Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 4
617
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A Review of High-Efficient Synthetic Methods for Zeolite Membranes and Challenges of Their Directional Growth Control

ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Cundy, C. S.; Cox, P. A. The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103(3), 663–702. DOI: 10.1021/cr020060i.
  • Mizukami, F. Application of Zeolite Membranes, Films and Coatings. Studie.Surf. Sci. Catal. 1999, 125, 1–12.
  • Jia, M.; Peinemann, K.; Behling, R. Ceramic Zeolite Composite Membranes. Preparation, Characterization and Gas Permeation. J. Membr. Sci. 1993, 82(1–2), 15–26. DOI: 10.1016/0376-7388(93)85089-F.
  • Jia, M.; Chen, B.; Noble, R. D.; Falconer, J. L. Ceramic-zeolite Composite Membranes and Their Application for Separation of vapor/gas Mixtures. J. Membr. Sci. 1994, 90(1–2), 1–10. DOI: 10.1016/0376-7388(94)80029-4.
  • Morigami, Y.; Kondo, M.; Abe, J.; Kita, H.; Okamoto, K. The First large-scale Pervaporation Plant Using tubular-type Module with Zeolite NaA Membrane. Sep. Purif. Technol. 2001, 25(1–3), 251–260. DOI: 10.1016/S1383-5866(01)00109-5.
  • Rauch, W. L.; Liu, M. Development of a Selective Gas Sensor Utilizing a perm-selective Zeolite Membrane. J. Mater. Sci. 2003, 38(21), 4307–4317. DOI: 10.1023/A:1026331015093.
  • Mohammadi, T. Ion-exchanged Zeolite X Membranes: Synthesis and Characterisation. Membr. Technol. 2008, 2008(3), 9–11. DOI: 10.1016/S0958-2118(08)70086-7.
  • He, Q.; Zou, Y.; Wang, P.; Dou, X. MFI-Type Zeolite Membranes for Pervaporation Separation of Dichlorobenzene Isomers. ACS Omega. 2021, 6(12), 8456–8462. DOI: 10.1021/acsomega.1c00214.
  • Xomeritakis, G.; Nair, S.; Tsapatsis, M. Transport Properties of alumina-supported MFI Membranes Made by Secondary (Seeded) Growth. Micropor. Mesopor. Mat. 2000, 38(1), 61–73. DOI: 10.1016/S1387-1811(99)00300-5.
  • Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J. R.; Santamarı́a, J. Use of Zeolite Films to Improve the Selectivity of Reactive Gas Sensors. Catal. Today. 2003, 82(1–4), 179–185. DOI: 10.1016/S0920-5861(03)00230-X.
  • Straka, S.; Peters, W.; Hasegawa, M.; Novo-Gradac, K.; Wong, A.; Carosso, N. E. F.; Straka, S. A. F. Development of Molecular Adsorber Coatings: Optical System Contamination: Effects, Measurements, and Control 2010. Bellingham, Wash, 2010. SPIE. 2010, 7794, 77940C.
  • Abraham, N. S.; Hasegawa, M. M.; Straka, S. A.; Straka, S. A.; Carosso, N.; Egges, J. Development and Testing of Molecular Adsorber Coatings. Opt. Sys. Contam.: Eff., Meas., And Control 2012. 2012, 8492, 849203.
  • Algieri, C.; Drioli, E. Zeolite Membranes: Synthesis and Applications. Sep. Purif. Technol. 2021, 278, 119295.
  • Yao, R.; Zhang, W.; Peng, Y.; Song, H.; Zhu, C.; Shu, L.; Yang, W. Synthesis Optimization of phase-singularized UZM-5 Zeolite under Hydrothermal Conditions: The Critical Control Points of Its Crystalline Phase and Crystallinity. Micropor. Mesopor. Mat. 2022, 334, 111776. DOI: 10.1016/j.micromeso.2022.111776.
  • Siqueira Oliveira, A. M.; Paris, E. C.; Giraldi, T. R. GIS Zeolite Obtained by the microwave-hydrothermal Method: Synthesis and Evaluation of Its Adsorptive Capacity. Mater. Chem. Phys. 2021, 260, 124142. DOI: 10.1016/j.matchemphys.2020.124142.
  • Wang, L.; Yang, J.; Wang, J.; Raza, W.; Liu, G.; Lu, J.; Zhang, Y. Microwave Synthesis of NaA Zeolite Membranes on Coarse Macroporous α-Al2O3 Tubes for Desalination. Micropor. Mesopor. Mat. 2020, 306, 110360. DOI: 10.1016/j.micromeso.2020.110360.
  • Perreux, L.; Loupy, A. A Tentative Rationalization of Microwave Effects in Organic Synthesis according to the Reaction Medium, and Mechanistic Considerations. Tetrahedron. 2001, 57(45), 9199–9223. DOI: 10.1016/S0040-4020(01)00905-X.
  • Vichaphund, S.; Sricharoenchaikul, V.; Atong, D. Selective Aromatic Formation from Catalytic Fast Pyrolysis of Jatropha Residues Using ZSM-5 Prepared by microwave-assisted Synthesis. J. Anal. Appl. Pyrol. 2019, 141, 104628. DOI: 10.1016/j.jaap.2019.104628.
  • Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.; Yu, R.; Moskovits, M. Microwave Synthesis of Zeolites and Their Related Applications. Moskovits, Micropor. Mesopor. Mat. 2021, 323, 111262. DOI: 10.1016/j.micromeso.2021.111262.
  • Jamil, A. K.; Muraza, O.; Al-Amer, A. M. Microwave-assisted Solvothermal Synthesis of ZSM-22 Zeolite with Controllable Crystal Lengths. Particuology. 2016, 24, 138–141. DOI: 10.1016/j.partic.2015.09.002.
  • Julbe, A.; Motuzas, J.; Arruebo, M.; Noble, R. D.; Beresnevicius, J.Z. Synthesis and Properties of MFI Zeolite Membranes Prepared by Microwave Assisted Secondary Growth, from Microwave Derived Seeds. Studies in Surface Science and Catalysis. In ejka, J., ~ilková, N., Nachtigall, P., Eds.; Elsevier, 2005; Vol. 158, pp. 129.
