Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 44, 2024 - Issue 3
95
Views
0
CrossRef citations to date
0
Altmetric
Comment

Mono- and Bi-Iron Chalcogenofumarato Complexes: Synthesis and Characterization

ORCID Icon, , & ORCID Icon

References

  • Sharma, C.; Sarivastava, A. K.; Sharma, D.; Joshi, R. J. Iron- and Copper-Based Bifunctional Catalysts for the Base- and Solvent-Free C–N Coupling of Amines and Aryl/Benzyl Chlorides Under Aerobic Conditions. New. J. Chem. 2022, 46(18), 8551–8556. DOI: 10.1039/D2NJ00593J.
  • Khormi, A. Y.; Abboud, M.; Hamdi, M. S.; Eissa, M.; Shaaban, M. R. Benzothiazole-Based Palladium Complexes as Efficient Nano-Sized Catalysts for Microwave Hydrothermal Suzuki–Miyaura Cross-Couplings. J. Inorg. Organomet. Poly. Mat. 2023, 33(1), 105–119. DOI: 10.1007/s10904-022-02478-8.
  • Sharma, D.; Arora, A.; Oswal, P.; Bahuguna, A.; Datta, A.; Kumar, A. Organosulfur and Organoselenium Compounds as Emerging Building Blocks for Catalytic Systems for O-Arylation of Phenols, a C–O Coupling Reaction. Dalton Trans. 2022, 51(21), 8103–8132. DOI: 10.1039/D1DT04371D.
  • Khater, M.; Brazier, J. A.; Greco, F.; Osborn, H. M. I. Anticancer Evaluation of New Organometallic Ruthenium(ii) Flavone Complexes. RSC Med. Chem. 2023, 14(2), 253–257. DOI: 10.1039/D2MD00304J.
  • Ramos-Inza, S.; Plano, D.; Sanmartin, C. Metal-Based Compounds Containing Selenium: An Appealing Approach Towards Novel Therapeutic Drugs with Anticancer and Antimicrobial Effects. Eur. J. Med. Chem. 2022, 244, 114834. DOI: 10.1016/j.ejmech.2022.114834.
  • Arshad, J.; Tong, K. K. H.; Movassaghi, S.; Söhnel, T.; Jamieson, S. M. F.; Hanif, M.; Hartinger, C. G. Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-Carbothioamide. Molecules. 2021, 26(4), 833. DOI: 10.3390/molecules26040833.
  • Orton, G. R. F.; Belazregue, S.; Cockcroft, J. K.; Hartl, F.; Hogarth, G. Biomimics of [FeFe]-Hydrogenases with a Pendant Amine: Diphosphine Complexes [Fe2(CO)4{µ-S(CH2)nS}{κ2-(Ph2PCH2)2NR}] (N = 2, 3; R = Me, Bn) Towards H2 Oxidation Catalysts. J. Organomet. Chem. 2023, 991, 122673. DOI: 10.1016/j.jorganchem.2023.122673.
  • Amoli, B. M.; Gumfekar, S.; Zhou, Y. N.; Zhou, B. Thiocarboxylate Functionalization of Silver Nanoparticles: Effect of Chain Length on the Electrical Conductivity of Nanoparticles and Their Polymer Composites. J. Mater. Chem. 2012, 22(37), 20048–20056. DOI: 10.1039/C2JM33280A.
  • Singh, S. Evolution of Metal-Thiocarboxylate Chemistry in 21st Century. J. Mol. Struc. 2021, 1234, 130184. DOI: 10.1016/j.molstruc.2021.130184.
  • Bhattacharya, S. Some New Butylthiobenzoatotin(iv) Compounds: Spectral Studies and Analysis of Ligand’s Bonding. Spectrochim. Acta. 2022, A 61(13–14), 3145–3149. DOI: 10.1016/j.saa.2004.11.048.
  • Dahl, W. W.; Baddour, F. G.; Fiedler, S. R.; Hoffert, W. A.; Shores, M. P.; Yee, G. T.; Djukic, J.-P.; Bacon, J. W.; Rheingolde, A. L.; Doerrer, L. H. Antiferromagnetic Coupling Across a Tetrametallic Unit Through Noncovalent Interactions. Chem. Sci. 2012, 3(2), 602–609. DOI: 10.1039/C1SC00608H.
