O (F4BDC) 3 (H2O) 3·(DMF) 3.5. Catal. Today. 2007, 120(3–4), 324–329. DOI: 10.1016/j.cattod.2006.09.003.
  • Sonnauer, A.; Hoffmann, F.; Fröba, M.; Kienle, L.; Duppel, V.; Thommes, M.; Serre, C.; Férey, G., and Stock, N. Giant Pores in a Chromium 2, 6‐Naphthalenedicarboxylate Open‐Framework Structure with MIL‐101 Topology. Angewandte Chemie. 2009, 121(21), 3849–3852. DOI: 10.1002/ange.200805980.
  • Horcajada, P.; Chevreau, H.; Heurtaux, D.; Benyettou, F.; Salles, F.; Devic, T.; Garcia-Marquez, A.; Yu, C.; Lavrard, H., and Dutson, C. L., et al. Extended and Functionalized Porous Iron (Iii) tri-or Dicarboxylates with MIL-100/101 Topologies. Chem. Commun. 2014, 50(52), 6872–6874. DOI: 10.1039/c4cc02175d.
  • Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P. L., and Latroche, M. MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-membered Rings and μ 3-oxo-centered Trinuclear Units. J. Am. Chem. Soc. 2006, 128(31), 10223–10230. DOI: 10.1021/ja0621086.
  • Long, P.; Wu, H.; Zhao, Q.; Wang, Y.; Dong, J., and Li, J. Solvent Effect on the Synthesis of MIL-96 (Cr) and MIL-100 (Cr. Microporous Mesoporous Mater. 2011, 142(2–3), 489–493. DOI: 10.1016/j.micromeso.2010.12.036.
  • Zhang, J. P.; Zhang, Y. B.; Lin, J. B., and Chen, X. M. Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chem. Rev. 2012, 112(2), 1001–1033. DOI: 10.1021/cr200139g.
  • Pütter, H.; Schubert, M.; Richter, I.; Müller, U.; Trukhan, N. Process for Preparing Porous Metal Organic Frameworks; Google Patents, 2011.
  • Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T., and Férey, G. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL‐53) upon Hydration. Chemistry. 2004, 10(6), 1373–1382. DOI: 10.1002/chem.200305413.
  • Pang, M.; Cairns, A. J.; Liu, Y.; Belmabkhout, Y.; Zeng, H. C., and Eddaoudi, M. Highly Monodisperse MIII-based soc-MOFs (M= in and Ga) with Cubic and Truncated Cubic Morphologies. J. Am. Chem. Soc. 2012, 134(32), 13176–13179. DOI: 10.1021/ja3049282.
  • Zhang, S.; Han, L.; Li, L.; Cheng, J.; Yuan, D., and Luo, J. A Highly Symmetric metal–organic Framework Based on A propeller-like Ru-organic Metalloligand for Photocatalysis and Explosives Detection. Cryst. Growth Des. 2013, 13(12), 5466–5472. DOI: 10.1021/cg401438j.
  • Liang, R.; Shen, L.; Jing, F.; Wu, W.; Qin, N.; Lin, R., and Wu, L. NH2-mediated Indium metal–organic Framework as a Novel visible-light-driven Photocatalyst for Reduction of the Aqueous Cr (VI). Appl. Catal. B Environ. 2015, 162, 245–251. DOI: 10.1016/j.apcatb.2014.06.049.
  • Canivet, J.; Aguado, S.; Bergeret, G., and Farrusseng, D. Amino Acid Functionalized metal–organic Frameworks by a Soft coupling–deprotection Sequence. Chem. Commun. 2011, 47(42), 11650–11652. DOI: 10.1039/c1cc15541e.
  • Anokhina, E. V.; Vougo-Zanda, M.; Wang, X., and Jacobson, A. J. In (OH) BDC⊙ 0.75 BDCH2 (BDC= Benzenedicarboxylate), a Hybrid Inorganic− Organic Vernier Structure. J. Am. Chem. Soc. 2005, 127(43), 15000–15001. DOI: 10.1021/ja055757a.
  • Ahnfeldt, T., and Stock, N. Synthesis of Isoreticular CAU-1 Compounds: Effects of Linker and Heating Methods on the Kinetics of the Synthesis. CrystEngComm. 2012, 14(2), 505–511. DOI: 10.1039/C1CE05956D.
