Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 5
395
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Schiff Base Pillar-layered Metal-organic Frameworks: From Synthesis to Applications

, &

References

  • Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal–organic Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018, 30(37), 1703663. DOI: 10.1002/adma.201703663.
  • Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K.-H.; Deep, A. Recent Advances in Enzyme Immobilization Techniques: Metal-organic Frameworks as Novel Substrates. Coord. Chem. Rev. 2016, 322, 30–40. DOI: 10.1016/j.ccr.2016.05.007.
  • Kang, Y.-S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.-Y. Metal–organic Frameworks with Catalytic Centers: From Synthesis to Catalytic Application. Coord. Chem. Rev. 2019, 378, 262–280. DOI: 10.1016/j.ccr.2018.02.009.
  • Lin, R.-B.; Xiang, S.; Li, B.; Cui, Y.; Qian, G.; Zhou, W.; Chen, B. Our Journey of Developing Multifunctional metal-organic Frameworks. Coord. Chem. Rev. 2019, 384, 21–36. DOI: 10.1016/j.ccr.2019.01.009.
  • Tarasi, S.; Tehrani, A. A.; Morsali, A.; Retailleau, P. Fabrication of Amine and imine-functionalized Isoreticular pillared-layer metal–organic Frameworks for the Highly Selective Detection of nitro-aromatics. New J. Chem. 2018, 42(18), 14772–14778. DOI: 10.1039/C8NJ02407C.
  • Ghasempour, H.; Morsali, A. Ultrasound-assisted Synthesized and Catalytic Studies of Two nano-structured metal–organic Frameworks with Long N-donor Ligand as a Pillar. Polyhedron. 2018, 151, 58–65. DOI: 10.1016/j.poly.2018.05.009.
  • ZareKarizi, F.; Joharian, M.; Morsali, A. Pillar-layered MOFs: Functionality, Interpenetration, Flexibility and Applications. J. Mater. Chem. A. 2018, 6(40), 19288–19329.
  • Zhai, Q.-G.; Bai, N.; Li, S. N.; Bu, X.; Feng, P. Design of Pore Size and Functionality in pillar-layered Zn-triazolate-dicarboxylate Frameworks and Their High CO2/CH4 and C2 hydrocarbons/CH4 Selectivity. Inorg. Chem. 2015, 54(20), 9862–9868. DOI: 10.1021/acs.inorgchem.5b01611.
  • Luo, X.-L.; Yin, Z.; Zeng, M.-H.; Kurmoo, M. The Construction, Structures, and Functions of Pillared Layer metal–organic Frameworks. Inorg. Chem. Front. 2016, 3(10), 1208–1226. DOI: 10.1039/C6QI00181E.
  • Ghasempour, H.; Tehrani, A. A.; Morsali, A.; Wang, J.; Junk, P. C. Two Pillared metal–organic Frameworks Comprising a Long Pillar Ligand Used as Fluorescent Sensors for Nitrobenzene and Heterogeneous Catalysts for the Knoevenagel Condensation Reaction. CrystEngComm. 2016, 18(14), 2463–2468. DOI: 10.1039/C6CE00108D.
  • Aggarwal, H.; Bhatt, P. M.; Bezuidenhout, C. X.; Barbour, L. J. Direct Evidence for single-crystal to single-crystal Switching of Degree of Interpenetration in a metal–organic Framework. J. Am. Chem. Soc. 2014, 136(10), 3776–3779. DOI: 10.1021/ja500530y.
  • Yang, Q.; Zhao, Q.; Tang, K.; Zhang, X.; Li, Y.; Chen, Z. A Thermally Stable and Homochiral jsm-type metal–organic Framework: Syntheses, Structure and Properties. Polyhedron. 2015, 90, 23–27. DOI: 10.1016/j.poly.2015.01.002.
  • Seo, J.; Bonneau, C.; Matsuda, R.; Takata, M.; Kitagawa, S. Soft Secondary Building Unit: Dynamic Bond Rearrangement on Multinuclear Core of Porous Coordination Polymers in Gas Media. J. Am. Chem. Soc. 2011, 133(23), 9005–9013. DOI: 10.1021/ja201484s.
  • Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C. Tuning the Topology and Functionality of Metal− Organic Frameworks by Ligand Design. Acc. Chem. Res. 2011, 44(2), 123–133. DOI: 10.1021/ar100112y.
  • Steel, P. J. Ligand Design in Multimetallic Architectures: Six Lessons Learned. Acc. Chem. Res. 2005, 38(4), 243–250. DOI: 10.1021/ar040166v.