  • Zhou, R.; Zhong, S.; Lin, X.; Xu, N. Synthesis of Zeolite T by Microwave and Conventional Heating. Micropor. Mesopor. Mat. 2009, 124(1–3), 117–122. DOI: 10.1016/j.micromeso.2009.05.001.
  • Guo, Q.; Li, G.; Liu, D.; Wei, Y. Synthesis of Zeolite Y Promoted by Fenton’s Reagent and Its Application in photo-Fenton-like Oxidation of Phenol. Solid State Sci. 2019, 91, 89–95. DOI: 10.1016/j.solidstatesciences.2019.03.016.
  • Ferdov, S.; Marques, J.; Tavares, C. J.; Lin, Z.; Mori, S.; Tsunoji, N. UV-light Assisted Synthesis of High Silica faujasite-type Zeolite. Micropor. Mesopor. Mat. 2022, 336, 111858. DOI: 10.1016/j.micromeso.2022.111858.
  • Chu, P.; Dwyer, F. G.; Clark, V. J. Crystallization of Zeolites Using Microwave Radiation. Eur. Pat 11(3) . 1990, 298. doi:10.1016/S0144-2449(05)80238-6.
  • Arafat, A.; Jansen, J. C.; Ebaid, A. R.; van Bekkum, H. Microwave Preparation of Zeolite Y and ZSM-5. Zeolites. 1993, 13(3), 162–165. doi:10.1016/S0144-2449(05)80272-6.
  • Li, Y.; Yang, W. Microwave Synthesis of Zeolite Membranes: A Review. J. Membr. Sci. 2008, 316(1–2), 3–7. DOI: 10.1016/j.memsci.2007.08.054.
  • Kim, D. S.; Chang, J.; Hwang, J.; Park, S.; Kim, J. M. Synthesis of Zeolite Beta in Fluoride Media under Microwave Irradiation. Micropor. Mesopor. Mat. 2004, 68(1–3), 77–82. DOI: 10.1016/j.micromeso.2003.11.017.
  • Li, G.; Hou, H.; Lin, R. Rapid Synthesis of Mordenite Crystals by Microwave Heating. Solid State Sci. 2011, 13(3), 662–664. DOI: 10.1016/j.solidstatesciences.2010.12.040.
  • Xu, X.; Yang, W.; Liu, J.; Lin, L. Fast Formation of NaA Zeolite Membrane in the Microwave Field. Chin. Sci. Bull. 2000, 45(13), 1179–1181. DOI: 10.1007/BF02886074.
  • Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of NaA Zeolite Membrane by Microwave Heating. Sep. Purif. Technol. 2001, 25(1–3), 241–249. DOI: 10.1016/S1383-5866(01)00108-3.
  • Zhou, H.; Li, Y.; Zhu, G.; Liu, J.; Yang, W. Microwave-assisted Hydrothermal Synthesis of a&b-oriented Zeolite T Membranes and Their Pervaporation Properties. Sep. Purif. Technol. 2009, 65(2), 164–172. DOI: 10.1016/j.seppur.2008.10.046.
  • Sun, K.; Liu, B.; Zhong, S.; Wu, A.; Wang, B.; Zhou, R.; Kita, H. Fast Preparation of Oriented Silicalite-1 Membranes by Microwave Heating for Butane Isomer Separation. Sep. Purif. Technol. 2019, 219, 90–99. DOI: 10.1016/j.seppur.2019.03.018.
  • Li, X.; Yan, Y.; Wang, Z. Continuity Control of b- Oriented MFI Zeolite Films by Microwave Synthesis. Ind. Eng. Chem. Res. 2010, 49(12), 5933–5938. DOI: 10.1021/ie1000136.
  • Madhusoodana, C. D.; Das, R. N.; Kameshima, Y.; Okada, K. Microwave-assisted Hydrothermal Synthesis of Zeolite Films on Ceramic Supports. J. Mater. Sci. 2006, 41(5), 1481–1487. DOI: 10.1007/s10853-006-7490-y.
  • Slangen, P. M.; Jansen, J. C.; van Bekkum, H. The Effect of Ageing on the Microwave Synthesis of Zeolite NaA. Microporous Mater. 1997, 9(5–6), 259–265. DOI: 10.1016/S0927-6513(96)00119-8.
  • Liu, Y.; Li, Y.; Cai, R.; Yang, W. Suppression of Twins in b-oriented MFI Molecular Sieve Films under Microwave Irradiation. Chem. Commun. 2012, 48(54), 6782–6784. DOI: 10.1039/c2cc18111h.
  • Yi Liu, A. J. L. A. Single-Mode Microwave Heating-Induced Concurrent Out-of-Plane Twin Growth Suppression and In-Plane Epitaxial Growth Promotion of b -Oriented MFI Film under Mild Reaction conditions. Chem. - Asian J. 2020, 15(8), 1277–1280. DOI: 10.1002/asia.202000111.
  • Wang, C.; Liu, X.; Li, J.; Zhang, B. Microwave-assisted Seeded Growth of the submicrometer-thick and Pure b-oriented MFI Zeolite Films Using an ultra-dilute Synthesis Solution. Crystengcomm. 2013, 15(32), 6301. DOI: 10.1039/c3ce40644j.
  • Bukhari, S. S.; Behin, J.; Kazemian, H.; Rohani, S. Synthesis of Zeolite NA-A Using Single Mode Microwave Irradiation at Atmospheric Pressure: The Effect of Microwave Power. Can. J. Chem. Eng. 2015, 93(6), 1081–1090. DOI: 10.1002/cjce.22194.
  • Mehdipourghazi, M.; Moheb, A.; Kazemian, H.; Kazemian, H. Incorporation of Boron into nano-size MFI Zeolite Structure Using a Novel microwave-assisted two-stage Varying Temperatures Hydrothermal Synthesis. Micropor. Mesopor. Mat. 2010, 136(1–3), 18–24. DOI: 10.1016/j.micromeso.2010.07.011.
  • Motuzas, J.; Julbe, A.; Noble, R. D.; van der Lee, A.; Beresnevicius, Z. J. Rapid Synthesis of Oriented Silicalite-1 Membranes by microwave-assisted Hydrothermal Treatment. Micropor. Mesopor. Mat. 2006, 92(1–3), 259–269. DOI: 10.1016/j.micromeso.2006.01.014.
