Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 44, 2024 - Issue 1
503
Views
1
CrossRef citations to date
0
Altmetric
Comment

Quantum Mimicry With Inorganic Chemistry

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Pasteur, G.; Classificatory, A. Review of Mimicry Systems. Annu. Rev. Ecol. Evol. Syst. 1982, 13(1), 169–199. DOI: 10.1146/annurev.es.13.110182.001125.
  • Ruxton, G. D.; Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry, 2nd ed. ed.; Oxford, UK: Oxford Academic, 2018.
  • Mearls, M.; Schubert, S.; Wyatt, J.; Dungeons & Dragons Monster Manual, 4th ed. ed.; Wizards of the Coast, Inc: Renton, WA, 2008.
  • Miyazaki, H. Dark Souls, 2018.
  • Bertini, I.; Gray, H. B.; Lippard, S. J.; Bioinorganic Chemistry; Mill Valley, California, USA: University Science Books, 1994.
  • Li, Y.; Gomez-Mingot, M.; Fogeron, T.; Fontecave, M. Carbon Dioxide Reduction: A Bioinspired Catalysis Approach. Acc. Chem. Res. 2021, 54(23), 4250–4261. DOI: 10.1021/acs.accounts.1c00461.
  • Company, A.; McDonald, A. R. 8.34 - Bio-Relevant Chemistry of Nickel. In Comprehensive Coordination Chemistry III; Constable, E. C., Parkin, G., Que Jr, L., Eds.; Oxford: Elsevier, 2021; pp 846–877. DOI: 10.1016/B978-0-12-409547-2.14814-0.
  • Amaro-Gahete, J.; Pavliuk, M. V.; Tian, H.; Esquivel, D.; Romero-Salguero, F. J.; Ott, S. Catalytic Systems Mimicking the [Fefe]-hydrogenase Active Site for Visible-Light-Driven Hydrogen Production. Coord. Chem. Rev. 2021, 448, 214172. DOI: 10.1016/j.ccr.2021.214172.
  • Ibers, J. A.; Holm, R. H. Modeling Coordination Sites in Metallobiomolecules. Science. 1980, 209(4453), 223–235. DOI: 10.1126/science.7384796.
  • Groysman, S.; Holm, R. H. Biomimetic Chemistry of Iron, Nickel, Molybdenum, and Tungsten in Sulfur-Ligated Protein Sites. Biochemistry. 2009, 48(11), 2310–2320. DOI: 10.1021/bi900044e.
  • Lee, S. C.; Lo, W.; Holm, R. H. Developments in the Biomimetic Chemistry of Cubane-Type and Higher Nuclearity Iron–Sulfur Clusters. Chem. Rev. 2014, 114(7), 3579–3600. DOI: 10.1021/cr4004067.
  • Ohta, S.; Ohki, Y. Impact of Ligands and Media on the Structure and Properties of Biological and Biomimetic Iron-Sulfur Clusters. Coord. Chem. Rev. 2017, 338, 207–225. DOI: 10.1016/j.ccr.2017.02.018.
  • Benedek, Z.; Papp, M.; Oláh, J.; Szilvási, T. Exploring Hydrogen Evolution Accompanying Nitrogen Reduction on Biomimetic Nitrogenase Analogs: Can Fe–NxHy Intermediates Be Active under Turnover Conditions? Inorg. Chem. 2019, 58(12), 7969–7977. DOI: 10.1021/acs.inorgchem.9b00719.
  • Bullock, R. M. Reaction: Earth-Abundant Metal Catalysts for Energy Conversions. Chem. 2017, 2(4), 444–446. DOI: 10.1016/j.chempr.2017.03.019.
  • Benet-Buchholz, J.; Comba, P.; Llobet, A.; Roeser, S.; Vadivelu, P.; Wadepohl, H.; Wiesner, S. Iron Vs. Ruthenium—a Comparison of the Stereoselectivity in Catalytic Olefin Epoxidation. Dalton Trans. 2009, 30, 5910–5923. doi: 10.1039/B902037C.
  • Zadrozny, J. M.; Xiao, D. J.; Atanasov, M.; Long, G. J.; Grandjean, F.; Neese, F.; Long, J. R. Magnetic Blocking in a Linear Iron(I) Complex. Nat. Chem. 2013, 5(7), 577–581. DOI: 10.1038/nchem.1630.
  • Jesche, A.; McCallum, R. W.; Thimmaiah, S.; Jacobs, J. L.; Taufour, V.; Kreyssig, A.; Houk, R. S.; Bud’ko, S. L.; Canfield, P. C. Giant Magnetic Anisotropy and Tunnelling of the Magnetization in Li2(Li1−xFex)N. Nat. Commun. 2014, 5(1), 3333. DOI: 10.1038/ncomms4333.
  • Wang, J.; Wang, H.; Ramsay, I. A.; Erstad, D. J.; Fuchs, B. C.; Tanabe, K. K.; Caravan, P.; Gale, E. M. Manganese-Based Contrast Agents for Magnetic Resonance Imaging of Liver Tumors: Structure–Activity Relationships and Lead Candidate Evaluation. J. Med. Chem. 2018, 61(19), 8811–8824. DOI: 10.1021/acs.jmedchem.8b00964.
  • Pan, D.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M. Manganese-Based MRI Contrast Agents: Past, Present, and Future. Tetrahedron. 2011, 67(44), 8431–8444. DOI: 10.1016/j.tet.2011.07.076.
  • Wenger, O. S. Is Iron the New Ruthenium? Eur. J. Chem. 2019, 25(24), 6043–6052. DOI: 10.1002/chem.201806148.
  • Wenger, O. S. Photoactive Complexes with Earth-Abundant Metals. J. Am. Chem. Soc. 2018, 140(42), 13522–13533. DOI: 10.1021/jacs.8b08822.
  • Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Photooxidizing Chromium Catalysts for Promoting Radical Cation Cycloadditions. Angew. Chem. Int. Ed. 2015, 54(22), 6506–6510. DOI: 10.1002/anie.201501220.
  • Wasielewski, M. R.; Forbes, M. D. E.; Frank, N. L.; Kowalski, K.; Scholes, G. D.; Yuen-Zhou, J.; Baldo, M. A.; Freedman, D. E.; Goldsmith, R. H.; Goodson, T., et al. Exploiting Chemistry and Molecular Systems for Quantum Information Science. Nat. Rev. Chem. 2020, 4(9), 490–504. DOI: 10.1038/s41570-020-0200-5.
  • Atzori, M.; Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J. Am. Chem. Soc. 2019, 141(29), 11339–11352. DOI: 10.1021/jacs.9b00984.
  • DiVincenzo, D. P. The Physical Implementation of Quantum Computation. Fortschr. Phys. 2000, 48(9–11), 771–783. DOI: 10.1002/1521-3978(200009)48:9/11<771AID-PROP771>3.0.CO;2-E.
  • Degen, C. L.; Reinhard, F.; Quantum Sensing, C. P. Quantum Sensing. Rev. Mod. Phys. 2017, 89(3), 035002. DOI: 10.1103/RevModPhys.89.035002.
  • Nielsen, M. A.; Chuang, I. L.; Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge, UK: Cambridge University Press, 2010. DOi: 10.1017/CBO9780511976667.