  • Chang, Z.; Zhang, D.-S.; Chen, Q.; Li, R.-F.; Hu, T.-L.; Bu, X.-H. Rational Construction of 3D Pillared metal–organic Frameworks: Synthesis, Structures, and Hydrogen Adsorption Properties. Inorg. Chem. 2011, 50(16), 7555–7562. DOI: 10.1021/ic2004485.
  • Liu, F.-H.; Qin, C.; Ding, Y.; Wu, H.; Shao, K.-Z.; Su, Z.-M. Pillared Metal Organic Frameworks for the Luminescence Sensing of Small Molecules and Metal Ions in Aqueous Solutions. Dalton Trans. 2015, 44(4), 1754–1760. DOI: 10.1039/C4DT02961E.
  • Bhattacharya, B.; Haldar, R.; Maity, D. K.; Maji, T. K.; Ghoshal, D. Pillared-bilayer Porous Coordination Polymers of Zn (II): Enhanced Hydrophobicity of Pore Surface by Changing the Pillar Functionality. CrystEngComm. 2015, 17(18), 3478–3486. DOI: 10.1039/C5CE00143A.
  • Wang, X.-F.; Wang, Y.; Zhang, Y.-B.; Xue, W.; Zhang, J.-P.; Chen, X.-M. Layer-by-layer Evolution and a Hysteretic single-crystal to single-crystal Transformation Cycle of a Flexible pillared-layer Open Framework. Chem. Commun. 2012, 48(1), 133–135. DOI: 10.1039/C1CC15891K.
  • Razavi, S. A. A.; Masoomi, M. Y.; Islamoglu, T.; Morsali, A.; Xu, Y.; Hupp, J. T.; Farha, O. K.; Wang, J.; Junk, P. C. Improvement of methane–framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. Inorg. Chem. 2017, 56(5), 2581–2588. DOI: 10.1021/acs.inorgchem.6b02758.
  • Gao, C.; Liu, S.; Xie, L.; Ren, Y.; Cao, J.; Sun, C. Design and Construction of a Microporous metal–organic Framework Based on the pillared-layer Motif. CrystEngComm. 2007, 9(7), 545–547. DOI: 10.1039/B704433J.
  • Ghorbanloo, M.; Safarifard, V.; Morsali, A. Heterogeneous Catalysis with a Coordination Modulation Synthesized MOF: Morphology-dependent Catalytic Activity. New J. Chem. 2017, 41(10), 3957–3965. DOI: 10.1039/C6NJ04065A.
  • Hong, Y.; Wang, Y.; Guo, Y.; Wang, K.; Wu, H.; Zhang, C.; Zhang, Q. Recent Advances in Pillar‐layered Metal‐organic Frameworks with Interpenetrated and Non‐interpenetrated Topologies as Supercapacitor Electrodes. Zeitschrift für anorganische und allgemeine Chemie. 2022, 648(9), e202200115. DOI: 10.1002/zaac.202200115.
  • Wu, Z.; Adekoya, D.; Huang, X.; Kiefel, M. J.; Xie, J.; Xu, W.; Zhang, Q.; Zhu, D.; Zhang, S. Highly Conductive two-dimensional metal–organic Frameworks for Resilient Lithium Storage with Superb Rate Capability. ACS Nano. 2020, 14(9), 12016–12026. DOI: 10.1021/acsnano.0c05200.
  • Li, C.; Wang, K.; Li, J.; Zhang, Q. Nanostructured potassium–organic Framework as an Effective Anode for potassium-ion Batteries with a Long Cycle Life. Nanoscale. 2020, 12(14), 7870–7874. DOI: 10.1039/D0NR00964D.
  • Wang, K.; Wang, S.; Liu, J.; Guo, Y.; Mao, F.; Wu, H.; Zhang, Q. Fe-based Coordination Polymers as battery-type Electrodes in semi-solid-state battery–supercapacitor Hybrid Devices. ACS Appl. Mater. Interfaces. 2021, 13(13), 15315–15323. DOI: 10.1021/acsami.1c01339.
  • Guo, Y.; Wang, K.; Hong, Y.; Wu, H.; Zhang, Q. Recent Progress on Pristine two-dimensional metal-organic Frameworks as Active Components in Supercapacitors. Dalton Trans. 2021, 50(33), 11331–11346. DOI: 10.1039/D1DT01729B.
  • Wang, K.; Wang, Z.; Liu, J.; Li, C.; Mao, F.; Wu, H.; Zhang, Q. Enhancing the Performance of a Battery–Supercapacitor Hybrid Energy Device through Narrowing the Capacitance Difference between Two Electrodes via the Utilization of 2D MOF-Nanosheet-Derived Ni@ Nitrogen-Doped-Carbon Core–Shell Rings as Both Negative and Positive Electrodes. ACS Appl. Mater. Interfaces. 2020, 12(42), 47482–47489. DOI: 10.1021/acsami.0c12830.
  • Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg (II) Detection Based on Different Signal Transduction of a tetrazine-functionalized Pillared metal–organic Framework. Inorg. Chem. 2017, 56(16), 9646–9652. DOI: 10.1021/acs.inorgchem.7b01155.
  • Esrafili, L.; Tehrani, A. A.; Morsali, A. Ultrasonic Assisted Synthesis of Two Urea Functionalized Metal Organic Frameworks for Phenol Sensing: A Comparative Study. Ultrason. Sonochem. 2017, 39, 307–312. DOI: 10.1016/j.ultsonch.2017.04.039.
  • Razavi, S. A. A.; Morsali, A. High Capacity Oil Denitrogenation over Azine-and Tetrazine-Decorated Metal–Organic Frameworks: Critical Roles of Hydrogen Bonding. ACS Appl. Mater. Interfaces. 2019, 11(24), 21711–21719. DOI: 10.1021/acsami.9b05282.
  • Kaur, M.; Yusuf, M.; Malik, A. K. Synthesis of Copper Metal Organic Framework Based on Schiff Base Tricarboxylate Ligand for Highly Selective and Sensitive Detection of 2, 4, 6-trinitrophenol in Aqueous Medium. J. Fluoresc. 2021, 31(6), 1959–1973. DOI: 10.1007/s10895-021-02823-z.
  • Lv, R.; Chen, Z.; Fu, X.; Yang, B.; Li, H.; Su, J.; Gu, W.; Liu, X. A Highly Selective and fast-response Fluorescent Probe Based on Cd-MOF for the Visual Detection of Al3+ Ion and Quantitative Detection of Fe3+ Ion. J. Solid State Chem. 2018, 259, 67–72. DOI: 10.1016/j.jssc.2017.12.033.
  • Farahani, Y. D.; Safarifard, V. Highly Selective Detection of Fe3+, Cd2+ and CH2Cl2 Based on a Fluorescent Zn-MOF with azine-decorated Pores. J. Solid State Chem. 2019, 275, 131–140. DOI: 10.1016/j.jssc.2019.04.018.
  • Abbasi, A. R.; Hatami, S. Comparison of Structure of Nano Zinc metal–organic Frameworks upon Uptake and Release of Phenazopyridine Hydrochloride. J. Inorg. Organomet. Polym. Mater. 2017, 27(6), 1941–1949. DOI: 10.1007/s10904-017-0618-5.
  • Saedi, Z.; Roushani, M. Influence of Amine Group on the Adsorptive Removal of Basic Dyes from Water Using Two Nanoporous Isoreticular Zn (Ii)-based Metal Organic Frameworks. Nanochem. Res. 2018, 3(1), 99–108.
  • Roushani, M.; Saedi, Z. Anionic Dyes Removal from Aqueous Solution Using TMU-16 and TMU-16-NH2 as Isoreticular Nanoporous metal-organic Frameworks. J. Taiwan Inst. Chem. Eng. 2016, 66, 164–171. DOI: 10.1016/j.jtice.2016.06.012.
  • Safarifard, V.; Morsali, A. Influence of an Amine Group on the Highly Efficient Reversible Adsorption of Iodine in Two Novel Isoreticular Interpenetrated pillared-layer Microporous metal–organic Frameworks. CrystEngComm. 2014, 16(37), 8660–8663. DOI: 10.1039/C4CE01331J.
  • Beheshti, S.; Safarifard, V.; Morsali, A. Isoreticular Interpenetrated pillared-layer Microporous metal-organic Framework as a Highly Effective Catalyst for three-component Synthesis of Pyrano [2, 3-d] Pyrimidines. Inorg. Chem. Commun. 2018, 94, 80–84. DOI: 10.1016/j.inoche.2018.06.002.
  • Bagheri, M.; Masoomi, M. Y. Sensitive Ratiometric Fluorescent Metal-Organic Framework Sensor for Calcium Signaling in Human Blood Ionic Concentration Media. ACS Appl. Mater. Interfaces. 2020, 12(4), 4625–4631. DOI: 10.1021/acsami.9b20489.
  • Bagheri, M.; Masoomi, M. Y.; Morsali, A.; Schoedel, A. Two Dimensional host–guest metal–organic Framework Sensor with High Selectivity and Sensitivity to Picric Acid. ACS Appl. Mater. Interfaces. 2016, 8(33), 21472–21479. DOI: 10.1021/acsami.6b06955.