  • Xia, S.; Chen, Y.; Xu, H.; Lv, D.; Yu, J.; Wang, P. Synthesis EMT-type Zeolite by Microwave and Hydrothermal Heating. Micropor. Mesopor. Mat. 2019, 278, 54–63. DOI: 10.1016/j.micromeso.2018.11.012.
  • Yang, W.; Zhang, B.; Liu, X. Synthesis and Characterization of SAPO-5 Membranes on Porous α-Al2O3 Substrates. Micropor. Mesopor. Mat. 2009, 117(1–2), 391–394. DOI: 10.1016/j.micromeso.2008.07.015.
  • Li, Y.; Liu, J.; Yang, W. Formation Mechanism of Microwave Synthesized LTA Zeolite Membranes. J. Membr. Sci. 2006, 281(1–2), 646–657. DOI: 10.1016/j.memsci.2006.04.051.
  • Hu, N.; Li, Y.; Zhong, S.; Wang, B.; Zhang, F.; Wu, T.; Yang, Z.; Zhou, R.; Chen, X. Microwave Synthesis of Zeolite CHA (Chabazite) Membranes with High Pervaporation Performance in Absence of Organic Structure Directing Agents. Micropor. Mesopor. Mat. 2016, 228, 22–29. DOI: 10.1016/j.micromeso.2016.03.018.
  • Barham, J. P.; Koyama, E.; Norikane, Y.; Ohneda, N.; Yoshimura, T. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single‐Mode Heating toward Large‐Scale Applications. Chem. Rec. 2018, 19(1), 188–203. DOI: 10.1002/tcr.201800104.
  • Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Bojkowski, W. Current Trends in the Development of Microwave Reactors for the Synthesis of Nanomaterials in Laboratories and Industries: A Review. Crystals. 2018, 8(10), 379. DOI: 10.3390/cryst8100379.
  • Zhang, W.; Wu, L.; Zhou, Y.; Xu, Y.; Deng, J.; Yang, Z.; Sun, H. Design of a capacity-enhanced single-mode Reactor for Microwave Chemistry Researches. Chem. Eng. J. 2022, 427, 131898. DOI: 10.1016/j.cej.2021.131898.
  • Liu, Y.; Li, M.; Chen, Z.; Cui, Y.; Lu, J.; Liu, Y. Hierarchy Control of MFI Zeolite Membrane Towards Superior Butane Isomer Separation Performance. Angew. Chem. Int. Ed. 2021, 60(14), 7659–7663. DOI: 10.1002/anie.202017087.
  • Liu, Y.; Qiang, W.; Ji, T.; Zhang, M.; Li, M.; Lu, J.; Liu, Y. Uniform Hierarchical MFI Nanosheets Prepared via Anisotropic Etching for solution-based Sub – 100-nm-thick Oriented MFI Layer Fabrication. Science Advances 6(7), 2020, y5993. doi:10.1126/sciadv.aay5993.
  • Panzarella, B.; Tompsett, G. A.; Yngvesson, K. S.; Conner, W. C. Microwave Synthesis of Zeolites. 2. Effect of Vessel Size, Precursor Volume, and Irradiation Method. J. Phys. Chem. B. 2007, 111(44), 12657–12667. DOI: 10.1021/jp072622d.
  • Panzarella, B.; Tompsett, G.; Conner, W. C.; Jones, K. In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites. Chem. Phys. Chem. 2007, 8(3), 357–369. DOI: 10.1002/cphc.200600496.
  • Zhou, H.; Li, Y.; Zhu, G.; Liu, J.; Yang, W. Preparation of Zeolite T Membranes by microwave-assisted in Situ Nucleation and Secondary Growth. Mater. Lett. 2009, 63(2), 255–257. DOI: 10.1016/j.matlet.2008.10.003.
  • Han, Z. H. O. U.; Yanshuo, L. I.; Guangqi, Z. H. U.; Jie, L. I. U.; Liwu, L. I. N.; Weishen, Y. Microwave Synthesis of a&b-Oriented Zeolite T Membranes and Their Application in Pervaporation-Assisted Esterification. Chin. J. Catal. 2008, 7, 592–594.
  • Ansari, M.; Aroujalian, A.; Raisi, A.; Dabir, B.; Fathizadeh, M. Preparation and Characterization of nano-NaX Zeolite by Microwave Assisted Hydrothermal Method. Adv. Powder Technol. 2014, 25(2), 722–727. DOI: 10.1016/j.apt.2013.10.021.
  • Bonaccorsi, L.; Proverbio, E. Microwave Assisted Crystallization of Zeolite A from Dense Gels. J. Cryst. Growth. 2003, 247(3–4), 555–562. DOI: 10.1016/S0022-0248(02)02053-5.
  • Chengizhi-Lin, H. W.; Liu, Z. Fabrication of Zeolite A Rods with Irregular Macropores by Self-assembly of Zeolite A Microcrystals Using Micro-wave-assisted Hydrothermal Synthesis. Chinese J. Chem. 2004, 22(12), 1454–1455.
  • Cheng, Z.; Han, S.; Sun, W.; Qin, Q. Microwave-assisted Synthesis of Nanosized FAU-type Zeolite in water-in-oil Microemulsion. Mater. Lett. 2013, 95, 193–196. DOI: 10.1016/j.matlet.2013.01.002.
  • Zhu, G.; Li, Y.; Zhou, H.; Liu, J.; Yang, W. FAU-type Zeolite Membranes Synthesized by Microwave Assisted in Situ Crystallization. Mater. Lett. 2008, 62(28), 4357–4359. DOI: 10.1016/j.matlet.2008.07.026.
  • Azzolina Jury, F.; Polaert, I.; Estel, L.; Pierella, L. B. Enhancement of Synthesis of ZSM-11 Zeolite by Microwave Irradiation. Micropor. Mesopor. Mat. 2014, 198, 22–28. DOI: 10.1016/j.micromeso.2014.07.006.
  • You, H.; Jin, H.; Mo, Y.; Park, S. CO2 Adsorption Behavior of Microwave Synthesized Zeolite Beta. Mater. Lett. 2013, 108, 106–109. DOI: 10.1016/j.matlet.2013.06.088.
