Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 44, 2024 - Issue 4
157
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Optoelectronic Alteration of Metal-Organic Frameworks for Enhanced Photocatalytic Water Splitting Activity Under Solar Radiation

, , , &

References

  • World Energy Statistics - Worldometer, (n.d.). https://www.worldometers.info/energy/ (accessed May 29, 2022).
  • Jena, P. Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett. 2011, 2(3), 206–211. DOI: https://doi.org/10.1021/jz1015372.
  • Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P. H. Insights into Renewable Hydrogen Energy: Recent Advances and Prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. DOI: 10.1016/J.MSET.2019.12.002.
  • García-Holley, P.; Schweitzer, B.; Islamoglu, T.; Liu, Y.; Lin, L.; Rodriguez, S.; Weston, M. H.; Hupp, J. T.; Gómez-Gualdrón, D. A.; Yildirim, T., et al. Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks Under Temperature and Pressure Swing Conditions. Acs. Energy. Lett. 2018, 3(3), 748–754. DOI: https://doi.org/10.1021/acsenergylett.8b00154.
  • Modisha, P. M.; Ouma, C. N. M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy. Fuels. 2019, 33(4), 2778–2796. DOI: 10.1021/ACS.ENERGYFUELS.9B00296.
  • Rusman, N. A. A.; Dahari, M. A Review on the Current Progress of Metal Hydrides Material for Solid-State Hydrogen Storage Applications. Int. J. Hydrogen. Energy. 2016, 41(28), 12108–12126. DOI: 10.1016/J.IJHYDENE.2016.05.244.
  • Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen Storage: Recent Improvements and Industrial Perspectives. Int. J. Hydrogen Energy. 2017, 42, 7254–7262. DOI: 10.1016/J.IJHYDENE.2016.03.178.
  • Okolie, J. A.; Patra, B. R.; Mukherjee, A.; Nanda, S.; Dalai, A. K.; Kozinski, J. A. Futuristic Applications of Hydrogen in Energy, Biorefining, Aerospace, Pharmaceuticals and Metallurgy. Int. J. Hydrogen Energy. 2021, 46, 8885–8905. DOI: 10.1016/J.IJHYDENE.2021.01.014.
  • Krasae-In, S.; Stang, J. H.; Neksa, P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. Int. J. Hydrogen Energy. 2010, 35, 4524–4533. DOI: 10.1016/J.IJHYDENE.2010.02.109.
  • Levalley, T. L.; Richard, A. R.; Fan, M. The Progress in Water Gas Shift and Steam Reforming Hydrogen Production Technologies - a Review. Int. J. Hydrogen. Energy. 2014, 39, 16983–17000. DOI: 10.1016/j.ijhydene.2014.08.041.
  • Westermann, P.; Jørgensen, B.; Lange, L.; Ahring, B. K.; Christensen, C. H. Maximizing Renewable Hydrogen Production from Biomass in a Bio/Catalytic Refinery. Int. J. Hydrogen Energy. 2007, 32, 4135–4141. DOI: 10.1016/j.ijhydene.2007.06.018.
  • Koh, A. C. W.; Chen, L.; Kee Leong, W.; Johnson, B. F. G.; Khimyak, T.; Lin, J. Hydrogen or Synthesis Gas Production via the Partial Oxidation of Methane Over Supported Nickel-Cobalt Catalysts. Int. J. Hydrogen. Energy. 2007, 32, 725–730. DOI: 10.1016/j.ijhydene.2006.08.002.
  • Baruah, R.; Dixit, M.; Basarkar, P.; Parikh, D.; Bhargav, A. Advances in Ethanol Autothermal Reforming. Renewable Sustainable Energy Rev. 2015, 51, 1345–1353. DOI: 10.1016/j.rser.2015.07.060.
  • De Castro, J.; Rivera-Tinoco, R.; Bouallou, C. Hydrogen production from natural gas: Auto-Thermal Reforming and CO 2 capture. Chem. Eng. Trans. 2010, 21, 163–168. DOI: 10.3303/CET1021028.
  • Rydén, M.; Arjmand, M. Continuous Hydrogen Production via the Steam-Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor. Int. J. Hydrogen. Energy. 2012, 37, 4843–4854. DOI: 10.1016/j.ijhydene.2011.12.037.