  • Farahani, Y. D.; Safarifard, V. A Luminescent metal-organic Framework with pre-designed Functionalized Ligands as an Efficient Fluorescence Sensing for Fe3+ Ions. J. Solid State Chem. 2019, 270, 428–435. DOI: 10.1016/j.jssc.2018.12.005.
  • Safarifard, V.; Beheshti, S.; Morsali, A. An Interpenetrating amine-functionalized metal–organic Framework as an Efficient and Reusable Catalyst for the Selective Synthesis of tetrahydro-chromenes. CrystEngComm. 2015, 17(7), 1680–1685. DOI: 10.1039/C4CE02141J.
  • Parmar, B.; Rachuri, Y.; Bisht, K. K.; Suresh, E. Mixed-ligand LMOF Fluorosensors for Detection of Cr (VI) Oxyanions and Fe3+/Pd2+ Cations in Aqueous Media. Inorg. Chem. 2017, 56(18), 10939–10949. DOI: 10.1021/acs.inorgchem.7b01130.
  • Patel, P.; Parmar, B.; Kureshy, R. I.; Noor-ul, H. K.; Suresh, E. Amine-functionalized Zn(II) MOF as an Efficient Multifunctional Catalyst for CO2 Utilization and Sulfoxidation Reaction. Dalton Trans. 2018, 47(24), 8041–8051. DOI: 10.1039/C8DT01297K.
  • Parmar, B.; Rachuri, Y.; Bisht, K. K.; Laiya, R.; Suresh, E. Mechanochemical and Conventional Synthesis of Zn (II)/cd (II) Luminescent Coordination Polymers: Dual Sensing Probe for Selective Detection of Chromate Anions and TNP in Aqueous Phase. Inorg. Chem. 2017, 56(5), 2627–2638. DOI: 10.1021/acs.inorgchem.6b02810.
  • Patel, P.; Parmar, B.; Kureshy, R. I.; Khan, N. U.; Suresh, E. Efficient Solvent‐free Carbon Dioxide Fixation Reactions with Epoxides under Mild Conditions by Mixed‐ligand Zinc (II) metal–organic Frameworks. ChemCatChem. 2018, 10(11), 2401–2408. DOI: 10.1002/cctc.201800137.
  • Parmar, B.; Rachuri, Y.; Bisht, K. K.; Suresh, E. Syntheses and Structural Analyses of New 3D Isostructural Zn (II) and Cd (II) Luminescent MOFs and Their Application Towards Detection of Nitroaromatics in Aqueous Media. ChemistrySelect. 2016, 1(19), 6308–6315. DOI: 10.1002/slct.201601134.
  • Hong, X.-J.; Wei, Q.; Cai, Y.-P.; Zheng, S.-R.; Yu, Y.; Fan, Y.-Z.; Xu, X.-Y.; Si, L.-P. 2-Fold Interpenetrating Bifunctional Cd-Metal–Organic Frameworks: Highly Selective Adsorption for CO2 and Sensitive Luminescent Sensing of Nitro Aromatic 2, 4, 6-Trinitrophenol. ACS Appl. Mater. Interfaces. 2017, 9(5), 4701–4708. DOI: 10.1021/acsami.6b14051.
  • Bagheri, M.; Masoomi, M. Y.; Morsali, A. Highly Sensitive and Selective Ratiometric Fluorescent metal–organic Framework Sensor to Nitroaniline in Presence of Nitroaromatic Compounds and VOCs. Sens. Actuators B. 2017, 243, 353–360. DOI: 10.1016/j.snb.2016.11.144.
  • Ghasempour, H.; Tehrani, A. A.; Morsali, A.; Wang, J.; Junk, P. C. A Novel 3D pillar-layered metal-organic Framework: Pore-size-dependent Catalytic Activity and CO2/N2 Affinity. Polyhedron. 2020, 180, 114422.
  • Azhdari Tehrani, A.; Ghasempour, H.; Morsali, A.; Makhloufi, G.; Janiak, C. Effects of Extending the π-electron System of Pillaring Linkers on Fluorescence Sensing of Aromatic Compounds in Two Isoreticular metal–organic Frameworks. Cryst. Growth Des. 2015, 15(11), 5543–5547. DOI: 10.1021/acs.cgd.5b01175.
  • Masoomi, M. Y.; Beheshti, S.; Morsali, A. Mechanosynthesis of New azine-functionalized Zn (II) metal–organic Frameworks for Improved Catalytic Performance. J. Mater. Chem. A. 2014, 2(40), 16863–16866. DOI: 10.1039/C4TA04001E.