  • Koo, J.; Jiang, N.; Saravanamurugan, S.; Bejblová, M.; Musilová, Z.; ejka, J.; Park, S. Direct Synthesis of carbon-templating Mesoporous ZSM-5 Using Microwave Heating. J. Catal. 2010, 276(2), 327–334. DOI: 10.1016/j.jcat.2010.09.024.
  • Kim, S.; Lauterbach, J. Synthesis of ZSM-5 Catalysts via microwave-assisted Heating Method for Military Jet Fuel Cracking into Petroleum Gas. Micropor. Mesopor. Mat. 2021, 328, 111446. DOI: 10.1016/j.micromeso.2021.111446.
  • Tang, Z.; Kim, S.; Gu, X.; Dong, J. Microwave Synthesis of MFI-type Zeolite Membranes by Seeded Secondary Growth without the Use of Organic Structure Directing Agents. Micropor. Mesopor. Mat. 2009, 118(1–3), 224–231. DOI: 10.1016/j.micromeso.2008.08.029.
  • Ziyi, H.; Hongbo, L.; Yuxin, T.; Yueyang, C.; Yanshuo, L.; Weishen, Y. Microwave Synthesis Type NaA Zeolite Membrane for Ethanol Dehydration on Vaper Permeation Study of Experimental Facility and 30000 Tons per Year Industrial Demonstration Unit. Chem. Ind.Eng. Prog. 2016, 35, 438–442.
  • Bonaccorsi, L.; Proverbio, E. Influence of Process Parameters in Microwave Continuous Synthesis of Zeolite LTA. Micropor. Mesopor. Mat. 2008, 112(1–3), 481–493. DOI: 10.1016/j.micromeso.2007.10.028.
  • Conner, W. C.; Tompsett, G.; Lee, K.; Yngvesson, K. S. Microwave Synthesis of Zeolites:  1. Reactor Eng. J. Phys. Chem. B. 2004, 108(37), 13913–13920. DOI: 10.1021/jp037358c.
  • Gharibeh, M.; Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. Microwave Synthesis of SAPO-11 and AlPO-11: Aspects of Reactor Engineering. Chem. Phys. Chem. 2008, 9(17), 2580–2591. DOI: 10.1002/cphc.200800491.
  • Nigar, H.; Sturm, G. S. J.; Garcia-Baños, B.; Peñaranda-Foix, F. L.; Catalá-Civera, J. M.; Mallada, R.; Stankiewicz, A.; Santamaría, J. Numerical Analysis of Microwave Heating Cavity: Combining Electromagnetic Energy, Heat Transfer and Fluid Dynamics for a NaY Zeolite fixed-bed. Appl. Therm. Eng. 2019, 155, 226–238. DOI: 10.1016/j.applthermaleng.2019.03.117.
  • Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J. H.; Wang, J.; Li, Y.; Corma, A.; Xu, R., et al. Accelerated Crystallization of Zeolites via Hydroxyl Free Radicals. Science. 2016, 351(6278), 1188–1191. DOI: 10.1126/science.aaf1559.
  • Chen, X.; Qiu, M.; Li, S.; Yang, C.; Shi, L.; Zhou, S.; Yu, G.; Ge, L.; Yu, X.; Liu, Z., et al. Gamma-Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angew. Chem. Int. Ed. Engl. 2020, 59(28), 11325–11329. DOI: 10.1002/anie.202002886.
  • Wahab, I. B. M. A.; Yeong, Y. F. Effect of Ultrasonic Pre-Treatment Durations on the Formation of Zeolite-T. Appl. Mech. Mater. 2014, 625, 911–915. DOI: 10.4028/scientific.net/AMM.625.911.
  • Wang, B.; Wu, J.; Li, N.; Yuan, Z.; Xiang, S. Rapid Synthesis of MCM-36 Zeolite under Ultrasonic Treatment. Chin. J. Catal. 2007, 28(5), 398–400. DOI: 10.1016/S1872-2067(07)60035-7.
  • Zhang, H.; Wu, C.; Song, M.; Lu, T.; Wang, W.; Wang, Z.; Yan, W.; Cheng, P.; Zhao, Z. Accelerated Synthesis of Al-rich Zeolite Beta via Different Radicalized Seeds in the Absence of Organic Templates. Micropor. Mesopor. Mat. 2021, 310, 110633. DOI: 10.1016/j.micromeso.2020.110633.
  • Cheng, P.; Song, M.; Zhang, H.; Xuan, Y.; Wu, C. Accelerated Synthesis of Zeolites via Radicalized Seeds. J. Mater. Sci. 2019, 54(6), 4573–4578. DOI: 10.1007/s10853-018-3178-3.
  • Cheng, P.; Feng, G.; Sun, C.; Xu, W.; Su, J.; Yan, W.; Yu, J. An Efficient Synthetic Route to Accelerate Zeolite Synthesis via Radicals. Inorg. Chem. Front. 2018, 5(9), 2106–2110. DOI: 10.1039/C8QI00441B.
  • Feng, C.; Su, X.; Wang, W.; Xu, S.; Fan, B.; Xin, Q.; Wu, W. Facile Synthesis of Ultrafine Nanosized ZSM-5 Zeolite Using a Hydroxyl Radical Initiator for Enhanced Catalytic Performance in the MTG Reaction. Micropor. Mesopor. Mat. 2021, 312, 110780. DOI: 10.1016/j.micromeso.2020.110780.
  • Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (• OH). Chem. Rev. 2015, 115(24), 13051–13092. DOI: 10.1021/cr500310b.
  • Jianyu, W. A. N. G.; ZHANG, Q.; Wenfu, Y. A. N.; Yu, J. Roles of Hydroxyl Radicals in Zeolite Synthesis. Chem. J. Chin. Univ. 2021, 42, 11–20.
  • Xu, G.; Chance, M. R. Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chem. Rev. 2007, 107(8), 3514–3543. DOI: 10.1021/cr0682047.
  • Kusic, H.; Koprivanac, N.; Bozic, A. L. Minimization of Organic Pollutant Content in Aqueous Solution by Means of AOPs: UV- and ozone-based Technologies. Chem. Eng. J. 2006, 123(3), 127–137. DOI: 10.1016/j.cej.2006.07.011.