  • Devoret, M. H.; Schoelkopf, R. J. Superconducting Circuits for Quantum Information: An Outlook. Science. 2013, 339(6124), 1169–1174. DOI: 10.1126/science.1231930.
  • Kok, P.; Munro, W. J.; Nemoto, K.; Ralph, T. C.; Dowling, J. P.; Milburn, G. J. Linear Optical Quantum Computing with Photonic Qubits. Rev. Mod. Phys. 2007, 79(1), 135–174. DOI: 10.1103/RevModPhys.79.135.
  • Wen, X.-G. Choreographed Entanglement Dances: Topological States of Quantum Matter. Science. 2019, 363(6429), eaal3099. DOI: 10.1126/science.aal3099.
  • Sutor, R. S.; Dancing with Qubits: How Quantum Computing Works and How It Can Change the World; Birmingham, UK: Packt Publishing Ltd, 2019.
  • Yu, Y.; Ma, F.; Luo, X.-Y.; Jing, B.; Sun, P.-F.; Fang, R.-Z.; Yang, C.-W.; Liu, H.; Zheng, M.-Y.; Xie, X.-P., et al. Entanglement of Two Quantum Memories via Fibres over Dozens of Kilometres. Nature. 2020, 578(7794), 240–245. DOI: 10.1038/s41586-020-1976-7.
  • Jackson, C. E.; Moseley, I. P.; Martinez, R.; Sung, S.; Zadrozny, J. M.; Reaction-Coordinate, A. Perspective of Magnetic Relaxation. Chem. Soc. Rev. 2021, 50(12), 6684–6699. DOI: 10.1039/D1CS00001B.
  • Jordan, D. State of the Art in Magnetic Resonance Imaging. Phys. Today. 2020, 73(2), 34–40. DOI: 10.1063/PT.3.4408.
  • Danhier, P.; Gallez, B. Electron Paramagnetic Resonance: A Powerful Tool to Support Magnetic Resonance Imaging Research. Contrast Media Mol. Imaging. 2015, 10(4), 266–281. DOI: 10.1002/cmmi.1630.
  • Reactive Oxygen, H. B. Species and the Central Nervous System. J. Neurochem. 1992, 595, 1609–1623. 10.1111/j.1471-4159.1992.tb10990.x.
  • Jordan, L. C.; Gindville, M. C.; Scott, A. O.; Juttukonda, M. R.; Strother, M. K.; Kassim, A. A.; Chen, S.-C.; Lu, H.; Pruthi, S.; Shyr, Y., et al. Non-Invasive Imaging of Oxygen Extraction Fraction in Adults with Sickle Cell Anaemia. Brain.2016, 139(3), 738–750. DOI: 10.1093/brain/awv397.
  • Pawade, T.; Holloway, B.; Bradlow, W.; Steeds, R. P. Noninvasive Imaging for the Diagnosis and Prognosis of Pulmonary Hypertension. Expert Rev. Cardiovasc. Ther. 2014, 12(1), 71–86. DOI: 10.1586/14779072.2014.867806.
  • Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Free Radical-Induced, R. H. Damage to DNA: Mechanisms and Measurement. Free Radic. Biol. Med. 2002, 32(11), 1102–1115. doi:10.1016/s0891-5849(02)00826-2
  • Klare, J. P. Biomedical Applications of Electron Paramagnetic Resonance (EPR) Spectroscopy. Biomed. Spectrosc. Imaging. 2012, 1, 101–124. doi: 10.3233/BSI-2012-0010.
  • Gertsenshteyn, I.; Giurcanu, M.; Vaupel, P.; Halpern, H. Biological Validation of Electron Paramagnetic Resonance (EPR) Image Oxygen Thresholds in Tissue. Physiol. J. 2021, 599(6), 1759–1767. DOI: 10.1113/JP278816.
  • Voinov, M. A.; Scheid, C. T.; Kirilyuk, I. A.; Trofimov, D. G. Smirnov, A. I. IKMTSL-PTE, a Phospholipid-Based EPR Probe for Surface Electrostatic Potential of Biological Interfaces at Neutral PH: Effects of Temperature and Effective Dielectric Constant of the Solvent. J. Phys. Chem. B. 2017, 121(11), 2443–2453. DOI: 10.1021/acs.jpcb.7b00592.
  • Voinov, M. A.; Polienko, J. F.; Schanding, T.; Bobko, A. A.; Khramtsov, V. V.; Gatilov, Y. V.; Rybalova, T. V.; Smirnov, A. I.; Grigor’ev, I. A. Synthesis, Structure, and X-Band (9.5 GHz) EPR Characterization of the New Series of pH-Sensitive Spin Probes: N,N-Disubstituted 4-Amino-2,2,5,5-Tetramethyl-3-Imidazoline 1-Oxyls. J. Org. Chem. 2005, 70(24), 9702–9711. DOI: 10.1021/jo0510890.
  • Gallez, B.; Mader, K.; Swartz, H. M. Noninvasive Measurement of the pH inside the Gut by Using pH-Sensitive Nitroxides. An in Vivo EPR Study. Magn. Reson. Med. 1996, 36(5), 694–697. DOI: 10.1002/mrm.1910360507.
  • Potapenko, D. I.; Foster, M. A.; Lurie, D. J.; Kirilyuk, I. A.; Hutchison, J. M. S.; Grigor’ev, I. A.; Bagryanskaya, E. G.; Khramtsov, V. V. Real-Time Monitoring of Drug-Induced Changes in the Stomach Acidity of Living Rats Using Improved pH-Sensitive Nitroxides and Low-Field EPR Techniques. J. Magn. Reson. 2006, 182(1), 1–11. DOI: 10.1016/j.jmr.2006.06.002.
  • Caia, G. L.; Efimova, O. V.; Velayutham, M.; El-Mahdy, M. A.; Abdelghany, T. M.; Kesselring, E.; Petryakov, S.; Sun, Z.; Samouilov, A.; Zweier, J. L. Organ Specific Mapping of in Vivo Redox State in Control and Cigarette Smoke-Exposed Mice Using EPR/NMR Co-Imaging. J. Magn. Reson. 2012, 216, 21–27. DOI: 10.1016/j.jmr.2011.10.017.
  • Mikuni, T.; He, G.; Petryakov, S.; Fallouh, M. M.; Deng, Y.; Ishihara, R.; Kuppusamy, P.; Tatsuta, M.; Zweier, J. L. In Vivo Detection of Gastric Cancer in Rats by Electron Paramagnetic Resonance Imaging. Cancer Res. 2004, 64(18), 6495–6502. DOI: 10.1158/0008-5472.CAN-04-0319.
  • Hyodo, F.; Murugesan, R.; Matsumoto, K.; Hyodo, E.; Subramanian, S.; Mitchell, J. B.; Krishna, M. C. Monitoring Redox-Sensitive Paramagnetic Contrast Agent by EPRI, OMRI and MRI. J. Magn. Reson. 2008, 190(1), 105–112. DOI: 10.1016/j.jmr.2007.10.013.
  • Epel, B.; Sundramoorthy, S. V.; Krzykowska-Serda, M.; Maggio, M. C.; Tseytlin, M.; Eaton, G. R.; Eaton, S. S.; Rosen, G. M.; Kao, J. P. Y.; Halpern, H. J. Imaging Thiol Redox Status in Murine Tumors in Vivo with Rapid-Scan Electron Paramagnetic Resonance. J. Magn. Reson. 2017, 276, 31–36. DOI: 10.1016/j.jmr.2016.12.015.