  • Masoomi, M. Y.; Bagheri, M.; Morsali, A. High Efficiency of Mechanosynthesized Zn-based metal-organic Frameworks in Photodegradation of Congo Red under UV and Visible Light. RSC Adv. 2016, 6(16), 13272–13277. DOI: 10.1039/C5RA24238J.
  • Tahmasebi, E.; Masoomi, M. Y.; Yamini, Y.; Morsali, A. Application of a Zn (Ii) Based metal–organic Framework as an Efficient solid-phase Extraction Sorbent for Preconcentration of Plasticizer Compounds. RSC Adv. 2016, 6(46), 40211–40218. DOI: 10.1039/C6RA06560K.
  • Amanzadeh, H.; Yamini, Y.; Masoomi, M. Y.; Morsali, A. Nanostructured metal–organic Frameworks, TMU-4, TMU-5, and TMU-6, as Novel Adsorbents for Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. New J. Chem. 2017, 41(20), 12035–12043.
  • Masoomi, M. Y.; Bagheri, M.; Morsali, A. High Adsorption Capacity of Two Zn-based metal–organic Frameworks by Ultrasound Assisted Synthesis. Ultrason. Sonochem. 2016, 33, 54–60. DOI: 10.1016/j.ultsonch.2016.04.013.
  • Tehrani, A. A.; Abbasi, H.; Esrafili, L.; Morsali, A. Urea-containing metal-organic Frameworks for Carbonyl Compounds Sensing. Sens. Actuators B. 2018, 256, 706–710. DOI: 10.1016/j.snb.2017.09.211.
  • Joharian, M.; Morsali, A.; Tehrani, A. A.; Carlucci, L.; Proserpio, D. M. Water-stable Fluorinated metal–organic Frameworks (F-MOFs) with Hydrophobic Properties as Efficient and Highly Active Heterogeneous Catalysts in Aqueous Solution. Green Chem. 2018, 20(23), 5336–5345. DOI: 10.1039/C8GC02367K.
  • Parmar, B.; Patel, P.; Murali, V.; Rachuri, Y.; Kureshy, R. I.; Noor-ul, H. K.; Suresh, E. Efficient Heterogeneous Catalysis by Dual Ligand Zn (II)/cd (II) MOFs for the Knoevenagel Condensation Reaction: Adaptable Synthetic Routes, Characterization, Crystal Structures and Luminescence Studies. Inorg. Chem. Front. 2018, 5(10), 2630–2640. DOI: 10.1039/C8QI00744F.
  • Ugale, B.; Nagaraja, C. Construction of 2D Interwoven and 3D metal-organic Frameworks (Mofs) of Cd (II): The Effect of Ancillary Ligands on the Structure and the Catalytic Performance for the Knoevenagel Reaction. RSC Adv. 2016, 6(34), 28854–28864. DOI: 10.1039/C6RA01647B.
  • Tahmasebi, E.; Masoomi, M. Y.; Yamini, Y.; Morsali, A. Application of Mechanosynthesized azine-decorated Zinc (II) metal–organic Frameworks for Highly Efficient Removal and Extraction of Some heavy-metal Ions from Aqueous Samples: A Comparative Study. Inorg. Chem. 2015, 54(2), 425–433. DOI: 10.1021/ic5015384.
  • Masoomi, M. Y.; Stylianou, K. C.; Morsali, A.; Retailleau, P.; Maspoch, D. Selective CO2 Capture in metal–organic Frameworks with azine-functionalized Pores Generated by Mechanosynthesis. Cryst. Growth Des. 2014, 14(5), 2092–2096.
  • Masoomi, M. Y.; Bagheri, M.; Morsali, A.; Junk, P. C. High Photodegradation Efficiency of Phenol by mixed-metal-organic Frameworks. Inorg. Chem. Front. 2016, 3(7), 944–951. DOI: 10.1039/C6QI00067C.
  • Parmar, B.; Patel, P.; Pillai, R. S.; Kureshy, R. I.; Noor-ul, H. K.; Suresh, E. Efficient Catalytic Conversion of terminal/internal Epoxides to Cyclic Carbonates by Porous Co (II) MOF under Ambient Conditions: Structure–property Correlation and Computational Studies. J. Mater. Chem. A. 2019, 7(6), 2884–2894. DOI: 10.1039/C8TA10631B.
  • Parmar, B.; Patel, P.; Kureshy, R. I.; Khan, N. U. H.; Suresh, E. Sustainable Heterogeneous Catalysts for CO2 Utilization by Using Dual Ligand ZnII/CdII metal–organic Frameworks. Chem. - Eur. J. 2018, 24(59), 15831–15839. DOI: 10.1002/chem.201802387.