  • Hawkes, F. R.; Dinsdale, R.; Hawkes, D. L.; Hussy, I. Sustainable fermentative hydrogen production: Challenges for process optimisation, in. Int J. Hydrogen Energy, Pergamon. 2002, 27, 1339–1347. DOI: 10.1016/S0360-3199(02)00090-3.
  • Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renewable Sustainable Energy Rev. 2017, 67, 597–611. DOI: 10.1016/j.rser.2016.09.044.
  • Ghosh, S.; Chowdhury, R.; Bhattacharya, P. A Review on Single Stage Integrated Dark-Photo Fermentative Biohydrogen Production: Insight into Salient Strategies and Scopes. Int. J. Hydrogen. Energy. 2018, 43, 2091–2107. DOI: 10.1016/j.ijhydene.2017.12.018.
  • Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. DOI: 10.1016/j.enconman.2018.03.088.
  • Kumar, R.; Kumar, A.; Pal, A. An Overview of Conventional and Non-Conventional Hydrogen Production Methods. Mater. Today Proc. 2020, 5353–5359. doi: 10.1016/j.matpr.2020.08.793.
  • Wang, Q.; Domen, K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. DOI: 10.1021/acs.chemrev.9b00201.
  • Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238, 37–38. DOI: 10.1038/238037a0.
  • Sumner, L.; Sakthivel, N. A.; Schrock, H.; Artyushkova, K.; Dass, A.; Chakraborty, S. Electrocatalytic Oxygen Reduction Activities of Thiol-Protected Nanomolecules Ranging in Size from Au28(SR)20 to Au279(SR)84. J. Phys. Chem. C. 2018, 122(43), 24809–24817. DOI: https://doi.org/10.1021/acs.jpcc.8b07962.
  • Jones, T. C.; Sumner, L.; Ramakrishna, G.; Bin Hatshan, M.; Abuhagr, A.; Chakraborty, S.; Dass, A. Bulky T-Butyl Thiolated Gold Nanomolecular Series: Synthesis, Characterization, Optical Properties, and Electrocatalysis. J. Phys. Chem. C. 2018, 122(31), 17726–17737. DOI: https://doi.org/10.1021/acs.jpcc.8b01106.
  • Kumar, B.; Kawawaki, T.; Shimizu, N.; Imai, Y.; Suzuki, D.; Hossain, S.; Nair, L. V.; Negishi, Y. Gold Nanoclusters as Electrocatalysts: Size, Ligands, Heteroatom Doping, and Charge Dependences. Nanoscale. 2020, 12, 9969–9979. DOI: 10.1039/d0nr00702a.
  • Kawawaki, T.; Negishi, Y.; Kawasaki, H. Photo/Electrocatalysis and Photosensitization Using Metal Nanoclusters for Green Energy and Medical Applications. Nanoscale Adv. 2020, 2, 17–36. DOI: 10.1039/c9na00583h.
  • Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Nanoscale Structure Design for High‐Performance Pt‐Based ORR Catalysts. Adv.Mate. 2019, 31, 1802234. DOI: 10.1002/adma.201802234.
  • Sonowal, K.; Saikia, L. Metal–Organic Frameworks and Their Composites for Fuel and Chemical Production Via CO 2 Conversion and Water Splitting. R.S.C. Adv. 2022, 12, 11686–11707. DOI: 10.1039/D1RA09063A.
  • Kim, H.; Kim, N.; Ryu, J. Porous Framework-Based Hybrid Materials for Solar-To-Chemical Energy Conversion: From Powder Photocatalysts to Photoelectrodes. Inorg. Chem. Front. 2021, 8, 4107–4148. DOI: 10.1039/d1qi00543j.
  • Zaman, N.; Noor, T.; Iqbal, N. Recent Advances in the Metal-Organic Framework-Based Electrocatalysts for the Hydrogen Evolution Reaction in Water Splitting: A Review. R.S.C. Adv. 2021, 11, 21904–21925. DOI: 10.1039/d1ra02240g.
  • Mao, S.; Shi, J. W.; Sun, G.; Ma, D.; He, C.; Pu, Z.; Song, K.; Cheng, Y. Au nanodots@thiol-UiO66@ZnIn2S4 Nanosheets with Significantly Enhanced Visible-Light Photocatalytic H2 Evolution: The Effect of Different Au Positions on the Transfer of Electron-Hole Pairs. Appl. Catal. B. 2021, 282, 119550. DOI: 10.1016/j.apcatb.2020.119550.