  • Serra-Crespo, P.; Gobechiya, E.; Ramos-Fernandez, E. V.; Juan-Alcañiz, J.; Martinez-Joaristi, A.; Stavitski, E.; Kirschhock, C. E.; Martens, J. A.; Kapteijn, F., and Gascon, J. Interplay of Metal Node and Amine Functionality in NH2-MIL-53: Modulating Breathing Behavior through intra-framework Interactions. Langmuir. 2012, 28(35), 12916–12922. DOI: 10.1021/la302824j.
  • Liu, L.; Wang, X., and Jacobson, A. J. AlF· 1, 4-benzenedicarboxylate: Synthesis and Absorption Properties. Dalton Trans. 2010, 39(7), 1722–1725. DOI: 10.1039/B919161E.
  • Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Margiolaki, I.; Popov, D., and Burghammer, M., et al. Structural Transitions and Flexibility during Dehydration− Rehydration Process in the MOF-type Aluminum Pyromellitate Al2 (OH) 2 [C10O8H2](MIL-118). Cryst. Growth Des. 2009, 9(6), 2927–2936. DOI: 10.1021/cg900276g.
  • Volkringer, C.; Loiseau, T., and Férey, G. Two metal-organic Frameworks with Infinite Indium Hydroxide Chains Connected through Tetradentate Carboxylate Linkers. Solid State Sci. 2009, 11(1), 29–35. DOI: 10.1016/j.solidstatesciences.2008.05.012.
  • Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Popov, D.; Burghammer, M., and Riekel, C. Synthesis and Structural Characterization of metal–organic Frameworks with the Mellitate Linker M2 (OH) 2 [C12O12H2]· 2H2O (M= Al, Ga, In) MIL-116. Solid State Sci. 2013, 26, 38–44. DOI: 10.1016/j.solidstatesciences.2013.09.010.
  • Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G., and Elkaïm, E. Syntheses and Structures of the MOF-type Series of Metal 1, 4, 5, 8,-naphthalenetetracarboxylates M2 (OH) 2 [C14O8H4](Al, Ga, In) with Infinite trans-connected M–OH–M Chains (MIL-122). Solid State Sci. 2009, 11(8), 1507–1512. DOI: 10.1016/j.solidstatesciences.2009.05.017.
  • Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G.; Burghammer, M.; Riekel, C.; Haouas, M., and Taulelle, F. Synthesis, single-crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore metal-organic Framework Aluminum Trimesate MIL-100. Chem. Mater. 2009, 21(24), 5695–5697. DOI: 10.1021/cm901983a.
  • Zhang, F.; Zou, X.; Feng, W.; Zhao, X.; Jing, X.; Sun, F.; Ren, H., and Zhu, G. Microwave-assisted Crystallization Inclusion of Spiropyran Molecules in Indium Trimesate Films with Antidromic Reversible Photochromism. J. Mater. Chem. 2012, 22(48), 25019–25026. DOI: 10.1039/c2jm34618d.
  • Volkringer, C.; Loiseau, T.; Férey, G.; Morais, C. M.; Taulelle, F.; Montouillout, V., and Massiot, D. Synthesis, Crystal Structure and 71Ga Solid State NMR of a MOF-type Gallium Trimesate (MIL-96) with μ3-oxo Bridged Trinuclear Units and a Hexagonal 18-ring Network. Microporous Mesoporous Mater. 2007, 105(1–2), 111–117. DOI: 10.1016/j.micromeso.2007.05.018.
  • Volkringer, C., and Loiseau, T. A New Indium metal-organic 3D Framework with 1, 3, 5-benzenetricarboxylate, MIL-96 (In), Containing μ3-oxo-centered Trinuclear Units and A Hexagonal 18-ring Network. Mater. Res. Bull. 2006, 41(5), 948–954. DOI: 10.1016/j.materresbull.2006.01.022.
  • Serra-Crespo, P.; Ramos-Fernandez, E. V.; Gascon, J., and Kapteijn, F. Synthesis and Characterization of an Amino Functionalized MIL-101 (Al): Separation and Catalytic Properties. Chem. Mater. 2011, 23(10), 2565–2572. DOI: 10.1021/cm103644b.
  • Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R., and Eddaoudi, M. Assembly of metal–organic Frameworks (Mofs) Based on Indium‐trimer Building Blocks: A Porous MOF with Soc Topology and High Hydrogen Storage. Angewandte Chemie. 2007, 119(18), 3342–3347. DOI: 10.1002/ange.200604306.
  • Hajjar, R.; Volkringer, C.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Margiolaki, I.; Fink, G.; Morais, C., and Taulelle, F. 71Ga slow-CTMAS NMR and Crystal Structures of MOF-type Gallium Carboxylates with Infinite edge-sharing Octahedra Chains (MIL-120 and MIL-124). Chem. Mater. 2011, 23(1), 39–47. DOI: 10.1021/cm1025427.
  • Zheng, S. T.; Bu, J. T.; Li, Y.; Wu, T.; Zuo, F.; Feng, P., and Bu, X. Pore Space Partition and Charge Separation in cage-within-cage Indium− Organic Frameworks with High CO2 Uptake. J. Am. Chem. Soc. 2010, 132(48), 17062–17064. DOI: 10.1021/ja106903p.
  • Sun, L.; Xing, H.; Liang, Z.; Yu, J., and Xu, R. A 4+ 4 Strategy for Synthesis of Zeolitic metal–organic Frameworks: An indium-MOF with SOD Topology as A light-harvesting Antenna. Chem. Commun. 2013, 49(95), 11155–11157. DOI: 10.1039/c3cc43383h.
  • Chaplais, G.; Simon-Masseron, A.; Porcher, F.; Lecomte, C.; Bazer-Bachi, D.; Bats, N., and Patarin, J. IM-19: A New Flexible Microporous Gallium based-MOF Framework with pressure-and temperature-dependent Openings. Phys. Chem. Chem. Phys. 2009, 11(26), 5241–5245. DOI: 10.1039/b822163d.
  • Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Elkaïm, E., and Vimont, A. XRD and IR Structural Investigations of a Particular Breathing Effect in the MOF-type Gallium Terephthalate MIL-53 (Ga). Dalton Trans. 2009(12), 2241–2249.
  • Boutin, A.; Bousquet, D.; Ortiz, A. U.; Coudert, F. X.; Fuchs, A. H.; Ballandras, A.; Weber, G.; Bezverkhyy, I.; Bellat, J. P., and Ortiz, G., et al. Temperature-induced Structural Transitions in the gallium-based MIL-53 metal–organic Framework. J. Phys. Chem. C. 2013, 117(16), 8180–8188. DOI: 10.1021/jp312179e.
  • Biswas, S.; Ahnfeldt, T., and Stock, N. New Functionalized Flexible Al-MIL-53-X (X=-Cl,-Br,-CH3,-NO2,-(OH) 2) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior. Inorg. Chem. 2011, 50(19), 9518–9526. DOI: 10.1021/ic201219g.
  • Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F., and De Vos, D., et al. The Structure of the Aluminum Fumarate metal–organic Framework A520. Angewandte Chemie. 2015, 127(12), 3735–3739. DOI: 10.1002/ange.201410459.
  • Loiseau, T., and Ferey, G. Crystalline Oxyfluorinated open-framework Compounds: Silicates, Metal Phosphates, Metal Fluorides and metal-organic Frameworks (MOF). J. Fluorine Chem. 2007, 128(4), 413–422. DOI: 10.1016/j.jfluchem.2006.09.009.
  • Halis, S.; Reimer, N.; Klinkebiel, A.; Lüning, U.; Stock, N. 4.3. 5. Four New Al-based Microporous metal-organic Framework Compounds with MIL-53-type Structure Containing Functionalized Extended Linker Molecules. Synthese, Charakterisierung und Anwendung poröser Aluminium-MOFs auf Basis schwefelhaltiger Linkermoleküle: p. 65.
  • Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W., and Kaskel, S. New Highly Porous Aluminium Based metal-organic Frameworks: Al (Oh)(ndc)(ndc= 2, 6-naphthalene Dicarboxylate) and Al (Oh)(bpdc)(bpdc= 4, 4-biphenyl Dicarboxylate). Microporous Mesoporous Mater. 2009, 122(1–3), 93–98. DOI: 10.1016/j.micromeso.2009.02.020.
  • Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R., and Yaghi, O. M. Metal Insertion in a Microporous Metal− Organic Framework Lined with 2, 2-bipyridine. J. Am. Chem. Soc. 2010, 132(41), 14382–14384. DOI: 10.1021/ja106935d.
  • Liu, Y. Y.; Leus, K.; Bogaerts, T.; Hemelsoet, K.; Bruneel, E.; Van Speybroeck, V., and Van Der Voort, P. Bimetallic–Organic Framework as a Zero‐Leaching Catalyst in the Aerobic Oxidation of Cyclohexene. ChemCatChem. 2013, 5(12), 3657–3664. DOI: 10.1002/cctc.201300529.
  • Niekiel, F.; Ackermann, M.; Guerrier, P.; Rothkirch, A., and Stock, N. Aluminum-1, 4-cyclohexanedicarboxylates: High-throughput and temperature-dependent in Situ EDXRD Studies. Inorg. Chem. 2013, 52(15), 8699–8705. DOI: 10.1021/ic400825b.
  • Reinsch, H., and De Vos, D. Structures and Properties of gallium-MOFs with MIL-53-topology Based on Aliphatic Linker Molecules. Microporous Mesoporous Mater. 2014, 200, 311–316. DOI: 10.1016/j.micromeso.2014.07.058.
  • Wang, L.; Song, T.; Li, C.; Xia, J.; Wang, S.; Wang, L., and Xu, J. Three Novel Indium MOFs Derived from Dicarboxylate Ligands: Syntheses, Structures and Photoluminescent Properties. J. Solid State Chem. 2012, 190, 208–215. DOI: 10.1016/j.jssc.2012.02.049.
  • Yang, Q.; Vaesen, S.; Vishnuvarthan, M.; Ragon, F.; Serre, C.; Vimont, A.; Daturi, M.; De Weireld, G., and Maurin, G. Probing the Adsorption Performance of the Hybrid Porous MIL-68 (Al): A Synergic Combination of Experimental and Modelling Tools. J. Mater. Chem. 2012, 22(20), 10210–10220. DOI: 10.1039/c2jm15609a.
  • Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Ferey, G.; Haouas, M.; Taulelle, F.; Audebrand, N., and Latroche, M. The Kagomé Topology of the Gallium and Indium metal-organic Framework Types with a MIL-68 Structure: Synthesis, XRD, solid-state NMR Characterizations, and Hydrogen Adsorption. Inorg. Chem. 2008, 47(24), 11892–11901. DOI: 10.1021/ic801624v.
  • Loiseau, T.; Ferey, G.; Volkringer, C.; Taulelle, F., and Haouas, M. Universite de Versailles Saint Quentin en Yvelines and Centre National de la Recherche Scientifique CNRS, 2014. Method for Preparing metal-organic Framework Crystallised and Porous Aluminium Aromatic Azocarboxylates; U.S. Google Patents 8,907,114.
  • Lo, S. H.; Chien, C. H.; Lai, Y. L.; Yang, C. C.; Lee, J. J.; Raja, D. S., and Lin, C. H. A Mesoporous Aluminium metal–organic Framework with 3 Nm Open Pores. J. Mater. Chem. A. 2013, 1(2), 324–329. DOI: 10.1039/C2TA00030J.
  • Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; De Vos, D., and Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chem. Mater. 2013, 25(1), 17–26. DOI: 10.1021/cm3025445.
  • Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E., and Tang, C. C., et al. Selectivity and Direct Visualization of Carbon Dioxide and Sulfur Dioxide in a Decorated Porous Host. Nat. Chem. 2012, 4(11), 887–894. DOI: 10.1038/nchem.1457.
  • Qian, J.; Jiang, F.; Yuan, D.; Wu, M.; Zhang, S.; Zhang, L., and Hong, M. Highly Selective Carbon Dioxide Adsorption in a water-stable indium–organic Framework Material. Chem. Commun. 2012, 48(78), 9696–9698. DOI: 10.1039/c2cc35068h.
  • Reinsch, H.; Krüger, M.; Marrot, J., and Stock, N. First Keto-Functionalized Microporous Al-Based Metal–Organic Framework:[Al (OH)(O2C-C6H4-CO-C6H4-CO2)]. Inorg. Chem. 2013, 52(4), 1854–1859. DOI: 10.1021/ic301961q.