  • Ye, J.; Gou, Y.; Xu, Z.-L.; Xu, H. Selectively Catalytic micro-and Nanocrystals of metal–organic Framework [Co (4-bpdh)(hia)]∞. J. Solid State Chem. 2015, 226, 142–146. DOI: 10.1016/j.jssc.2014.12.012.
  • Wang, X.; Xu, H.; Han, Y.; Li, Y.; Sheng, C.; Xu, Z.; Xu, J.; Wang, M. Selective Catalytic Properties Determined by the Molecular Skeleton: Two New Isostructural Coordination Polymers [{M (H2O)5}2 (μ-4-bpdh)(oba)]∞(M= Co, Ni). Inorg. Chim. Acta. 2017, 461, 15–20. DOI: 10.1016/j.ica.2017.01.026.
  • Masoomi, M. Y.; Bagheri, M.; Morsali, A. Porosity and Dye Adsorption Enhancement by Ultrasonic Synthesized Cd (II) Based metal-organic Framework. Ultrason. Sonochem. 2017, 37, 244–250. DOI: 10.1016/j.ultsonch.2017.01.018.
  • Abazari, R.; Salehi, G.; Mahjoub, A. R. Ultrasound-assisted Preparation of a Nanostructured Zinc (II) Amine Pillar metal-organic Framework as a Potential Sorbent for 2, 4-dichlorophenol Adsorption from Aqueous Solution. Ultrason. Sonochem. 2018, 46, 59–67. DOI: 10.1016/j.ultsonch.2018.02.001.
  • Masoomi, M. Y.; Morsali, A.; Junk, P. C. Rapid Mechanochemical Synthesis of Two New Cd(II)-based metal-organic Frameworks with High Removal Efficiency of Congo Red. CrystEngComm. 2015, 17(3), 686–692. DOI: 10.1039/C4CE01783H.
  • Ghomshehzadeh, S. G.; Nobakht, V.; Pourreza, N.; Mercandelli, P.; Carlucci, L. A New Pillared Cd-organic Framework as Adsorbent of Organic Dyes and as Precursor of CdO Nanoparticles. Polyhedron. 2020, 176, 114265. DOI: 10.1016/j.poly.2019.114265.
  • Rachuri, Y.; Subhagan, S.; Parmar, B.; Bisht, K. K.; Suresh, E. Selective and Reversible Adsorption of Cationic Dyes by Mixed Ligand Zn (II) Coordination Polymers Synthesized by Reactant Ratio Modulation. Dalton Trans. 2018, 47(3), 898–908. DOI: 10.1039/C7DT03667A.
  • Abbasi, A. R.; Yousefshahi, M.; Azadbakht, A.; Morsali, A.; Masoomi, M. Y. Methyl Orange Removal from Wastewater Using [Zn2(oba)2(4-bpdh)]· 3DMF metal–organic Frameworks Nanostructures. J. Inorg. Organomet. Polym. Mater. 2015, 25(6), 1582–1589. DOI: 10.1007/s10904-015-0262-x.
  • Abbasi, A. R.; Yousefshahi, M.; Azadbakht, A. Synthesis and Characterization of azine-functionalized Zinc Cation metal–organic Frameworks Nanostructures upon Silk Fibers under Ultrasound Irradiation, Study of Pores Effect on Morphine Adsorption Affinity. Colloids Surf., A. 2016, 498, 58–65.
  • Abbasi, A. R.; Azadbakht, A.; Morsali, A.; Safarifard, V. Synthesis and Characterization of TMU-16-NH 2 metal-organic Framework Nanostructure upon Silk Fiber: Study of Structure Effect on Morphine and Methyl Orange Adsorption Affinity. Fibers Polym. 2015, 16(5), 1193–1200. DOI: 10.1007/s12221-015-1193-4.
  • Azadbakht, A.; Aali, J.; Abbasi, A. R.; Maghsudi, M. Crystal Growth of Thin [Zn2(H2N-BDC)2(4-bpdb)]·3DMF metal–organic Framework Nanostructure on Functionalized Surfaces: Study of Structure Effect on Methyldopa Adsorption Affinity. Russ. J. Electrochem. 2017, 53(4), 345–351. DOI: 10.1134/S1023193517040024.
  • Safari, M.; Yamini, Y.; Masoomi, M. Y.; Morsali, A.; Mani-Varnosfaderani, A. Magnetic metal-organic Frameworks for the Extraction of Trace Amounts of Heavy Metal Ions Prior to Their Determination by ICP-AES. Mikrochim. Acta. 2017, 184(5), 1555–1564. DOI: 10.1007/s00604-017-2133-3.