  • Catalkaya, E. C.; Kargi, F. TOC and AOX Removals from Pulp Mill Effluent by Advanced Oxidation Processes: A Comparative Study. J. Hazard. Mater. 2007, 139(2), 244–253. DOI: 10.1016/j.jhazmat.2006.06.023.
  • Reisz, E.; Schmidt, W.; Schuchmann, H.; von Sonntag, C. Photolysis of Ozone in Aqueous Solutions in the Presence of Tertiary Butanol. Environ. Sci. Technol. 2003, 37(9), 1941–1948. DOI: 10.1021/es0113100.
  • Song, S.; Xu, X.; Xu, L.; He, Z.; Ying, H.; Chen, J.; Yan, B. Mineralization of CI Reactive Yellow 145 in Aqueous Solution by Ultraviolet-Enhanced Ozonation. Ind. Eng. Chem. Res. 2008, 47(5), 1386–1391. DOI: 10.1021/ie0711628.
  • Li, Q.; Amweg, M. L.; Yee, C. K.; Navrotsky, A.; Parikh, A. N. Photochemical Template Removal and Spatial Patterning of Zeolite MFI Thin Films Using UV/ozone Treatment. Micropor. Mesopor. Mat. 2005, 87(1), 45–51. DOI: 10.1016/j.micromeso.2005.07.048.
  • Ferradini, C.; Jay-Gerin, J. The Effect OfPh on Water Radiolysis: A Srtill Open Question - A Minireview. Res. Chem. Intermed. 2000, 26(6), 549–565. DOI: 10.1163/156856700X00525.
  • Chen, F.; Li, Y.; Cai, W.; Zhang, J. Preparation and sono-Fenton Performance of 4A-zeolite Supported α-Fe2O3. J. Hazard. Mater. 2010, 177(1–3), 743–749. DOI: 10.1016/j.jhazmat.2009.12.094.
  • Makino, K.; Mossoba, M. M.; Riesz, P. Chemical Effects of Ultrasound on Aqueous Solutions. Formation of Hydroxyl Radicals and Hydrogen Atoms. J. Phys. Chem. (1952). 1983, 87(8), 1369–1377. DOI: 10.1021/j100231a020.
  • Henglein, A. Sonochemistry: Historical Developments and Modern Aspects. Ultrasonics. 1987, 25(1), 6–16. DOI: 10.1016/0041-624X(87)90003-5.
  • Pal, P.; Das, J. K.; Das, N.; Bandyopadhyay, S. Synthesis of NaP Zeolite at Room Temperature and Short Crystallization Time by Sonochemical Method. Ultrason. Sonochem. 2013, 20(1), 314–321. DOI: 10.1016/j.ultsonch.2012.07.012.
  • Bose, A.; Sen, M.; Das, J. K.; Das, N. Sonication Mediated Hydrothermal Process – An Efficient Method for the Rapid Synthesis of DDR Zeolite Membranes. RSC Adv. 2014, 4(36), 19043. DOI: 10.1039/c3ra47558a.
  • Lee, S. G.; Kim, J. K.; Kwon, J. Y.; Lee, C. H.; Park, H. C.; Son, S. M.; Park, S. S. Low Temperature Synthesis of Zeolite Using Ultrasonic Energy. Mater. Scie. Forum. 2005, 486-487, 281–284. DOI: 10.4028/scientific.net/MSF.486-487.281.
  • Ng, T. Y. S.; Chew, T. L.; Yeong, Y. F.; Jawad, Z. A.; Ho, C. Zeolite RHO Synthesis Accelerated by Ultrasonic Irradiation Treatment. Sci. Rep.-UK. 2019, 9(1), 1–11.
  • Cao, L.; Zhao, X.; Jin, J.; Xu, C.; Gao, X.; Lan, L.; Yuan, X.; Liu, H.; Liu, H. Crystal-Seeds-Based Strategy for the Synthesis of Hydrothermally Stable Mesoporous Aluminosilicates with a Largely Decreased H 2 O Amount. Ind. Eng. Chem. Res. 2014, 53(44), 17286–17293. DOI: 10.1021/ie502934q.
  • Jin, J.; Cao, L.; Hu, Q.; Xu, C.; Gao, X.; Feng, W.; Liub, H.; Liu, H. An Efficient Synthesis of Hydrothermally Stable Mesoporous Aluminosilicates with Significant Decreased Organic Templates by a seed-assisted Approach. J. Mater. Chem. A. 2014, 2(21), 7853–7861.
  • Watanabe, T.; Isobe, T.; Senna, M. Mechanisms of Incipient Chemical Reaction between Ca(OH)2 and SiO2 under Moderate Mechanical Stressing: II: Examination of a Radical Mechanism by an EPR Study. J. Solid State Chem. 1996, 122(2), 291–296. DOI: 10.1006/jssc.1996.0115.
  • Zeleňák, V.; Zeleňáková, A.; Kováč, J. Insight into Surface Heterogenity of SBA-15 Silica: Oxygen Related Defects and Magnetic Properties. Colloids Surf. A. 2010, 357(1–3), 97–104. DOI: 10.1016/j.colsurfa.2010.01.001.
  • Pignatello, J. J.; Oliveros, E.; Mackay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Env. Sci. Tec. 2006, 36(1), 1–84. DOI: 10.1080/10643380500326564.
  • Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced Oxidation Processes (AOP) for Water Purification and Recovery. Catal. Today. 1999, 53(1), 51–59. DOI: 10.1016/S0920-5861(99)00102-9.
  • Han, Z.; Zhang, F.; Zhao, X. Green energy-efficient Synthesis of Fe-ZSM-5 Zeolite and Its Application for Hydroxylation of Phenol. Micropor. Mesopor. Mat. 2019, 290, 109679. DOI: 10.1016/j.micromeso.2019.109679.
  • Zhao, X.; Niu, L.; Hao, Z.; Long, X.; Wang, D.; Li, G. Sodium Persulfate Promoted Interzeolite Transformation of USY into SSZ-13 via a solid-state Grinding Route and Its Enhanced Catalytic Lifetime in the methanol-to-olefins Reaction. React. Kinet., Mech. Catal. 2021, 134(2), 837–849. DOI: 10.1007/s11144-021-02105-6.