  • Gareth, R.; Eaton, Sandra, S., and Eaton, Keiichi, O. Eds. EPR Imaging and in Vivo EPR, 1st ed; Boca Raton, Florida, USA: CRC Press, 2018
  • Demsar, F.; Walczak, T.; Morse, P. D.; Bačić, G.; Zolnai, Z.; Swartz, H. M. Detection of Diffusion and Distribution of Oxygen by Fast-Scan EPR Imaging. J. Magn. Reson. 1988, 76(2), 224–231. doi:10.1016/0022-2364(88)90105-9.
  • Swartz, H. M.; Flood, A. B.; Schaner, P. E.; Halpern, H.; Williams, B. B.; Pogue, B. W.; Gallez, B.; Vaupel, P. How Best to Interpret Measures of Levels of Oxygen in Tissues to Make Them Effective Clinical Tools for Care of Patients with Cancer and Other Oxygen-Dependent Pathologies. Physiol. Rep. 2020, 8(15), e14541. DOI: 10.14814/phy2.14541.
  • Halpern, H. J.; Chandramouli, G. V. R.; Barth, E. D.; Yu, C.; Peric, M.; Grdina, D. J.; Teicher, B. A. Diminished Aqueous Microviscosity of Tumors in Murine Models Measured with in Vivo Radiofrequency Electron Paramagnetic Resonance. Cancer Res. 1999, 59(22), 5836–5841.
  • Kempe, S.; Metz, H.; Mäder, K. Application of Electron Paramagnetic Resonance (EPR) Spectroscopy and Imaging in Drug Delivery Research - Chances and Challenges. Eur. K. Pharm. Biopharm. 2010, 74(1), 55–66. DOI: 10.1016/j.ejpb.2009.08.007.
  • Berliner, L. J.; Eaton, S. S.; Eaton, G. R.; Biological Magnetic Resonance. Distance Measurements in Biological Systems by EPR; New York, New York, USA: Springer, 2001; Vol. 19.
  • Berliner, L. J.; Ed., In Vivo EPR (ESR): Theory and Application. Biological Magnetic Resonance; New York, New York, USA: Springer, 2003. DOI: 10.1007/978-1-4615-0061-2.
  • Poncelet, M.; Driesschaert, B. A 13C-Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew. Chem. Int. Ed. 2020, 59(38), 16451–16454. DOI: 10.1002/anie.202006591.
  • Banham, J. E.; Jeschke, G.; Timmel, C. R. Evidence from EPR that Nitroxide Spin Labels Attached to Human Hemoglobin Alter Their Conformation upon Freezing. Mol. Phys. 2007, 105(15–16), 2041–2047. DOI: 10.1080/00268970701579501.
  • Jebaraj, D. D.; Utsumi, H.; Benial, A. M. F. Electron Spin Resonance Studies on Deuterated Nitroxyl Spin Probes Used in Overhauser-Enhanced Magnetic Resonance Imaging. Magn. Reson. Chem. 2017, 55(8), 700–705. DOI: 10.1002/mrc.4576.
  • Billone, P. S.; Johnson, P. A.; Lin, S.; Scaiano, J. C.; DiLabio, G. A.; Ingold, K. U. Accurate O−H Bond Dissociation Energy Differences of Hydroxylamines Determined by EPR Spectroscopy: Computational Insight into Stereoelectronic Effects on BDEs and EPR Spectral Parameters. J. Org. Chem. 2011, 76(2), 631–636. DOI: 10.1021/jo1021794.
  • Rinard, G. A.; Quine, R. W.; Eaton, S. S.; Eaton, G. R. Frequency Dependence of EPR Sensitivity. In EPR: Instrumental Methods; Berliner, L. J., Bender, C. J., Eds.; Biological Magnetic Resonance: Springer US: Boston, MA, 2004; pp 115–154. DOI: 10.1007/978-1-4419-8951-2_3.
  • Hitchcock, R. T.; Radio-Frequency and Microwave Radiation; Falls Church, Virginia, USA: AIHA, 2004.
  • Griffith, J. S.; The Theory of Transition-Metal Ions; Cambridge, UK: Cambridge University Press, 1964.
  • Figgis, B. N.; Hitchman, M. A.; Ligand Field Theory and Its Applications; Hoboken, New Jersey, USA: Wiley-VCH, 2000.
  • Campanella, A. J.; Ozvat, T. M.; Zadrozny, J. M. Ligand Design of Zero-Field Splitting in Trigonal Prismatic Ni(II) Cage Complexes. Dalton Trans. 2022, 51(8), 3341–3348. DOI: 10.1039/D1DT02156G.
  • Bayliss, S. L.; Laorenza, D. W.; Mintun, P. J.; Kovos, B. D.; Freedman, D. E.; Awschalom, D. D. Optically Addressable Molecular Spins for Quantum Information Processing. Science. 2020, 370(6522), 1309–1312. DOI: 10.1126/science.abb9352.
  • Dorn, M.; Kalmbach, J.; Boden, P.; Päpcke, A.; Gómez, S.; Förster, C.; Kuczelinis, F.; Carrella, L. M.; Büldt, L. A.; Bings, N. H., et al. A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution. J. Am. Chem. Soc. 2020, 142(17), 7947–7955. DOI: 10.1021/jacs.0c02122.
  • Campanella, A. J.; Nguyen, M.-T.; Zhang, J.; Ngendahimana, T.; Antholine, W. E.; Eaton, G. R.; Eaton, S. S.; Glezakou, V.-A.; Zadrozny, J. M. Ligand Control of low-frequency Electron Paramagnetic Resonance Linewidth in Cr(III) Complexes. Dalton Trans. 2021, 50(50), 5342–5350. DOI: 10.1039/d1dt00066g.
  • Titiš, J.; Magnetostructural, B. R. D Correlation in Nickel(II) Complexes: Reinvestigation of the Zero-Field Splitting. Inorg. Chem. 2010, 49(9), 3971–3973. DOI: 10.1021/ic902569z.
  • Ruamps, R.; Maurice, R.; Batchelor, L.; Boggio-Pasqua, M.; Guillot, R.; Barra, A. L.; Liu, J.; Bendeif, -E.-E.; Pillet, S.; Hill, S., et al. Giant Ising-Type Magnetic Anisotropy in Trigonal Bipyramidal Ni(II) Complexes: Experiment and Theory. J. Am. Chem. Soc. 2013, 135(8), 3017–3026. DOI: 10.1021/ja308146e.
  • Utsumi, H.; Tatebe, T.; Hamada, A. ESR Spectra of VO2+ and Mn2+ in Aqueous Solution at L-Band. Chem. Lett. 1992, 21(2), 277–280. DOI: 10.1246/cl.1992.277.
  • Borras-Almenar, J. J.; Burriel, R.; Coronado, E.; Gatteschi, D.; Gomez-Garcia, C. J.; Zanchini, C. Magnetic Interactions and Single-Ion Zero-Field-Splitting Effects in the Two-Sublattice Manganese Chain MnMn(EDTA)·9H2O: Magnetism and Single-Crystal EPR Spectra. Inorg. Chem. 1991, 30(5), 947–950. DOI: 10.1021/ic00005a014.