  • Tahmasebi, E.; Masoomi, M. Y.; Yamini, Y.; Morsali, A. Application of a Zn (Ii) Based Metal–Organic Framework as an Efficient Solid-Phase Extraction Sorbent for Preconcentration of Plasticizer Compounds. RSC Adv. 2016, 6(46), 40211–40218. 10.1039/C6RA06560K
  • Tahmasebi, E.; Masoomi, M. Y.; Yamini, Y.; Morsali, A.Application of a Zn (ii) based metal–organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds. Rsc Adv. 2016, 6(46), 40211–40218
  • Bhattacharya, B.; Dey, R.; Pachfule, P.; Banerjee, R.; Ghoshal, D. Four3D Cd (Ii)-based metal-organic Hybrids with Different N, N′-donor Spacers: Syntheses, Characterizations, and Selective Gas Adsorption Properties. Cryst. Growth Des. 2013, 13(2), 731–739.
  • Alduhaish, O.; Wang, H.; Li, B.; Arman, H. D.; Nesterov, V.; Alfooty, K.; Chen, B. A Threefold Interpenetrated Pillared‐Layer Metal–Organic Framework for Selective Separation of C2H2/CH4 and CO2/CH4. ChemPlusChem. 2016, 81(8), 764–769.
  • Ghosh, S.; Pahari, G.; Maity, D. K.; Halder, A.; Ghoshal, D. Five Diverse Multidimensional Polycarboxylate–Based Mixed–Ligand Coordination Polymers with Different N, N′–Donor Ligands: Synthesis, Characterization and Their Sorption Study. ChemistrySelect. 2018, 3(31), 8980–8991.
  • Wang, Y.; Ke, C.; Zhou, J.; Qin, L.; Lin, X.; Cheng, Q.; Liu, J. N-doped C/Se Derived from a Cu-based Coordination Polymer as Cathode for lithium-selenium Batteries. Inorg. Chem. Commun. 2019, 108, 107538. DOI: 10.1016/j.inoche.2019.107538.
  • Butova, V. V. E.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85(3), 280. DOI: 10.1070/RCR4554.
  • Hashemi, B.; Zohrabi, P.; Raza, N.; Kim, K.-H. Metal-organic Frameworks as Advanced Sorbents for the Extraction and Determination of Pollutants from Environmental, Biological, and Food Media. TrAC, Trends Anal. Chem. 2017, 97, 65–82. DOI: 10.1016/j.trac.2017.08.015.
  • Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of metal-organic Frameworks: A Mini Review. Korean J. Chem. Eng. 2013, 30(9), 1667–1680. DOI: 10.1007/s11814-013-0140-6.
  • Stock, N.; Biswas, S. Synthesis of metal-organic Frameworks (Mofs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112(2), 933–969. DOI: 10.1021/cr200304e.
  • Friščić, T. Metal‐organic Frameworks: Mechanochemical Synthesis Strategies. Encycl. Inorg. Bioinorg. Chem. 2011, 1–19.
  • Matoga, D.; Oszajca, M.; Molenda, M. Ground to Conduct: Mechanochemical Synthesis of a metal–organic Framework with High Proton Conductivity. Chem. Commun. 2015, 51(36), 7637–7640. DOI: 10.1039/C5CC01789K.
  • Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (Mofs) and Ultrasound: A Review. Ultrason. Sonochem. 2019, 52, 106–119. DOI: 10.1016/j.ultsonch.2018.11.004.
  • Masoomi, M. Y.; Bagheri, M.; Morsali, A. Enhancement of Photocatalytic Performance in Two zinc-based metal–organic Frameworks by Solvent Assisted Linker Exchange. CrystEngComm. 2017, 19(38), 5749–5754. DOI: 10.1039/C7CE01295K.
  • Shekhah, O. Layer-by-layer Method for the Synthesis and Growth of Surface Mounted metal-organic Frameworks (Surmofs). Materials. 2010, 3(2), 1302–1315. DOI: 10.3390/ma3021302.
  • Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF Thin Films: Existing and Future Applications. Chem. Soc. Rev. 2011, 40(2), 1081–1106. DOI: 10.1039/c0cs00147c.
  • Shi, L.; Li, N.; Wang, D.; Fan, M.; Zhang, S.; Gong, Z. Environmental Pollutions Analysis Based on the Luminescent Metal Organic Frameworks: A Review. TrAC, Trends Anal. Chem. 134(2021), 116131.