  • Volkringer, C., Loiseau, T., Haouas, M., Taulelle, F., Popov, D., Burghammer, M., Riekel, C., Zlotea, C., Cuevas, F., Latroche, M. and Phanon, D. Occurrence of Uncommon Infinite Chains Consisting of edge-sharing Octahedra in a Porous Metal Organic framework-type Aluminum Pyromellitate Al4 (OH) 8 [C10O8H2](MIL-120): Synthesis, Structure, and Gas Sorption Properties. Chem. Mater. 2009, 21(24), 5783–5791.
  • Reinsch, H.; De Vos, D., and Stock, N. Structure and Properties of [Al4 (OH) 8 (o‐C6H4 (CO2) 2) 2]· H2O, a Layered Aluminum Phthalate. Zeitschrift für anorganische und allgemeine Chemie. 2013, 639(15), 2785–2789. DOI: 10.1002/zaac.201300357.
  • Hu, Z.; Wang, Y., and Zhao, D. The Chemistry and Applications of Hafnium and Cerium (IV) metal–organic Frameworks. Chem. Soc. Rev. 2021, 50(7), 4629–4683. DOI: 10.1039/d0cs00920b.
  • Coppens, P.; Chen, Y., and Trzop, E. Crystallography and Properties of Polyoxotitanate Nanoclusters. Chem. Rev. 2014, 114(19), 9645–9661. DOI: 10.1021/cr400724e.
  • Rozes, L., and Sanchez, C. Titanium oxo-clusters: Precursors for a Lego-like Construction of Nanostructured Hybrid Materials. Chem. Soc. Rev. 2011, 40(2), 1006–1030. DOI: 10.1039/c0cs00137f.
  • Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C., and Férey, G. A New Photoactive Crystalline Highly Porous Titanium (IV) Dicarboxylate. J. Am. Chem. Soc. 2009, 131(31), 10857–10859. DOI: 10.1021/ja903726m.
  • Zlotea, C.; Phanon, D.; Mazaj, M.; Heurtaux, D.; Guillerm, V.; Serre, C.; Horcajada, P.; Devic, T.; Magnier, E., and Cuevas, F., et al. Effect of NH 2 and CF 3 Functionalization on the Hydrogen Sorption Properties of MOFs. Dalton Trans. 2011, 40(18), 4879–4881. DOI: 10.1039/c1dt10115c.
  • Bueken, B.; Vermoortele, F.; Vanpoucke, D. E.; Reinsch, H.; Tsou, C. C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E., and Van Speybroeck, V., et al. A Flexible Photoactive Titanium Metal–Organic Framework Based on A [TiIV3 (μ3‐O)(O) 2 (COO) 6] Cluster. Angew. Chem. Int. Ed. 2015, 54(47), 13912–13917. DOI: 10.1002/anie.201505512.
  • Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R., and Yaghi, O. M. Water Adsorption in Porous metal–organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136(11), 4369–4381. DOI: 10.1021/ja500330a.
  • Jiang, H. L.; Feng, D.; Liu, T. F.; Li, J. R., and Zhou, H. C. Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable metal–organic Frameworks. J. Am. Chem. Soc. 2012, 134(36), 14690–14693. DOI: 10.1021/ja3063919.
  • Yuan, S.; Lu, W.; Chen, Y. P.; Zhang, Q.; Liu, T. F.; Feng, D.; Wang, X.; Qin, J., and Zhou, H. C. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate metal–organic Frameworks. J. Am. Chem. Soc. 2015, 137(9), 3177–3180. DOI: 10.1021/ja512762r.
  • Bon, V.; Senkovska, I.; Weiss, M. S., and Kaskel, S. Tailoring of Network Dimensionality and Porosity Adjustment in Zr-and Hf-based MOFs. CrystEngComm. 2013, 15(45), 9572–9577. DOI: 10.1039/c3ce41121d.
  • Bon, V.; Senkovska, I.; Baburin, I. A., and Kaskel, S. Zr- and Hf-Based Metal–Organic Frameworks: Tracking down the Polymorphism. Cryst.Growth Des. 2013, 13(3), 1231–1237. DOI: 10.1021/cg301691d.