  • Li, Y.; Kuang, X.; Mao, A.; Li, H.; Chai, R. EPR Studies for [Mn(H2O)6]2+ Complex in MSnF6·6H2O:Mn2+ (M=zn, Co) and Cd(BF4)2·6H2O:Mn2+ Systems at Different Temperature. Chem. Phys. Lett. 2010, 487(4), 307–311. DOI: 10.1016/j.cplett.2010.01.018.
  • Tian, W.-Y.; Kuang, X.-Y.; Li, H.-F.; Li, Y.-F.; Ying, L. EPR Investigation of Local Structure for [Mn(H2O)6]2+ Cluster in [M(H2O)6]XCl6: Mn2+(M=Zn, Mg, Cd, Ca; X=Pt, Sn) Systems at Different Temperatures. Chem. Phys. Lett. 2009, 468(4), 325–329. DOI: 10.1016/j.cplett.2008.12.036.
  • Fukumaru, K.; Sawada, T.; Nishino, N.; Sakurai, H. Relationship Between X- or L-Band ESR Spectra and Coordination Structures of Copper(II) Complexes with a CuO4 Coordination Mode. Chem. Pharm. Bull. 1996, 44(11), 1989–1997. DOI: 10.1248/cpb.44.1989.
  • Sawada, T.; Fukumaru, K.; L-Band, S. H. ESR Spectra of Copper(II) Complexes with CuN4 Configurations. Biochem. Biophys. Res. Commun. 1995, 216(1), 154–161. DOI: 10.1006/bbrc.1995.2604.
  • Antholine, W. E.; Zhang, S.; Gonzales, J.; Newman, N. Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex. Int. J. Mol. Sci. 2018, 19(11), 3532. DOI: 10.3390/ijms19113532.
  • Antholine, W. E. Resolved Hyperfine at L-Band for High-Spin CoEDTA, A Model for Co Sites in Proteins. Int. J. Mol. Sci. 2019, 20(10), 2385. DOI: 10.3390/ijms20102385.
  • Karmakar, T. K.; Ghosh, B. K.; Usman, A.; Fun, H.-K.; Rivière, E.; Mallah, T.; Aromí, G.; Chandra, S. K. Magneto−Structural Correlations: Synthesis of a Family of End-On Azido-Bridged Manganese(II) Dinuclear Compounds with S = 5 Spin Ground State. Inorg. Chem. 2005, 44(7), 2391–2399. DOI: 10.1021/ic048542v.
  • Zhai, Y.-Q.; Ge, N.; Li, Z.-H.; Chen, W.-P.; Han, T.; Ouyang, Z.-W.; Wang, Z.; Zheng, Y.-Z. Magnetic Anisotropy: Structural Correlation of a Series of Chromium(II)–Amidinate Complexes. Inorg. Chem. 2021, 60(3), 1344–1351. DOI: 10.1021/acs.inorgchem.0c02065.
  • Duboc, C.; Collomb, M.-N.; Pécaut, J.; Deronzier, A.; Neese, F. Definition of Magneto-Structural Correlations for the MnII Ion. Eur. J. Chem. 2008, 14(21), 6498–6509. DOI: 10.1002/chem.200800426.
  • Suturina, E. A.; Maganas, D.; Bill, E.; Atanasov, M.; Magneto-Structural, N. F. Correlations in a Series of Pseudotetrahedral [CoII(XR)4]2– Single Molecule Magnets: An Ab Initio Ligand Field Study. Inorg. Chem. 2015, 54(20), 9948–9961. DOI: 10.1021/acs.inorgchem.5b01706.
  • Suturina, E. A.; Nehrkorn, J.; Zadrozny, J. M.; Liu, J.; Atanasov, M.; Weyhermüller, T.; Maganas, D.; Hill, S.; Schnegg, A.; Bill, E., et al. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2– Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and Ab Initio Electronic Structure Calculations. Inorg. Chem. 2017, 56(5), 3102–3118. DOI: 10.1021/acs.inorgchem.7b00097.
  • Walsh, J. P. S.; Sproules, S.; Chilton, N. F.; Barra, A.-L.; Timco, G. A.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P. On the Possibility of Magneto-Structural Correlations: Detailed Studies of Dinickel Carboxylate Complexes. Inorg. Chem. 2014, 53(16), 8464–8472. DOI: 10.1021/ic501036h.
  • Folgado, J. V.; Ibanez, R.; Coronado, E.; Beltran, D.; Savariault, J. M.; Galy, J. Extremely Weak Magnetic Exchange Interactions in Terpy-Containing Copper(II) Dimer. Crystal and Molecular Structure of Cu(Terpy)(CA)·H2O and [Cu2(Terpy)2(CA)](PF6)2 Complexes (Terpy = 2,2’:6’,2”-Terpyridine, CA = Dianion of Chloranilic Acid). Inorg. Chem. 1988, 27(1), 19–26. DOI: 10.1021/ic00274a007.
  • Duggan, D. M.; Hendrickson, D. N. Magnetic Exchange Interactions in Transition Metal Dimers. III. Nickel(II) Di-µ-Cyanato, Di-µ-Thiocyanato, and Di-µ-Selenocyanato Complexes and Related Outer-Sphere Copper(II) Complexes. Inorg. Chem. 1974, 13(12), 2929–2940. DOI: 10.1021/ic50142a031.
  • Engelhardt, L. P.; Muryn, C. A.; Pritchard, R. G.; Timco, G. A.; Tuna, F.; Winpenny, R. E. P.; Octa-, D. Trideca-, and Tetradecanuclear Heterometallic Cyclic Chromium–Copper Cages. Angew. Chem. Int. Ed. 2008, 47(5), 924–927. DOI: 10.1002/anie.200704132.
  • Martin, C.; Engelhardt, L.; Baker, M. L.; Timco, G. A.; Tuna, F.; Winpenny, R. E. P.; Tregenna-Piggott, P. L. W.; Luban, M.; Prozorov, R. Radio-Frequency Spectroscopy of the Low-Energy Spectrum of the Magnetic Molecule Cr12Cu2. Phys. Rev. B. 2009, 80(10), 100407. DOI: 10.1103/PhysRevB.80.100407.
  • Engelhardt, L.; Martin, C.; Prozorov, R.; Luban, M.; Timco, G. A.; Winpenny, R. E. P. High-Field Magnetic Properties of the Magnetic Molecule Cr10Cu2. Phys. Rev. B. 2009, 79(1), 014404. DOI: 10.1103/PhysRevB.79.014404.
  • Burks, S. R.; Makowsky, M. A.; Yaffe, Z. A.; Hoggle, C.; Tsai, P.; Muralidharan, S.; Bowman, M. K.; Kao, J. P. Y.; Rosen, G. M. The Effect of Structure on Nitroxide EPR Spectral Linewidth. J. Org. Chem. 2010, 75(14), 4737–4741. DOI: 10.1021/jo1005747.
  • Biller, J. R.; Meyer, V.; Elajaili, H.; Rosen, G. M.; Kao, J. P. Y.; Eaton, S. S.; Eaton, G. R.; Times, R. Line Widths of Isotopically-Substituted Nitroxides in Aqueous Solution at X-Band. J. Magn. Reson. 2011, 212(2), 370–377. DOI: 10.1016/j.jmr.2011.07.018.