  • Cure, J.; Mattson, E.; Cocq, K.; Assi, H.; Jensen, S.; Tan, K.; Catalano, M.; Yuan, S.; Wang, H.; Feng, L., et al. High Stability of Ultra-Small and Isolated Gold Nanoparticles in Metal-Organic Framework Materials. J. Mater. Chem. A Mater. 2019, 7, 17536–17546. DOI: 10.1039/c8ta12334a.
  • Jin, Z.; Yang, H. Exploration of Zr–Metal–Organic Framework as Efficient Photocatalyst for Hydrogen Production. Nanoscale Res. Lett. 2017, 12, 1–10. DOI: 10.1186/s11671-017-2311-6.
  • Chen, Y.; Ji, S.; Sun, W.; Lei, Y.; Wang, Q.; Li, A.; Chen, W.; Zhou, G.; Zhang, Z.; Wang, Y., et al. Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie. 2020, 132, 1311–1317. DOI: 10.1002/ange.201912439.
  • Zhang, H.; Li, Q.; Weng, B.; Xiao, L.; Tian, Z.; Yang, J.; Liu, T.; Lai, F. Edge Engineering of Platinum Nanoparticles via Porphyrin-Based Ultrathin 2D Metal–Organic Frameworks for Enhanced Photocatalytic Hydrogen Generation. Chem. Eng. J., 442(2022), 136144. DOI: 10.1016/j.cej.2022.136144.
  • Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. A Water-Stable Porphyrin-Based Metal–Organic Framework Active for Visible-Light Photocatalysis. Angew. Chem. Int. Ed. 2012, 51, 7440–7444. DOI: 10.1002/anie.201202471.
  • Guo, J.; Wan, Y.; Zhu, Y.; Zhao, M.; Tang, Z. Advanced Photocatalysts Based on Metal Nanoparticle/metal-Organic Framework Composites. Nano Res. 2021, 14, 2037–2052. DOI: 10.1007/s12274-020-3182-1.
  • Absalan, Y.; Alabada, R.; Ryabov, M.; Tolstoy, V.; Butusov, L.; Nikolskiy, V.; Kopylov, V.; Gholizadeh, M.; Kovalchukova, O. Removing Organic Harmful Compounds from the Polluted Water by a Novel Synthesized Cobalt(ii) and Titanium(iv) Containing Photocatalyst Under Visible Light. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100304. DOI: 10.1016/j.enmm.2020.100304.
  • Razavi, M. R.; Absalan, Y.; Gholizadeh, M.; Strashnov, S.; Kovalchukova, O. Removing bromophenol blue from the aqueous environment by TixNiyLamOz photocatalyst under different conditions. Environ. Technol. Innovations. 2022, 26, 102385. DOI: 10.1016/J.ETI.2022.102385.
  • Mishra, U. K.; Singh, J. Semiconductor Device Physics and Design; Springer Netherlands: 2008. doi: 10.1007/978-1-4020-6481-4.
  • Kasap, S. Optoelectronics & Photonics: Principles & Practices; Pearson Education, 2013; p 544.
  • Wang, Z.; Li, C.; Domen, K. Recent Developments in Heterogeneous Photocatalysts for Solar-Driven Overall Water Splitting. Chem. Soc. Rev. 2019, 48, 2109–2125. DOI: 10.1039/c8cs00542g.
  • Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N., et al. Scalable Water Splitting on Particulate Photocatalyst Sheets with a Solar-To-Hydrogen Energy Conversion Efficiency Exceeding 1%. Nat. Mater. 2016, 15, 611–615. DOI: 10.1038/nmat4589.
  • Kawawaki, T.; Kataoka, Y.; Ozaki, S.; Kawachi, M.; Hirata, M.; Negishi, Y. Creation of Active Water-Splitting Photocatalysts by Controlling Cocatalysts Using Atomically Precise Metal Nanoclusters. Chem. Commun. 2021, 57(4), 417–440. DOI: https://doi.org/10.1039/d0cc06809h.