  • Wang, B.; Huang, H.; Lv, X. L.; Xie, Y.; Li, M., and Li, J. R. Tuning CO2 Selective Adsorption over N2 and CH4 in UiO-67 Analogues through Ligand Functionalization. Inorg. Chem. 2014, 53(17), 9254–9259.
  • Guillerm, V.; Ragon, F.; Dan‐Hardi, M.; Devic, T.; Vishnuvarthan, M.; Campo, B.; Vimont, A.; Clet, G.; Yang, Q., and Maurin, G., et al. A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based metal–organic Frameworks. Angewandte Chemie. 2012, 124(37), 9401–9405. DOI: 10.1002/ange.201204806.
  • Ma, J.; Wong-Foy, A. G., and Matzger, A. J. The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorg. Chem. 2015, 54(10), 4591–4593. DOI: 10.1021/acs.inorgchem.5b00413.
  • Wang, R.; Wang, Z.; Xu, Y.; Dai, F.; Zhang, L., and Sun, D. Porous Zirconium metal–organic Framework Constructed from 2D→ 3D Interpenetration Based on a 3, 6-connected Kgd Net. Inorg. Chem. 2014, 53(14), 7086–7088. DOI: 10.1021/ic5012764.
  • Schaate, A.; Dühnen, S.; Platz, G.; Lilienthal, S.; Schneider, A. M., and Behrens, P. A Novel Zr‐Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as A Linker. Eur. J. Inorg. Chem. Wiley Online Library, 2012, 790-796. https://doi.org/10.1002/ejic.201101151.
  • Garibay, S. J., and Cohen, S. M. Isoreticular Synthesis and Modification of Frameworks with the UiO-66 Topology. Chem. Commun. 2010, 46(41), 7700–7702. DOI: 10.1039/c0cc02990d.
  • Wang, C.; Volotskova, O.; Lu, K.; Ahmad, M.; Sun, C.; Xing, L., and Lin, W. Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in metal–organic Frameworks for Highly Efficient X-ray Scintillation. J. Am. Chem. Soc. 2014, 136(17), 6171–6174. DOI: 10.1021/ja500671h.
  • Wang, K.; Huang, H.; Xue, W.; Liu, D.; Zhao, X.; Xiao, Y.; Li, Z.; Yang, Q.; Wang, L., and Zhong, C. An Ultrastable Zr metal–organic Framework with a thiophene-type Ligand Containing Methyl Groups. CrystEngComm. 2015, 17(19), 3586–3590. DOI: 10.1039/C5CE00269A.
  • Yoon, M., and Moon, D. New Zr (IV) Based metal-organic Framework Comprising a sulfur-containing Ligand: Enhancement of CO2 and H2 Storage Capacity. Microporous Mesoporous Mater. 2015, 215, 116–122. DOI: 10.1016/j.micromeso.2015.05.030.
  • Kim, D.; Liu, X., and Lah, M. S. Topology Analysis of metal–organic Frameworks Based on metal–organic Polyhedra as Secondary or Tertiary Building Units. Inorg. Chem. Front. 2015, 2(4), 336–360. DOI: 10.1039/C4QI00236A.
  • Li, M.; Li, D.; O’Keeffe, M., and Yaghi, O. M. Topological Analysis of metal–organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chem. Rev. 2014, 114(2), 1343–1370. DOI: 10.1021/cr400392k.
  • Zhang, J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M., and Zaworotko, M. J. Temperature and Concentration Control over Interpenetration in a Metal− Organic Material. J. Am. Chem. Soc. 2009, 131(47), 17040–17041. DOI: 10.1021/ja906911q.
  • Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D., and Fang, M. Synthesis and Characterization of the Interpenetrated MOF-5. J. Mater. Chem. 2010, 20(18), 3758–3767. DOI: 10.1039/b922528e.
  • Gotthardt, J. M.; White, K. F.; Abrahams, B. F.; Ritchie, C., and Boskovic, C. Fluorite Topology in Lanthanoid Coordination Polymers with di-and Trimetallic Building Blocks. Cryst. Growth Des. 2012, 12(9), 4425–4430. DOI: 10.1021/cg3006103.
  • Delgado-Friedrichs, O.; O’Keeffe, M., and Yaghi, O. M. Taxonomy of Periodic Nets and the Design of Materials. Phys. Chem. Chem. Phys. 2007, 9(9), 1035–1043. DOI: 10.1039/B615006C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.