  • Poole, C. P.; Farach, H. A. Line Shapes in Electron Spin Resonance. Bull. Magn. Reson. 1979, 1(4), 162–194.
  • Linewidth, T. J. Field, and Frequency in Electron Paramagnetic Resonance (EPR) Spectroscopy. J. Biol. Inorg. Chem. 2022, 27(7), 605–609. DOI: 10.1007/s00775-022-01961-4.
  • Levitt, M. H.; Spin Dynamics: Basics of Nuclear Magnetic Resonance; Hoboken, New Jersey, USA: Wiley, 2008.
  • Schröder, L. Hyperfeinstruktur-Analyse in der Magnetresonanzspektroskopie: Von astrophysikalischen Messungen zu endogenen Biosensoren in menschlichem Gewebe. Z. für Med. Phys. 2007, 17(2), 94–107. DOI: 10.1016/j.zemedi.2006.10.008.
  • Griffiths, D. J. Hyperfine Splitting in the Ground State of Hydrogen. Am. J. Phys. 1982, 50(8), 698–703. DOI: 10.1119/1.12733.
  • Drago, R. S.; Physical Methods for Chemists; Philadelphia, Pennsylvania, USA: Saunders College Publishing, 1992.
  • Eaton, S. S.; Eaton, G. R. Relaxation Times of Organic Radicals and Transition Metal Ions. In Distance Measurements in Biological Systems by EPR; Berliner, L. J., Eaton, G. R., Eaton, S. S., Eds.; Biological Magnetic Resonance; Springer US: Boston, MA, 2000; pp 29–154. DOI: 10.1007/0-306-47109-4_2.
  • Gómez-Coca, S.; Aravena, D.; Morales, R.; Ruiz, E. Large Magnetic Anisotropy in Mononuclear Metal Complexes. Coord. Chem. Rev. 2015, 289–290, 379–392. DOI: 10.1016/j.ccr.2015.01.021.
  • Bramley, R.; Brorson, M.; Sargeson, A. M.; Schaeffer, C. E. Cobalt-59 NMR Chemical Shifts of Cobalt(III) Complexes; Correlations with Parameters Calculated from Ligand-Field Spectra. J. Am. Chem. Soc. 1985, 107(9), 2780–2787. DOI: 10.1021/ja00295a034.
  • Chatterjee, P. B.; Goncharov-Zapata, O.; Quinn, L. L.; Hou, G.; Hamaed, H.; Schurko, R. W.; Polenova, T.; Crans, D. C. Characterization of Noninnocent Metal Complexes Using Solid-State NMR Spectroscopy: O-Dioxolene Vanadium Complexes. Inorg. Chem. 2011, 50(20), 9794–9803. DOI: 10.1021/ic200046k.
  • Levy, G. C.; Terry Bailey, J.; Wright, D. A. A Sensitive NMR Thermometer for Multinuclei FT NMR. J. Magn. Reson. 1980, 37(2), 353–356. doi:10.1016/0022-2364(80)90123-7.
  • Benedek, G. B.; Englman, R.; Armstrong, J. A. Temperature and Pressure Dependence of the Co59 Nuclear Resonance Chemical Shift. J. Chem. Phys. 1963, 39(12), 3349–3363. DOI: 10.1063/1.1734200.
  • Reeves, L. W. Studies of Hydrogen Bonding in Carboxylic Acids. Trans. Faraday Soc. 1959, 55, 1684–1688. DOI: 10.1039/TF9595501684.
  • Berkowitz, B. A.; Handa, J. T.; Wilson, C. A. Perfluorocarbon Temperature Measurements Using 19F NMR. NMR Biomed. 1992, 5(2), 65–68. DOI: 10.1002/nbm.1940050204.
  • Ozvat, T. M.; Peña, M. E.; Zadrozny, J. M. Influence of Ligand Encapsulation on Cobalt-59 Chemical-Shift Thermometry. Chem. Sci. 2019, 10(27), 6727–6734. DOI: 10.1039/C9SC01689A.
  • Ozvat, T. M.; Sterbinsky, G. E.; Campanella, A. J.; Rappé, A. K.; Zadrozny, J. M. E. X. A. F. S. Investigations of Temperature-Dependent Structure in Cobalt-59 Molecular NMR Thermometers. Dalton Trans. 2020, 49, 16380–16385. DOI: 10.1039/D0DT01391A.
  • Ozvat, T. M.; Johnson, S. H.; Rappé, A. K.; Zadrozny, J. M. Ligand Control of 59Co Nuclear Spin Relaxation Thermometry. Magnetochemistry. 2020, 6(4), 58. DOI: 10.3390/magnetochemistry6040058.
  • Ozvat, T. M.; Rappé, A. K.; Zadrozny, J. M. Isotopomeric Elucidation of the Mechanism of Temperature Sensitivity in 59Co NMR Molecular Thermometers. Inorg. Chem. 2022, 61(2), 778–785. DOI: 10.1021/acs.inorgchem.1c03326.
  • Üngör, Ö.; Ozvat, T. M.; Ni, Z.; Zadrozny, J. M. Record Chemical-Shift Temperature Sensitivity in a Series of Trinuclear Cobalt Complexes. J. Am. Chem. Soc. 2022, 144(20), 9132–9137. DOI: 10.1021/jacs.2c03115.
  • Weberski, M. P. J.; McLauchlan, C. C. Bis[(Η5-Cyclopentadienyl)Tris(Diethyl Phosphito)-Κ3P,P′,P′′-Cobaltate(III)-Κ3O,O′,O′′]Cobalt(II). Acta. Cryst. E. 2007, 63(4), m1171–m1172. DOI: 10.1107/S1600536807013001.
  • Krüger, G. J.; Reynhardt, E. C. New Investigation of the Structure of Trisacetylacetonatocobalt(III). Acta. Cryst. B. 1974, 30(3), 822–824. DOI: 10.1107/S0567740874003803.
  • Geue, R. J.; Hambley, T. W.; Harrowfield, J. M.; Sargeson, A. M.; Snow, M. R. Metal Ion Encapsulation: Cobalt Cages Derived from Polyamines, Formaldehyde, and Nitromethane. J. Am. Chem. Soc. 1984, 106(19), 5478–5488. DOI: 10.1021/ja00331a016.
  • Klaeui, W.; Eberspach, W.; Spin-Crossover Cobalt(III, G. P. Complexes: Steric and Electronic Control of Spin State. Inorg. Chem. 1987, 26(24), 3977–3982. DOI: 10.1021/ic00271a004.
  • Ott, J. C.; Wadepohl, H.; Enders, M.; Gade, L. H. Taking Solution Proton NMR to Its Extreme: Prediction and Detection of a Hydride Resonance in an Intermediate-Spin Iron Complex. J. Am. Chem. Soc. 2018, 140(50), 17413–17417. DOI: 10.1021/jacs.8b11330.
  • Ott, J. C.; Suturina, E. A.; Kuprov, I.; Nehrkorn, J.; Schnegg, A.; Enders, M.; Gade, L. H. Observability of Paramagnetic NMR Signals at over 10 000 Ppm Chemical Shifts. Angew. Chem. Int. Ed. 2021, 60(42), 22856–22864. DOI: 10.1002/anie.202107944.