  • Guan, Y.; Ma, J.; Li, X.; Fang, J.; Chen, L. Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 2011, 45(21), 9308–9314. DOI: 10.1021/es2017363.
  • Hong-Dan, Z.; Yu, Q.; Peng, C. Influence of Hydroxyl Free Radicals Assisted on Synthesis of Zeolites. Appl Chem Indus. 2020, 49, 2447–2449.
  • Deng, Y.; Zhou, J.; Li, G.; Liu, H.; Gao, X.; Yue, Y.; Li, H.; Xie, F.; Liu, H. Synthesis of Well-Ordered Mesoporous Aluminosilicates with High Aluminum Contents: The Challenge and the Promise. Inorg. Chem. 2022, 61(30), 11820–11829. DOI: 10.1021/acs.inorgchem.2c01571.
  • Konecny, R. Reactivity of Hydroxyl Radicals on Hydroxylated Quartz Surface. 1. Cluster Model Calculations. J. Phys. Chem. B. 2001, 105(26), 6221–6226. DOI: 10.1021/jp010752v.
  • Narayanasamy, J.; Kubicki, J. D. Mechanism of Hydroxyl Radical Generation from a Silica Surface:  Molecular Orbital Calculations. J. Phys. Chem. B. 2005, 109(46), 21796–21807. DOI: 10.1021/jp0543025.
  • Wang, J.; Liu, P.; Boronat, M.; Ferri, P.; Xu, Z.; Liu, P.; Shen, B.; Wang, Z.; Yu, J. Organic‐Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of in Situ Hydroxyl Radical Assistance and Post‐Synthesis Treatment. Angew. Chem. Int. Ed. 2020, 59(39), 17225–17228. DOI: 10.1002/anie.202005715.
  • Yuan, D.; Wang, Q.; Shang, Y.; Liu, H.; Xing, A. Promoted Crystallization of Silicoaluminophosphate Zeolites: An Efficient Way to Accelerate Crystallization Rate and Increase Solid Yield. Crystengcomm. 2021, 23(13), 2504–2508. DOI: 10.1039/D0CE01858A.
  • Askari, S.; Halladj, R. Ultrasonic Pretreatment for Hydrothermal Synthesis of SAPO-34 Nanocrystals. Ultrason. Sonochem. 2012, 19(3), 554–559. DOI: 10.1016/j.ultsonch.2011.09.006.
  • Zhou, Y.; Shen, X.; Li, J. Crystallization and MTO Performance of SAPO-34 Zeolite under the Influence of Hydroxyl Radicals. Inorg. Chem. Commun. 2019, 107, 107462. DOI: 10.1016/j.inoche.2019.107462.
  • Li, Y.; Zhu, G.; Wang, Y.; Chai, Y.; Liu, C. Preparation, Mechanism and Applications of Oriented MFI Zeolite Membranes: A Review. Micropor. Mesopor. Mat. 2021, 312, 110790.
  • Bons, A.; Bons, P. D. The Development of Oblique Preferred Orientations in Zeolite Films and Membranes. Micropor. Mesopor. Mat. 2003, 62(1–2), 9–16. DOI: 10.1016/S1387-1811(03)00384-6.
  • Dong, J.; Xu, Y.; Long, Y. Preferred Growth of Siliceous MEL Zeolite Film on Silicon Wafer. Micropor. Mesopor. Mat. 2005, 87(1), 59–66. DOI: 10.1016/j.micromeso.2005.07.033.
  • Pham, T. C. T.; Kim, H. S.; Yoon, K. B. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science. 2011, 334(6062), 1533–1538. DOI: 10.1126/science.1212472.
  • Huang, P. S.; Lam, C. H.; Su, C. Y.; Chen, Y. R.; Lee, W. Y.; Wang, D. M.; Hua, C. C.; Kang, D. Y. Scalable Wet Deposition of Zeolite AEI with a High Degree of Preferred Crystal Orientation. Angew. Chem. Int. Ed. 2018, 57(40), 13271–13276. DOI: 10.1002/anie.201807430.
  • Lang, L.; Liu, X.; Zhang, B. Controlling the Orientation and Coverage of silica-MFI Zeolite Films by Surface Modification. Appl. Surf. Sci. 2009, 255(9), 4886–4890. DOI: 10.1016/j.apsusc.2008.12.030.
  • Salwa Mohd Nazir, L.; Fong Yeong, Y.; Leng Chew, T.; Leng Chew, T. Effect of Alkalinity Towards the Formation of NaX Zeolite Membranes. Mater. Today: Proceedings. 2019, 19, 1287–1293.
  • Soydaş, B.; Çulfaz, A.; Kalipçilar, H. Effect Of Soda Concentration On The Morphology Of Mfi-Type Zeolite Membranes. Chem. Eng. Commun. 2008, 196(1–2), 182–193. DOI: 10.1080/00986440802290144.
  • Yue-Sheng, L. X. Z. B. Synthesis of Oriented MFI Zeolite Films by Template-free Secondary Growth. Chinese J. Inorg. Chem. 2008, 24(10),1679–1683.
  • Wang, Z.; Yan, Y. Controlling Crystal Orientation in Zeolite MFI Thin Films by Direct in Situ Crystallization. Chem. Mater. 2001, 13(3), 1101–1107. DOI: 10.1021/cm000849e.
  • Xu, C.; Lu, X.; Wang, Z. Effects of Sodium Ions on the Separation Performance of pure-silica MFI Zeolite Membranes. J. Membr. Sci. 2017, 524, 124–131. DOI: 10.1016/j.memsci.2016.11.014.
  • Lu, X.; Peng, Y.; Wang, Z.; Yan, Y. A Facile Fabrication of Highly b-oriented MFI Zeolite Films in the TEOS-TPAOH-H2O System without Additives. Micropor. Mesopor. Mat. 2016, 230, 49–57. DOI: 10.1016/j.micromeso.2016.04.037.
  • Li, Y.; Ma, N.; Liu, X.; Zhang, B. Synthesis of Dense High-Silica Zeolite Beta Membranes with Controllable Orientation for n -Butanol Recovery from Dilute Aqueous Solution. Cryst. Growth Des. 2019, 19(6), 3166–3171. DOI: 10.1021/acs.cgd.8b01862.