  • Maslat, A. O.; Jibril, I.; Mizyad, S.; Abd-Alhadi, E. H.; Hamadah, Z. Synthesis and Biological Study of a New Series of Bifunctional Organoiron Thio- and Seleno-Terephthalate Derivatives (C5H5)Fe(CO)2ECO(C6H4)COX (E = S, X = R2N, RNH, NH2, OH, Cl; E = Se, X = RNH, RS, RCOO, NH2, OH, Cl). Appl. Organomet. Chem. 2002, 16(1), 44–50. DOI: 10.1002/aoc.257.
  • Maslat, A. O.; Jibril, I.; Abussoud, M. Antimutagenic Activities of Two Suspected Anticarcinogenic Bifunctional Organoiron Seleno-Terephthalate Derivatives. Drug Chem. Toxicol. 2010, 33(3), 254–260. DOI: 10.3109/01480540903349266.
  • Jacob, J. H.; Khalil, A. M.; Maslat, A. O. In vitro Cytogenetic Testing of an Organoselenium Compound and Its Sulfur Analogue in Cultured Rat Bone Marrow Cells. J. Carcinog. 2004, 3(1), 5. DOI: 10.1186/1477-3163-3-5.
  • Stephens, L. J.; Levina, A.; Trinh, I.; Blair, V. L.; Werrett, M. V.; Lay, P. A.; Andrews, P. C. Ruthenium(ii)–Arene Thiocarboxylates: Identification of a Stable Dimer Selectively Cytotoxic to Invasive Breast Cancer Cells. Biol. Chem. 2020, 21(8), 1188–1200. DOI: 10.1002/cbic.201900676.
  • Hackenberg, F.; Müller-Bunz, H.; Smith, R.; Streciwilk, W.; Zhu, X.; Tacke, M. Novel Ruthenium(ii) and Gold(i) NHC Complexes: Synthesis, Characterization, and Evaluation of Their Anticancer Properties. Organometallics. 2013, 32(19), 5551–5560. DOI: 10.1021/om400819p.
  • Hans, M.; Wellim, Q.; Wouters, J.; Demonceau, A.; Delaude, L. Synthesis and Catalytic Evaluation of Ruthenium-Arene Complexes Bearing Imidazol(in)ium-2-Thiocarboxylate Ligands. Organometallics. 2011, 30(22), 6133–6142. DOI: 10.1021/om2006529.
  • Joshi, D. J.; Mishra, K. B.; Tiwari, V. K.; Bhattacharya, S. Synthesis, Structure, and Catalytic Activities of New Cu(i) Thiocarboxylate Complexes. R.S.C. Adv. 2014, 4(75), 39790–39797. DOI: 10.1039/C4RA05290K.
  • Singh, S.; Chuturvedi, J.; Bhattacharya, S. Studies of Synthesis, Structural Features of Cu(i) Thiophene-2-Thiocarboxylates and Unprecedented Desulfurization of Cu(ii) Thiocarboxylate Complexes. Dalton Trans. 2012, 41(2), 424–431. DOI: 10.1039/C1DT10629E.
  • Singh, S.; Bhattacharya, S.; Nöth, H.; Mayer, P. Synthesis, Characterization and Reactivity of a Diorganotin Thiocarboxylate: Dimethyl(thioacetato)-Tin(iv) Chloride and Its Reactions with Nucleophiles Exhibiting Desulfurization. Z. Naturforsch. 2006, 64b(1), 116–122. DOI: 10.1515/znb-2009-0116.
  • Vittal, J. J.; Ng, M. T. Chemistry of Metal Thio- and Selenocarboxylates: Precursors for Metal Sulfide/Selenide Materials, Thin Films, and Nanocrystals. Acc. Chem. Res. 2006, 39(11), 869–877. DOI: 10.1021/ar050224s.
  • Chuturvedi, J.; Singh, S.; Bhattacharya, S.; Nöth, H.; Mayer, P. The Chemistry of Cadmium–Thiocarboxylate Derivatives: Synthesis, Structural Features, and Application as Single Source Precursors for Ternary Sulfides. Inorg. Chem. 2011, 50(20), 10056–10069. DOI: 10.1021/ic200927w.
  • Deivaraj, T. C.; Park, J.-H.; Afzaal, M.; Vittal, J. J. Novel Bimetallic Thiocarboxylate Compounds as Single-Source Precursors to Binary and Ternary Metal Sulfide Materials. Chem. Mater 2003, 15(12), 2383–2891. DOI: 10.1021/cm031027v.
  • Deivaraj, T. C.; Vittal, J. J. Group 11 and 13 Metal Thiocarboxylate Compounds as Single Source Molecular Precursor for Bulk Metal Sulfide Materials and Thin Films. Prog. Crys. Growth Charc. Mater 2002, 45(1–2), 21–27. DOI: 10.1016/S0960-8974(02)00023-2.