  • Jaryal, R.; Kumar, R.; Khullar, S. Mixed Metal-Metal Organic Frameworks (MM-MOFs) and Their Use as Efficient Photocatalysts for Hydrogen Evolution from Water Splitting Reactions. Coord. Chem. Rev. 2022, 464, 214542. DOI: 10.1016/j.ccr.2022.214542.
  • Luo, H.; Zeng, Z.; Zeng, G.; Zhang, C.; Xiao, R.; Huang, D.; Lai, C.; Cheng, M.; Wang, W.; Xiong, W., et al. Recent Progress on Metal-Organic Frameworks Based- and Derived-Photocatalysts for Water Splitting. Chem. Eng. J. 2020, 383, 123196. DOI: 10.1016/j.cej.2019.123196.
  • Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production Over Semiconductor-Based Photocatalysts. Chem. Rev. 2021, 121, 13051–13085. DOI: 10.1021/acs.chemrev.1c00197.
  • Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@metal-Organic Framework Composites as Effective Photocatalysts. ACS Catal. 2021, 11, 13374–13396. DOI: 10.1021/acscatal.1c03866.
  • Xiao, Y.; Guo, X.; Yang, N.; Zhang, F. Heterostructured MOFs Photocatalysts for Water Splitting to Produce Hydrogen. J. Energy Chem. 2021, 58, 508–522. DOI: 10.1016/j.jechem.2020.10.008.
  • Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. 2013. DOI: 10.1007/978-1-4614-8298-7.
  • Li, R.; Li, C. Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. In Advances in Catalysis; Academic Press Inc: 2017; pp. 1–57. doi:10.1016/bs.acat.2017.09.001
  • Kranz, C.; Wachtler, M. Characterizing Photocatalysts for Water Splitting: From Atoms to Bulk and from Slow to Ultrafast Processes. Chem. Soc. Rev. 2021, 50, 1407–1437. DOI: 10.1039/D0CS00526F.
  • Bie, C.; Wang, L.; Yu, J. Challenges for Photocatalytic Overall Water Splitting. Chem. 2022, 8, 1567–1574. DOI: 10.1016/j.chempr.2022.04.013.
  • Li, H.; Wang, K.; Sun, Y.; Lollar, C. T.; Li, J.; Zhou, H. C. Recent Advances in Gas Storage and Separation Using Metal–Organic Frameworks. Mater. Today. 2018, 21, 108–121. DOI: 10.1016/J.MATTOD.2017.07.006.
  • Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117, 8129–8176. DOI: 10.1021/acs.chemrev.7b00091.
  • Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46, 3242–3285. DOI: 10.1039/C6CS00930A.
  • Xie, M. H.; Yang, X. L.; Zou, C.; De Wu, C. A Sn IV –Porphyrin-based Metal–Organic Framework for the Selective Photo-Oxygenation of Phenol and Sulfides. Inorg. Chem. 2011, 50, 5318–5320. DOI: 10.1021/ic200295h.
  • Wu, P.; He, C.; Wang, J.; Peng, X.; Li, X.; An, Y.; Duan, C. Photoactive Chiral Metal–Organic Frameworks for Light-Driven Asymmetric α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2012, 134, 14991–14999. DOI: 10.1021/ja305367j.
  • Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An Amine-Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angew. Chem. Int. Ed. 2012, 51(14), 3364–3367. DOI: https://doi.org/10.1002/ANIE.201108357.
  • Xiao, J. D.; Jiang, H. L. Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Acc. Chem. Res. 2018, 52, 356–366. DOI: 10.1021/acs.accounts.8b00521.
  • Nguyen, V. Q.; Mady, A. H.; Mahadadalkar, M. A.; Baynosa, M. L.; Kumar, D. R.; Rabie, A. M.; Lee, J.; Kim, W. K.; Shim, J. J. Highly Active Z-Scheme Heterojunction Photocatalyst of Anatase TiO2 Octahedra Covered with C-MoS2 Nanosheets for Efficient Degradation of Organic Pollutants Under Solar Light. J. Colloid. Interface. Sci. 2022, 606, 337–352. DOI: 10.1016/j.jcis.2021.07.128.
  • Soares, L.; Alves, A. Photocatalytic Properties of TiO2 and TiO2/WO3 Films Applied as Semiconductors in Heterogeneous Photocatalysis. Mater. Lett. 2018, 211, 339–342. DOI: 10.1016/j.matlet.2017.10.023.