  • Lu, X.; Peng, Y.; Wang, Z.; Yan, Y. Rapid Fabrication of Highly b-oriented Zeolite MFI Thin Films Using Ammonium Salts as crystallization-mediating Agents. Chem. Commun. (Cambridge, England). 2015, 51(55), 11076–11079. DOI: 10.1039/C5CC02980E.
  • Banihashemi, F.; Ibrahim, A. F. M.; Babaluo, A. A.; Lin, J. Y. S. Template‐Free Synthesis of Highly b‐Oriented MFI‐Type Zeolite Thin Films by Seeded Secondary Growth. Angew. Chem. Int. Ed. 2019, 58(8), 2519–2523. DOI: 10.1002/anie.201814248.
  • Liu, Y.; Zhou, X.; Pang, X.; Jin, Y.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F. Improved para -Xylene Selectivity in meta- Xylene Isomerization over ZSM-5 Crystals with Relatively Long b -Axis Length. Chem. Cat Chem. 2013, 5(6), 1517–1523. DOI: 10.1002/cctc.201200691.
  • Li, H.; Liu, X.; Qi, S.; Xu, L.; Shi, G.; Ding, Y.; Yan, X.; Huang, Y.; Geng, J. Graphene Oxide Facilitates Solvent-Free Synthesis of Well-Dispersed, Faceted Zeolite Crystals. Angew. Chem. Int. Ed. 2017, 56(45), 14090–14095. DOI: 10.1002/anie.201707823.
  • Peng, Y.; Xu, R. Insights into 1,2-dihydroxybenzene Addition on Twin Suppression during the Secondary Hydrothermal Synthesis of b-oriented MFI Zeolite Films. J. Mater. Sci. 2020, 55(3), 967–975. DOI: 10.1007/s10853-019-03971-1.
  • Peng, Y.; Xu, R.; Lu, X.; Jiang, X.; Wang, Z. Controlled Release of Siliceous Species for the Fabrication of Highly b -oriented MFI Zeolite Films. Crystengcomm. 2019, 21(28), 4141–4244. DOI: 10.1039/C9CE00817A.
  • Guo, L.; Wang, Z.; Wang, J.; Wang, Z.; Xue, S.; Jiang, X.; Lu, T.; Xu, J.; Zhan, Y.; Han, L. Direct Synthesis of c-axis-oriented HZSM-5 Zeolites in Polyacrylamide Hydrogel. J. Sol-Gel Sci. Techn. 2020, 96(1), 256–263. DOI: 10.1007/s10971-020-05342-8.
  • Bonilla, G.; Díaz, I.; Tsapatsis, M.; Jeong, H.; Lee, Y.; Vlachos, D. G. Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chem. Mater. 2004, 16(26), 5697–5705. DOI: 10.1021/cm048854w.
  • Dib, E.; Gimenez, A.; Mineva, T.; Alonso, B. Preferential Orientations of Structure Directing Agents in Zeolites. Dalton T. 2015, 44(38), 16680–16683. DOI: 10.1039/C5DT02558C.
  • Choi, J.; Ghosh, S.; Lai, Z.; Tsapatsis, M. Uniformlya-Oriented MFI Zeolite Films by Secondary Growth. Angew. Chem. Int. Ed. 2006, 45(7), 1154–1158. DOI: 10.1002/anie.200503011.
  • Chaikittisilp, W.; Davis, M. E.; Okubo, T. TPA + -mediated Conversion of Silicon Wafer into Preferentially-Oriented MFI Zeolite Film under Steaming. Chem. Mater. 2007, 19(17), 4120–4122. DOI: 10.1021/cm071475t.
  • Mabande, G. T. P.; Ghosh, S.; Lai, Z.; Schwieger, W.; Tsapatsis, M. Preparation of b -Oriented MFI Films on Porous Stainless Steel Substrates. Ind. Eng. Chem. Res. 2005, 44(24), 9086–9095. DOI: 10.1021/ie050668s.
  • Kim, E.; Choi, J.; Tsapatsis, M. On Defects in Highly a-oriented MFI Membranes. Micropor. Mesopor. Mat. 2013, 170, 1–8. DOI: 10.1016/j.micromeso.2012.11.023.
  • Zhou, M.; Korelskiy, D.; Ye, P.; Grahn, M.; Hedlund, J. A Uniformly Oriented MFI Membrane for Improved CO 2 Separation. Angewandte Chemie. 2014, 126(13), 3560–3563. DOI: 10.1002/ange.201311324.
  • Yu, H.; Wang, X.; Long, Y. Synthesis of b-axis Oriented High Silica MFI Type Zeolite Crystals Introduced with co-template Role. Micropor. Mesopor. Mat. 2006, 95(1–3), 234–240. DOI: 10.1016/j.micromeso.2006.05.037.
  • Kore, R.; Srivastava, R.; Satpati, B. ZSM-5 Zeolite Nanosheets with Improved Catalytic Activity Synthesized Using a New Class of Structure-Directing Agents. Chem. - Eur. J. 2014, 20(36), 11511–11521. DOI: 10.1002/chem.201402665.
  • Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell Nanosheets of Zeolite MFI as Active and long-lived Catalysts. Ryoo. Nature. 2009, 461(7261), 246–249. DOI: 10.1038/nature08288.
  • Tsapatsis, M. 2-dimensional Zeolites. AIChE J. 2014, 60(7), 2374–2381. DOI: 10.1002/aic.14462.
  • Agrawal, K. V.; Topuz, B.; Jiang, Z.; Nguenkam, K.; Elyassi, B.; Francis, L. F.; Tsapatsis, M.; Navarro, M. Solution-processable Exfoliated Zeolite Nanosheets Purified by Density Gradient Centrifugation. AIChE J. 2013, 59(9), 3458–3467. DOI: 10.1002/aic.14099.
  • Rangnekar, N.; Shete, M.; Agrawal, K. V.; Topuz, B.; Kumar, P.; Guo, Q.; Ismail, I.; Alyoubi, A.; Basahel, S.; Narasimharao, K., et al. 2D Zeolite Coatings: Langmuir-Schaefer Deposition of 3 nm Thick MFI Zeolite Nanosheets. Angew. Chem. Int. Ed. 2015, 54(22), 6571–6575. DOI: 10.1002/anie.201411791.