  • Yu, Q.; Li, Z.; Cao, Q.; Qu, S.; Jia, Q. Advances in Luminescent metal-organic Framework Sensors Based on post-synthetic Modification. TrAC, Trends Anal. Chem. 2020, 129, 115939. DOI: 10.1016/j.trac.2020.115939.
  • Zhao, Y.; Zeng, H.; Zhu, X.-W.; Lu, W.; Li, D. Metal–organic Frameworks as Photoluminescent Biosensing Platforms: Mechanisms and Applications. Chem. Soc. Rev. 2021, 50(7), 4484–4513. DOI: 10.1039/D0CS00955E.
  • Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46(11), 3242–3285. DOI: 10.1039/c6cs00930a.
  • Yang, G. L.; Jiang, X. L.; Xu, H.; Zhao, B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small. 2021, 17(22), 2005327. DOI: 10.1002/smll.202005327.
  • Wang, H.; Lustig, W. P.; Li, J. Sensing and Capture of Toxic and Hazardous Gases and Vapors by metal–organic Frameworks. Chem. Soc. Rev. 2018, 47(13), 4729–4756. DOI: 10.1039/C7CS00885F.
  • Liu, Y.; Xie, X.-Y.; Cheng, C.; Shao, Z.-S.; Wang, H.-S. Strategies to Fabricate metal–organic Framework (Mof)-based Luminescent Sensing Platforms. J. Mater. Chem. C. 2019, 7(35), 10743–10763. DOI: 10.1039/C9TC03208H.
  • Kaur, M.; Kumar, S.; Younis, S. A.; Yusuf, M.; Lee, J.; Weon, S.; Kim, K.-H.; Malik, A. K. Post-Synthesis Modification of metal-organic Frameworks Using Schiff Base Complexes for Various Catalytic Applications. Chem. Eng. J. 2021, 423, 130230. DOI: 10.1016/j.cej.2021.130230.
  • Maity, T.; Saha, D.; Koner, S. Aromatic N‐Arylations Catalyzed by Copper‐Anchored Porous Zinc‐Based Metal–Organic Framework under Heterogeneous Conditions. ChemCatChem. 2014, 6(8), 2373–2383. DOI: 10.1002/cctc.201400056.
  • Maity, T.; Saha, D.; Das, S.; Bhunia, S.; Koner, S. Ligand Free copper-catalyzed Heterogeneous O-arylation Reaction under Green Condition. Catal. Commun. 2015, 58, 141–148. DOI: 10.1016/j.catcom.2014.09.006.
  • Gong, Y.; Yuan, Y.; Chen, C.; Zhang, P.; Wang, J.; Khan, A.; Zhuiykov, S.; Chaemchuen, S.; Verpoort, F. Enhancing Catalytic Performance via Structure core-shell metal-organic Frameworks. J. Catal. 2019, 375, 371–379. DOI: 10.1016/j.jcat.2019.06.031.
  • Xing, S.; Li, J.; Niu, G.; Han, Q.; Zhang, J.; Liu, H. Chiral and Amine Groups Functionalized polyoxometalate-based metal-organic Frameworks for Synergic Catalysis in Aldol and Knoevenagel Condensations. Mol. Catal. 2018, 458, 83–88. DOI: 10.1016/j.mcat.2018.08.011.
  • Karmakar, A.; Pombeiro, A. J. Recent Advances in Amide Functionalized metal-organic Frameworks for Heterogeneous Catalytic Applications. Coord. Chem. Rev. 2019, 395, 86–129. DOI: 10.1016/j.ccr.2019.05.022.
  • Hazrati, M.; Safari, M. Cadmium‐based metal-organic Framework for Removal of Dye from Aqueous Solution. Environ. Prog. Sustainable Energy. 2020, 39(5), e13411. DOI: 10.1002/ep.13411.
  • Bagheri, H.; Amanzadeh, H.; Yamini, Y.; Masoomi, M. Y.; Morsali, A.; Salar-Amoli, J.; Hassan, J. A Nanocomposite Prepared from A zinc-based metal-organic Framework and Polyethersulfone as A Novel Coating for the Headspace solid-phase Microextraction of Organophosphorous Pesticides. Microchim. Acta. 2018, 185(1), 1–8.
  • Pal, A.; Chand, S.; Das, M. C. A water-stable Twofold Interpenetrating Microporous MOF for Selective CO2 Adsorption and Separation. Inorg. Chem. 2017, 56(22), 13991–13997.
  • Manna, K.; Zhang, T.; Carboni, M.; Abney, C. W.; Lin, W. Salicylaldimine-based metal–organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts. J. Am. Chem. Soc. 2014, 136(38), 13182–13185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.