  • Toyli, D. M.; de Las Casas, C. F.; Christle, D. J.; Dobrovitski, V. V.; Awschalom, D. D. Fluorescence Thermometry Enhanced by the Quantum Coherence of Single Spins in Diamond. Proc. Natl. Acad. Sci. U.S.A. 2013, 110(21), 8417–8421. DOI: 10.1073/pnas.1306825110.
  • Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nanometre-Scale Thermometry in a Living Cell. Nature. 2013, 500(7460), 54–58. DOI: 10.1038/nature12373.
  • Vincent, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Electronic, B. F. Read-out of a Single Nuclear Spin Using a Molecular Spin Transistor. Nature. 2012, 488(7411), 357–360. DOI: 10.1038/nature11341.
  • Thiele, S.; Balestro, F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Electrically Driven Nuclear Spin Resonance in Single-Molecule Magnets. Science. 2014, 344(6188), 1135–1138. DOI: 10.1126/science.124.
  • Kanesato, M.; Yokoyama, T. Synthesis and Structural Characterization of Ln(III) Complexes (Ln = Eu, Gd, Tb, Er, Tm, Lu) of Tripodal Tris[2-(Salicylideneamino)Ethyl]Amine. Chem. Lett. 1999, 28(2), 137–138. DOI: 10.1246/cl.1999.137.
  • Lucaccini, E.; Sorace, L.; Perfetti, M.; Costes, J.-P.; Sessoli, R. Beyond the Anisotropy Barrier: Slow Relaxation of the Magnetization in Both Easy-Axis and Easy-Plane Ln(Trensal) Complexes. Chem. Commun. 2014, 50(14), 1648–1651. DOI: 10.1039/C3CC48866G.
  • Pedersen, K. S.; Ariciu, A.-M.; McAdams, S.; Weihe, H.; Bendix, J.; Tuna, F.; Piligkos, S. Toward Molecular 4f Single-Ion Magnet Qubits. J. Am. Chem. Soc. 2016, 138(18), 5801–5804. DOI: 10.1021/jacs.6b02702.
  • Hussain, R.; Allodi, G.; Chiesa, A.; Garlatti, E.; Mitcov, D.; Konstantatos, A.; Pedersen, K. S.; De Renzi, R.; Piligkos, S.; Carretta, S. Coherent Manipulation of a Molecular Ln-Based Nuclear Qudit Coupled to an Electron Qubit. J. Am. Chem. Soc. 2018, 140(31), 9814–9818. DOI: 10.1021/jacs.8b05934.
  • Komijani, D.; Ghirri, A.; Bonizzoni, C.; Klyatskaya, S.; Moreno-Pineda, E.; Ruben, M.; Soncini, A.; Affronte, M.; Radical-Lanthanide Ferromagnetic, H. S. Interaction in a TbIII Bis-Phthalocyaninato Complex. Phys. Rev. Mater. 2018, 2(2), 024405. DOI: 10.1103/PhysRevMaterials.2.024405.
  • Pedersen, K. S.; Dreiser, J.; Weihe, H.; Sibille, R.; Johannesen, H. V.; Sørensen, M. A.; Nielsen, B. E.; Sigrist, M.; Mutka, H.; Rols, S., et al. Design of Single-Molecule Magnets: Insufficiency of the Anisotropy Barrier as the Sole Criterion. Inorg. Chem. 2015, 54(15), 7600–7606. DOI: 10.1021/acs.inorgchem.5b01209.
  • Drew, M. G. B.; Mitchell, P. C. H.; Scott, C. E. Crystal and Molecular Structure of Three Oxovanadium(IV) Porphyrins: Oxovanadium Tetraphenylporphyrin(I), Oxovanadium(IV) Etioporphyrin(II) and the 1:2 Adduct of (II) with 1,4-Dihydroxybenzene(III). Hydrogen Bonding Involving the VO Group. Relevance to Catalytic Demetallisation. Inorg. Chim. Acta. 1984, 82(1), 63–68. doi:10.1016/S0020-1693(00)82539-6.
  • Zadrozny, J. M.; Niklas, J.; Poluektov, O. G.; Freedman, D. E. Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit. ACS Cent. Sci. 2015, 1(9), 488–492. DOI: 10.1021/acscentsci.5b00338.
  • Yu, C.-J.; Graham, M. J.; Zadrozny, J. M.; Niklas, J.; Krzyaniak, M. D.; Wasielewski, M. R.; Poluektov, O. G.; Freedman, D. E. Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. J. Am. Chem. Soc. 2016, 138(44), 14678–14685. DOI: 10.1021/jacs.6b08467.
  • Howarth, O. W. Vanadium-51 NMR. Prog. Nucl. Magn. Reson. Spectrosc. 1990, 22(5), 453–485. doi:10.1016/0079-6565(90)80007-5.
  • Rehder, D.; Polenova, T.; Bühl, M . Vanadium-51 NMR. In Annual Reports on NMR Spectroscopy; Webb, G. A., Ed. Vol. 62 Cambridge Massachusetts, USA: Academic Press, 2007; p 49–114. doi:10.1016/S0066-4103(07)62002-X.
  • Moreno-Pineda, E.; Godfrin, C.; Balestro, F.; Wernsdorfer, W.; Ruben, M. Molecular Spin Qudits for Quantum Algorithms. Chem. Soc. Rev. 2018, 47(2), 501–513. DOI: 10.1039/C5CS00933B.
  • Chicco, S.; Chiesa, A.; Allodi, G.; Garlatti, E.; Atzori, M.; Sorace, L.; Renzi, R. D.; Sessoli, R.; Carretta, S. Controlled Coherent Dynamics of [VO(TPP)], a Prototype Molecular Nuclear Qudit with an Electronic Ancilla. Chem. Sci. 2021, 12(36), 12046–12055. DOI: 10.1039/D1SC01358K.
  • Gimeno, I.; Urtizberea, A.; Román-Roche, J.; Zueco, D.; Camón, A.; Alonso, P. J.; Roubeau, O.; Broad-Band, L. F. Spectroscopy of A Vanadyl Porphyrin: A Model Electronuclear Spin Qudit. Chem. Sci. 2021, 12(15), 5621–5630. DOI: 10.1039/D1SC00564B.
  • Scheidegger, P. J.; Diesch, S.; Palm, M. L.; Degen, C. L. Scanning Nitrogen-Vacancy Magnetometry down to 350 mK. Appl. Phys. Lett. 2022, 120(22), 224001. DOI: 10.1063/5.0093548.
  • Myers, B. A.; Das, A.; Dartiailh, M. C.; Ohno, K.; Awschalom, D. D.; Bleszynski Jayich, A. C. Probing Surface Noise with Depth-Calibrated Spins in Diamond. Phys. Rev. Lett. 2014, 113(2), 027602. DOI: 10.1103/PhysRevLett.113.027602.
  • Fataftah, M. S.; Freedman, D. E. Progress Towards Creating Optically Addressable Molecular Qubits. Chem. Commun. 2018, 54(98), 13773–13781. DOI: 10.1039/C8CC07939K.
  • Graham, M. J.; Zadrozny, J. M.; Fataftah, M. S.; Freedman, D. E. Forging Solid-State Qubit Design Principles in a Molecular Furnace. Chem. Mater. 2017, 29(5), 1885–1897. DOI: 10.1021/acs.chemmater.6b05433.