  • Agrawal, K. V.; Topuz, B.; Pham, T. C. T.; Nguyen, T. H.; Sauer, N.; Rangnekar, N.; Zhang, H.; Narasimharao, K.; Basahel, S. N.; Francis, L. F., et al. Oriented MFI Membranes by Gel‐Less Secondary Growth of Sub‐100 Nm MFI‐Nanosheet Seed Layers. Adv. Mater. 2015, 27(21), 3243–3249. DOI: 10.1002/adma.201405893.
  • Peng, Y.; Lu, X.; Wang, Z.; Yan, Y. Fabrication of b -Oriented MFI Zeolite Films under Neutral Conditions without the Use of Hydrogen Fluoride. Angew. Chem. Int. Ed. 2015, 54(19), 5709–5712. DOI: 10.1002/anie.201412482.
  • Zhou, M.; Zhang, B.; Liu, X. Oriented Growth and Assembly of Zeolite Crystals on Substrates. Sci. Bull. 2008, 53(6), 801–816. DOI: 10.1007/s11434-008-0021-2.
  • Hrabanek, P.; Zikanova, A.; Drahokoupil, J.; Prokopova, O.; Brabec, L.; Jirka, I.; Matejkova, M.; Fila, V.; de la Iglesia, O.; Kocirik, M. Combined Silica Sources to Prepare Preferentially Oriented Silicalite-1 Layers on Various Supports. Micropor. Mesopor. Mat. 2013, 174, 154–162. DOI: 10.1016/j.micromeso.2013.03.007.
  • Ji, M.; Liu, G.; Chen, C.; Wang, L.; Zhang, X. Synthesis of Highly b-oriented ZSM-5 Membrane on a Rough Surface Modified Simply with TiO2 by in Situ Crystallization. Micropor. Mesopor. Mat. 2012, 155, 117–123. DOI: 10.1016/j.micromeso.2011.12.037.
  • Deng, Z.; Pera-Titus, M. In Situ Crystallization of b-oriented MFI Films on Plane and Curved Substrates Coated with a Mesoporous Silica Layer. Mater. Res. Bull. 2013, 48(5), 1874–1880. DOI: 10.1016/j.materresbull.2013.01.020.
  • Aguado, S.; Mcleary, E. E.; Nijmeijer, A.; Luiten, M.; Jansen, J. C.; Kapteijn, F. b-Oriented MFI Membranes Prepared from Porous Silica Coatings. Micropor. Mesopor. Mat. 2009, 120(1–2), 165–169. DOI: 10.1016/j.micromeso.2008.08.059.
  • Zhang, F.; Fuji, M.; Takahashi, M. Effect of Mesoporous Silica Buffer Layer on the Orientation of MFI Zeolite Membranes. J. Am. Ceram. Soc. 2005, 88(8), 2307–2309. DOI: 10.1111/j.1551-2916.2005.00386.x.
  • Lee, I.; Buday, J. L.; Jeong, H. μ-Tiles and Mortar Approach: A Simple Technique for the Facile Fabrication of Continuous b-oriented MFI Silicalite-1 Thin Films. Micropor. Mesopor. Mat. 2009, 122(1–3), 288–293. DOI: 10.1016/j.micromeso.2009.03.017.
  • Lee, I.; Jeong, H. Synthesis and Gas Permeation Properties of Highly b-oriented MFI Silicalite-1 Thin Membranes with Controlled Microstructure. Micropor. Mesopor. Mat. 2011, 141(1–3), 175–183. DOI: 10.1016/j.micromeso.2010.11.012.
  • Elyassi, B.; Jeon, M. Y.; Tsapatsis, M.; Narasimharao, K.; Basahel, S. N.; Al-Thabaiti, S. Ethanol/water Mixture Pervaporation Performance of b -oriented Silicalite-1 Membranes Made by gel-free Secondary Growth. AIChE J. 2016, 62(2), 556–563. DOI: 10.1002/aic.15124.
  • Zhang, B.; Zhou, M.; Liu, X. Monolayer Assembly of Oriented Zeolite Crystals onα-Al2O3 Supported Polymer Thin Films. Adv. Mater. 2008, 20(11), 2183–2189. DOI: 10.1002/adma.200701271.
  • Yamazaki, S.; Tsutsumi, K. Synthesis of A-type Zeolite Membrane Using a Plate Heater and Its Formation Mechanism. Micropor. Mesopor. Mat. 2000, 37(1–2), 67–80. DOI: 10.1016/S1387-1811(99)00194-8.
  • Koegler, J. H.; van Bekkum, H.; Jansen, J. C. Growth Model of Oriented Crystals of Zeolite Si-ZSM-5. Zeolites. 1997, 19(4), 262–269. DOI: 10.1016/S0144-2449(97)00088-2.
  • Dong, W.; Long, Y. Preparation of an MFI-type Zeolite Membrane on a Porous Glass Disc by Substrate self-transformation. Chem. Commun. 0(3), 2000, 1067–1068.
  • Lee, Y.; Ryu, W.; Kim, S. S.; Shul, Y.; Je, J. H.; Cho, G. Oriented Growth of TS-1 Zeolite Ultrathin Films on Poly(ethylene Oxide) Monolayer Templates. Langmuir. 2005, 21(13), 5651–5654. DOI: 10.1021/la047149z.
  • Wang, X. D.; Zhang, B. Q.; Liu, X. F.; Lin, J. Y. S. Synthesis ofb-Oriented TS-1 Films on Chitosan-Modified α-Al2O3 Substrates. Adv. Mater. 2006, 18(24), 3261–3265. DOI: 10.1002/adma.200502772.
  • Kuzniatsova, T. A.; Mottern, M. L.; Chiu, W. V.; Kim, Y.; Dutta, P. K.; Verweij, H. Synthesis of Thin, Oriented Zeolite A Membranes on A Macroporous Support. Adv. Funct. Mater. 2008, 18(6), 952–958. DOI: 10.1002/adfm.200701001.
  • Shu, X.; Wang, X.; Kong, Q.; Gu, X.; Xu, N. High-Flux MFI Zeolite Membrane Supported on YSZ Hollow Fiber for Separation of Ethanol/Water. Ind. Eng. Chem. Res. 2012, 51(37), 12073–12080. DOI: 10.1021/ie301087u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.