  • Deivaraj, T. C.; Lia, J. X.; Vittal, J. J. Chemistry of Thiocarboxylates: Synthesis and Structures of Neutral Copper(i) Thiocarboxylates with Triphenylphosphine. Inorg. Chem. 2000, 39(5), 1028–1034. DOI: 10.1021/ic9907314.
  • Sampanthar, J. T.; Vittal, J. J.; Dean, J. P. A. W. Chemistry of Thiocarboxylates: Syntheses and Characterization of Silver and Copper Thiocarboxylate Complexes, and the Structures of [Ph4P][M(SC{O}Me)2] (M = Cu or Ag) and [Et3NH][Ag(SC{O}Ph)2]. Dalton Trans. 1999, 18, 3153–3156. DOI: 10.1039/A904718B.
  • Vallejo-Sánchez, D.; Beobide, G.; Castillo, O.; Lanchas, M. Zinc Thiocarboxylate Complexes as Precursors for Zinc Sulfide Nanoparticles Under Aerobic Conditions. Eur. J. Inorg. Chem. 2013, 32, 5592–5602. DOI: 10.1002/ejic.201300649.
  • El-khateeb, M.; Al-Jazzazi, T.; Al-Shboul, T.; Görls, H.; Westerhausen, M. Synthesis and Characterization of Ruthenium Heterocyclic-Thiocarboxylate Complexes. Trans. Met. Chem. 2011, 36, 29–33. DOI: 10.1007/s11243-010-9430-6.
  • El-khateeb, M.; Asali, K. J.; Rababah, A.; Shaheen, M. Dinuclear Ruthenium Thiocarboxylate Complexes: (µ-Z)[CpRu(L)(L’)SCO]2 (Z= 1,4-C6H4, 1,3-C6H4, (CH2)4). Jord. J. Chem. 2008, 3(1), 33–37.
  • Schenk, W. A.; Sonnhalter, N.; Burzlaff, N. Synthesis of Cationic Ruthenium Thioketene Complexes Through Intramolecular 1,2-Elimination. Z. Naturfoursch. 1997, 52(1), 117–124. DOI: 10.1515/znb-1997-0123.
  • El-khateeb, M.; Görls, H.; Weigand, W. Cyclopentadienyl Tungsten Complexes with Thiocarboxylate and Thiosulfonate Ligands: Structures of CpW(CO)3SCOPh and CpW(CO)3SSO2-4-C6H4Cl. J. Organomet. Chem. 2006, 691(26), 5804–5808. DOI: 10.1016/j.jorganchem.2006.10.008.
  • El-khateeb, M.; Rüffer, T.; Lang, H. Molybdenum S-Bonded Mono-Thiocarboxylate Complexes CpMo(CO)3SCOR: Structure of CpMo(CO)3SCOPh. Polyhedron. 2006, 25(17), 3413–3416. DOI: 10.1016/j.poly.2006.06.021.
  • El-khateeb, M.; Asali, K. J.; Abu Salem, T.; Welter, R. Synthesis and Characterization of Cyclopentadienyltricarbonyl Tungsten Selenocarboxylate and Selenosulfonate Complexes. Inorg. Chim. Acta. 2006, 359(13), 4259–4264. DOI: 10.1016/j.ica.2006.06.019.
  • El-khateeb, M.; Asali, K. J.; Al-Juneidi, B.; Abul-Futouh, H.; Görls, H.; Weigand, W. Vinylic-Thiocarboxylate Complexes of Iron: Synthesis, Characterization and Reactions. J. Chem. Sci. 2022, 132, 22. DOI: 10.1007/s12039-019-1720-8.
  • Jibril, I.; El-Hinnawi, M. A.; El-khateeb, M. Synthesis of a New Series of Iron Complexes Fe(C5H5)(CO)(EPh3)SCOR, Fe(But-C5H4)(CO)(EPh3)SCOR and Fe(1,3-But-C5H3)(CO)(PPh3)SCOR (E = P, As, Sb) Through Photolytic Co-Substitution. Study of the Effect of R, E and Cp-Substituents on the Co-Substitution Reactions. Polyhedron. 1991, 10(18), 2095–2103. DOI: 10.1016/S0277-5387(00)86128-8.
  • El-khateeb, M.; Al-Noaimi, M.; Al-Akhras, A.; Görls, H.; Weigand, W. Heterocyclic Thiocarboxylato Complexes of Iron: Synthesis, Characterization, Electrochemistry, and Reactions. J. Coord. Chem. 2012, 65(14), 2510–2522. DOI: 10.1080/00958972.2012.698406.