  • Stevenson, P.; Phenicie, C. M.; Gray, I.; Horvath, S. P.; Welinski, S.; Ferrenti, A. M.; Ferrier, A.; Goldner, P.; Das, S.; Ramesh, R., et al. Erbium-Implanted Materials for Quantum Communication Applications. Phys. Rev. B.2022, 105(22), 224106. DOI: 10.1103/PhysRevB.105.224106.
  • Itoh, K. M.; Watanabe, H. Isotope Engineering of Silicon and Diamond for Quantum Computing and Sensing Applications. MRS Commun. 2014, 4(4), 143–157. DOI: 10.1557/mrc.2014.32.
  • Awschalom, D. D.; Hanson, R.; Wrachtrup, J.; Zhou, B. B. Quantum Technologies with Optically Interfaced Solid-State Spins. Nat. Photon. 2018, 12(9), 516–527. DOI: 10.1038/s41566-018-0232-2.
  • Balasubramanian, G.; Neumann, P.; Twitchen, D.; Markham, M.; Kolesov, R.; Mizuochi, N.; Isoya, J.; Achard, J.; Beck, J.; Tissler, J., et al. Ultralong Spin Coherence Time in Isotopically Engineered Diamond. Nat. Mater. 2009, 8(5), 383–387. DOI: 10.1038/nmat2420.
  • Bader, K.; Dengler, D.; Lenz, S.; Endeward, B.; Jiang, S.-D.; Neugebauer, P.; van Slageren, J. Room Temperature Quantum Coherence in a Potential Molecular Qubit. Nat. Commun. 2014, 5(1), 5304. DOI: 10.1038/ncomms6304.
  • Laorenza, D. W.; Kairalapova, A.; Bayliss, S. L.; Goldzak, T.; Greene, S. M.; Weiss, L. R.; Deb, P.; Mintun, P. J.; Collins, K. A.; Awschalom, D. D., et al. Tunable Cr4+ Molecular Color Centers. J. Am. Chem. Soc. 2021, 143(50), 21350–21363. DOI: 10.1021/jacs.1c10145.
  • Okubo, T.; Maeda, R.; Kondo, M.; Mitani, T.; Kitagawa, S. A New Honeycomb Assemblage of A Trisdithiolene Vanadium(IV) Complex, (PPh4)2[V(Dbddto)3](C6H4Cl2)(Hexane)0.5. Chem. Lett. 2006, 35(1), 34–35. DOI: 10.1246/cl.2006.34.
  • Lewis, G. R.; Dance, I. Crystal Supramolecular Motifs for [Ph4P]+ Salts of [M(mnt)2]2−, [M(mnt)2]−, [{M(mnt)2}2]2−, [M(mnt)3]3− and [M(mnt)3]2− (Mnt2− = Maleonitriledithiolate). J. Chem. Soc. Dalton Trans. 2000, 18, 3176–3185. doi: 10.1039/B000093K.
  • Fataftah, M. S.; Bayliss, S. L.; Laorenza, D. W.; Wang, X.; Phelan, B. T.; Wilson, C. B.; Mintun, P. J.; Kovos, B. D.; Wasielewski, M. R.; Han, S., et al. Trigonal Bipyramidal V3+ Complex as an Optically Addressable Molecular Qubit Candidate. J. Am. Chem. Soc. 2020, 142(48), 20400–20408. DOI: 10.1021/jacs.0c08986.
  • Wojnar, M. K.; Laorenza, D. W.; Schaller, R. D.; Freedman, D. E. Nickel(II) Metal Complexes as Optically Addressable Qubit Candidates. J. Am. Chem. Soc. 2020, 142(35), 14826–14830. DOI: 10.1021/jacs.0c06909.
  • Kumar, K. S.; Serrano, D.; Nonat, A. M.; Heinrich, B.; Karmazin, L.; Charbonnière, L. J.; Goldner, P.; Optical Spin-State, R. M. Polarization in a Binuclear Europium Complex Towards Molecule-Based Coherent Light-Spin Interfaces. Nat. Commun. 2021, 12(1), 2152. DOI: 10.1038/s41467-021-22383-x.
  • Serrano, D.; Kuppusamy, S. K.; Heinrich, B.; Fuhr, O.; Hunger, D.; Ruben, M.; Ultra-Narrow Optical, G. P. Linewidths in Rare-Earth Molecular Crystals. Nature. 2022, 603(7900), 241–246. DOI: 10.1038/s41586-021-04316-2.
  • Rančić, M.; Hedges, M. P.; Ahlefeldt, R. L.; Sellars, M. J. Coherence Time of over a Second in a Telecom-Compatible Quantum Memory Storage Material. Nat. Phys. 2018, 14(1), 50–54. DOI: 10.1038/nphys4254.
  • Ahlefeldt, R. L.; Hush, M. R.; Sellars, M. J. Ultranarrow Optical Inhomogeneous Linewidth in a Stoichiometric Rare-Earth Crystal. Phys. Rev. Lett. 2016, 117(25), 250504. DOI: 10.1103/PhysRevLett.117.250504.
  • Ortu, A.; Tiranov, A.; Welinski, S.; Fröwis, F.; Gisin, N.; Ferrier, A.; Goldner, P.; Afzelius, M. Simultaneous Coherence Enhancement of Optical and Microwave Transitions in Solid-State Electronic Spins. Nat. Mater. 2018, 17(8), 671–675. DOI: 10.1038/s41563-018-0138-x.
  • Hua, Y.-L.; Zhou, Z.-Q.; Li, C.-F.; Guo, G.-C. Quantum Light Storage in Rare-Earth-Ion-Doped Solids. Chin. Phys. B. 2018, 27(2), 020303. DOI: 10.1088/1674-1056/27/2/020303.
  • Mukthar, N. F. M.; Schley, N. D.; Ung, G. Strong Circularly Polarized Luminescence at 1550 Nm from Enantiopure Molecular Erbium Complexes. J. Am. Chem. Soc. 2022, 144(14), 6148–6153. DOI: 10.1021/jacs.2c01134.
  • Major, F. G.; The Quantum Beat: Principles and Applications of Atomic Clocks, 2nd ed.; Springer: New York, 2007.
  • Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular Spins for Quantum Computation. Nat. Chem. 2019, 11(4), 301–309. DOI: 10.1038/s41557-019-0232-y.
  • Ding, Y.-S.; Deng, Y.-F.; Zheng, Y.-Z. The Rise of Single-Ion Magnets as Spin Qubits. Magnetochemistry. 2016, 2(4), 40. DOI: 10.3390/magnetochemistry2040040.
  • Aromí, G.; Aguilà, D.; Gamez, P.; Luis, F.; Roubeau, O. Design of Magnetic Coordination Complexes for Quantum Computing. Chem. Soc. Rev. 2012, 41(2), 537–546. DOI: 10.1039/C1CS15115K.
  • Takahashi, S.; Tupitsyn, I. S.; van Tol, J.; Beedle, C. C.; Hendrickson, D. N.; Stamp, P. C. E. Decoherence in Crystals of Quantum Molecular Magnets. Nature. 2011, 476(7358), 76–79. DOI: 10.1038/nature10314.
  • Abragam, A.; Bleaney, B. ; Oxford, UK: Oxford University Press, 1970.
  • Kahn, O.; Molecular Magnetism; Weinheim, Germany: VCH, 1993.