  • El-khateeb, M.; Abul-Futouh, H.; Görls, H.; Weigand, W.; Al-Mazahreh, L. Synthesis, Characterization and Electrochemical Investigations of Heterocyclic-Selenocarboxylate Iron Complexes. Inorg. Chim. Acta. 2016, 449, 14–19. DOI: 10.1016/j.ica.2016.04.033.
  • Al-Jazzazi, T.; El-khateeb, M.; Quraan, L.; Abul-Futouh, H.; Görls, H.; Weigand, W. Synthesis, Characterization and Electrochemical Investigations of Heterocyclic-Selenocarboxylate Iron Complexes. J. Chem. Sci. 2022, 132, 23. DOI: 10.1007/s12039-019-1732-4.
  • El-khateeb, M.; Görls, H.; Weigand, W. O-Alkylthio- and O-Alkylselenooxalate Iron Complexes: Structures of CpFe(CO)2ECOCO2Me and [CpFe(CO)2ECO]2. Inorg. Chim. Acta. 2007, 360(2), 705–709. DOI: 10.1016/j.ica.2006.08.002.
  • Jibril, I.; Ali, A. K. Synthesis of Organoiron Thio- and Seleno-Terephthaloyl Chloride Derivatives and Their Reactions with Organoiron Polychalcogen Complexes. Ind. J. Chem. 1997, 36A, 987–991.
  • El-khateeb, M.; Al-Noaimi, M.; Al-Rejjal, N.; Abul-Futouh, H.; Görls, H.; Weigand, W. Mono- and Bi-Iron Chalcogenocarboxylate Complexes. Trans. Met. Chem. 2013, 38, 529–534. DOI: 10.1007/s11243-013-9720-x.
  • El-khateeb, M.; Asali, K. J.; Jibril, I.; Abusini, A.; Görls, H.; Weigand, W. Multifunctional Iron Thiocarboxylate Complexes: Synthesis, Reactivity and Structure of CpFe(CO)2SCO-3,5-C6H4(COCl)2. Trans. Met. Chem. 2009, 43, 219–224. DOI: 10.1007/s11243-009-9211-2.
  • El-khateeb, M.; Weheabby, S.; Jibril, I.; Görls, H.; Weigand, W. Synthesis and Reactivity of Mono-, di-, And, Triiron Selenocarboxylate Complexes. Z. Anorg. Allg. Chem. 2012, 638(6), 1001–1005. DOI: 10.1002/zaac.201100541.
  • El-khateeb, M.; Al-Momani, A.; Garcia-Orduna, P.; Lahoz, F. J. Cyclopentadienyl Iron Dicarbonyl Styrene Chalcogenosulfonates: Synthesis and Structure of CpFe(CO)2SeSO2CH=CHPh. J. Chem. Sci. 2022, 134, 13. DOI: 10.1007/s12039-021-02012-2.
  • El-khateeb, M.; Abul-Futouh, H.; Görls, H.; Weigand, W.; Al-Mazahreh, L. Towards the Synthesis of Piano-Stool Iron Complexes Mediated by S-Alkyl Selenothiocarbonato Ligands and Their Substitution Reactions. Monatsh. Chem. 2019, 150, 1461–1467. DOI: 10.1007/s00706-019-02470-y.
  • El-khateeb, M.; Kumar, R.; Yousuf, S. Halfsandwich Iron S-Alkyl Dithiocarbonato Complexes: Synthesis, Characterization and Reactivity. J. Mol. Struct. 2020, 1211, 128092. DOI: 10.1016/j.molstruc.2020.128092.
  • El-Hinnawi, M.; Aruffo, A. A.; Santersiero, S.; McAlister, D.; Schomaker, V. Organometallic Sulfur Complexes. 1. Syntheses, Structures, and Characterizations of Organoiron Sulfane Complexes (µ-Sx)[(η5-C5H5)Fe(CO)2]2 (X = 1-4). Inorg. Chem. 1992, 22(11), 1585–1590. DOI: 10.1021/ic00153a004.
  • Herman, W. A.; Rohrmann, J.; Hecht, H. Mehrfachbindungen zwischen hauptgruppenelementen und übergangsmetallen: XVII. Selen- und tellur-brücken in organometallkomplexen: AUFBAU, protonierung und methylierung. J. Organomet. Chem. 1985, 290(1), 53–61. DOI: 10.1016/0022-328X(85)80148-0.
  • Bruker, A. X. S. Apex4 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.
  • Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. DOI: 10.1107/S2053229614024218.
  • Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. DOI: 10.1107/S2053273314026370.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.