  • Hatfield, W. E. Effect of Bridge Geometry on Exchange Coupling in Ligand-Bridged Copper(II) Dimers and Chains. Comments Inorg. Chem. 1981, 1(2), 105–121. DOI: 10.1080/02603598108078084.
  • Harding, R. T.; Zhou, S.; Zhou, J.; Lindvall, T.; Myers, W. K.; Ardavan, A.; Briggs, G. A. D.; Porfyrakis, K.; Laird, E. A. Spin Resonance Clock Transition of the Endohedral Fullerene 15N@C60. Phys. Rev. Lett. 2017, 119(14), 140801. DOI: 10.1103/PhysRevLett.119.140801.
  • Nie, H.; Zhao, C.; Shi, Z.; Jia, C.; Single-Molecule Fullerenes:, G. X.; Stage, C. Perspective. ACS Mater. Lett. 2022, 4(6), 1037–1052. DOI: 10.1021/acsmaterialslett.2c00247.
  • AlDamen, M. A.; Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Martí-Gastaldo, C.; Luis, F.; Montero, O. Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates [Ln(W5O18)2]9− and [Ln(Β2SiW11O39)2]13−(LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg. Chem. 2009, 48(8), 3467–3479. DOI: 10.1021/ic801630z.
  • Shiddiq, M.; Komijani, D.; Duan, Y.; Gaita-Ariño, A.; Coronado, E.; Hill, S. Enhancing Coherence in Molecular Spin Qubits via Atomic Clock Transitions. Nature. 2016, 531(7594), 348–351. DOI: 10.1038/nature16984.
  • Ghosh, S.; Datta, S.; Friend, L.; Cardona-Serra, S.; Gaita-Ariño, A.; Coronado, E.; Hill, S. Multi-Frequency EPR Studies of a Mononuclear Holmium Single-Molecule Magnet Based on the Polyoxometalate [HoIII(W5O18)2]9−. Dalton Trans. 2012, 41(44), 13697–13704. DOI: 10.1039/C2DT31674A.
  • Giménez-Santamarina, S.; Cardona-Serra, S.; M. Clemente-Juan, J.; Gaita-Ariño, A.; Coronado, E. Exploiting Clock Transitions for the Chemical Design of Resilient Molecular Spin Qubits. Chem. Sci. 2020, 11(39), 10718–10728. DOI: 10.1039/D0SC01187H.
  • Blockmon, A. L.; Ullah, A.; Hughey, K. D.; Duan, Y.; O’Neal, K. R.; Ozerov, M.; Baldoví, J. J.; Aragó, J.; Gaita-Ariño, A.; Coronado, E., et al. Spectroscopic Analysis of Vibronic Relaxation Pathways in Molecular Spin Qubit [Ho(W5O18)2]9–: Sparse Spectra are Key. Inorg. Chem. 2021, 60(18), 14096–14104. DOI: 10.1021/acs.inorgchem.1c01474.
  • Zadrozny, J. M.; Gallagher, A. T.; Harris, T. D.; Freedman, D. E.; Porous, A. Array of Clock Qubits. J. Am. Chem. Soc. 2017, 139(20), 7089–7094. DOI: 10.1021/jacs.7b03123.
  • Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C. Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. J. Am. Chem. Soc. 2013, 135(45), 17105–17110. DOI: 10.1021/ja408084j.
  • Gallagher, A. T.; Kelty, M. L.; Park, J. G.; Anderson, J. S.; Mason, J. A.; Walsh, J. P. S.; Collins, S. L.; Harris, T. D. Dioxygen Binding at a Four-Coordinate Cobaltous Porphyrin Site in a Metal–Organic Framework: Structural, EPR, and O2 Adsorption Analysis. Inorg. Chem. Front. 2016, 3(4), 536–540. DOI: 10.1039/C5QI00275C.
  • Doorslaer, S. V.; Schweiger, A. A Continuous Wave and Pulse Electron Paramagnetic Resonance Study of Co(II) (Tetraphenylporphyrin) in Different Matrices. Phys. Chem. Chem. Phys. 2001, 3(2), 159–166. DOI: 10.1039/B008083G.
  • Kundu, K.; White, J. R. K.; Moehring, S. A.; Yu, J. M.; Ziller, J. W.; Furche, F.; Evans, W. J.; Hill, S. A. 9.2-GHz Clock Transition in a Lu(II) Molecular Spin Qubit Arising from a 3,467-MHz Hyperfine Interaction. Nat. Chem. 2022, 14(4), 392–397. DOI: 10.1038/s41557-022-00894-4.
  • Collett, C. A.; Ellers, K.-I.; Russo, N.; Kittilstved, K. R.; Timco, G. A.; Winpenny, R. E. P.; Friedman, J. R.; Clock, A. Transition in the Cr7Mn Molecular Nanomagnet. Magnetochemistry. 2019, 5(1), 4. DOI: 10.3390/magnetochemistry5010004.
  • Rubín-Osanz, M.; Lambert, F.; Shao, F.; Rivière, E.; Guillot, R.; Suaud, N.; Guihéry, N.; Zueco, D.; Barra, A.-L.; Mallah, T., et al. Chemical Tuning of Spin Clock Transitions in Molecular Monomers Based on Nuclear Spin-Free Ni(II). Chem. Sci. 2021, 12(14), 5123–5133. DOI: 10.1039/D0SC05856D.
  • Bayliss, S. L.; Deb, P.; Laorenza, D. W.; Onizhuk, M.; Galli, G.; Freedman, D. E.; Awschalom, D. D. Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control. Phys. Rev. X. 2022, 12(3), 031028. DOI: 10.1103/PhysRevX.12.031028.
  • Collett, C. A.; Santini, P.; Carretta, S.; Friedman, J. R. Constructing Clock-Transition-Based Two-Qubit Gates from Dimers of Molecular Nanomagnets. Phys. Rev. Res. 2020, 2(3), 032037. DOI: 10.1103/PhysRevResearch.2.032037.
  • Lewis, S. G.; Smyser, K. E.; Eaves, J. D. Clock Transitions Guard against Spin Decoherence in Singlet Fission. J. Chem. Phys. 2021, 155(19), 194109. DOI: 10.1063/5.0069344.
  • Liu, J.; Mrozek, J.; Ullah, A.; Duan, Y.; Baldoví, J. J.; Coronado, E.; Gaita-Ariño, A.; Ardavan, A. Quantum Coherent Spin–Electric Control in a Molecular Nanomagnet at Clock Transitions. Nat. Phys. 2021, 17(11), 1205–1209. DOI: 10.1038/s41567-021-01355-4.
  • Scholes, G. D.; Fleming, G. R.; Chen, L. X.; Aspuru-Guzik, A.; Buchleitner, A.; Coker, D. F.; Engel, G. S.; van Grondelle, R.; Ishizaki, A.; Jonas, D. M., et al. Using Coherence to Enhance Function in Chemical and Biophysical Systems. Nature.2017, 543(7647), 647–656. DOI: 10.1038/nature21425.
  • Paulus, B. C.; McCusker, J. K. On the Use of Vibronic Coherence to Identify Reaction Coordinates for Ultrafast Excited-State Dynamics of Transition Metal-Based Chromophores. Faraday Discuss. 2022, 237, 274–299. DOI: 10.1039/D2FD00106C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.