  • Hong, Y.; Li, C.; Yin, B.; Li, D.; Zhang, Z.; Mao, B.; Fan, W.; Gu, W.; Shi, W. Promoting Visible-Light-Induced Photocatalytic Degradation of Tetracycline by an Efficient and Stable beta-Bi2O3@g-C3N4 Core/Shell Nanocomposite. Chem. Eng. J. 2018, 338, 137–146. DOI: 10.1016/j.cej.2017.12.108.
  • Liu, Q.; Li, Z.; Liu, Q.; Cheng, C.; Song, M.; Huang, C. Photocatalysis Under Shell: Co@bn Core–Shell Composites for Efficient EY-Sensitized Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2020, 514, 146096. DOI: 10.1016/j.apsusc.2020.146096.
  • Wang, Z.; Liu, Z.; Huang, J.; Chen, Y.; Su, R.; He, J.; Lv, G.; Gao, B.; Zhou, W.; Wang, Y., et al. Zr6O8-porphyrinic MOFs as Promising Catalysts for the Boosting Photocatalytic Degradation of Contaminants in High Salinity Wastewater. Chem. Eng. J. 2022, 440, 135883. DOI: 10.1016/j.cej.2022.135883.
  • Chen, S.; Yang, F.; Gao, H.; Wang, J.; Chen, X.; Zhang, X.; Li, J.; Li, A. Construction of Dual Ligand Ti-Based MOFs with Enhanced Photocatalytic CO2reduction Performance. Journal Of CO2 Utilization. 2021, 48, 101528. DOI: 10.1016/j.jcou.2021.101528.
  • Li, G.; Li, F.; Liu, J.; Fan, C. Fe-Based MOFs for Photocatalytic N2 Reduction: Key Role of Transition Metal Iron in Nitrogen Activation. J. Solid State Chem. 2020, 285, 121245. DOI: 10.1016/j.jssc.2020.121245.
  • Zeng, L.; Guo, X.; He, C.; Duan, C. Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catal. 2016, 6, 7935–7947. DOI: 10.1021/acscatal.6b02228.
  • Gomes silva, C.; Luz, I.; Llabrés i xamena, F. X.; Corma, A.; García, H. Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation, Chemistry. A European Journal. 2010, 16, 11133–11138. DOI: 10.1002/chem.200903526.
  • Wang, W.; Xu, X.; Zhou, W.; Shao, Z. Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Adv Sci. 2017, 4, 1600371. DOI: 10.1002/advs.201600371.
  • Pratik, S. M.; Cramer, C. J. Predicted Efficient Visible-Light Driven Water Splitting and Carbon Dioxide Reduction Using Photoredox-Active UiO-NDI Metal Organic Framework. J. Phys. Chem. C. 2019, 123(32), 19778–19785. DOI: https://doi.org/10.1021/acs.jpcc.9b05693.
  • Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Nanohybrid Photocatalysts with ZnIn2S4 Nanosheets Encapsulated UiO-66 Octahedral Nanoparticles for Visible-Light-Driven Hydrogen Generation. Appl. Catal. B. 2020, 260, 118152. DOI: 10.1016/j.apcatb.2019.118152.
  • Gu, Z. G.; Zhang, J. Epitaxial Growth and Applications of Oriented Metal–Organic Framework Thin Films. Coord. Chem. Rev. 2019, 378, 513–532. DOI: 10.1016/J.CCR.2017.09.028.
  • Jiao, L.; Jiang, H. L. Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. Chem. 2019, 5, 786–804. DOI: 10.1016/j.chempr.2018.12.011.
  • Xu, H.; Ci, S.; Ding, Y.; Wang, G.; Wen, Z. Recent Advances in Precious Metal-Free Bifunctional Catalysts for Electrochemical Conversion Systems. J. Mater. Chem. A Mater. 2019, 7, 8006–8029. DOI: 10.1039/c9ta00833k.
  • Zhang, T.; Lin, W. Metal-Organic Frameworks for Artificial Photosynthesis and Photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993. DOI: 10.1039/c4cs00103f.
  • Zhang, F.; Jiang, D.; Zhang, X. Porous NiO Materials Prepared by Solid-State Thermolysis of a Ni-MOF Crystal for Lithium-Ion Battery Anode. Nano-Struct. Nano-Object. 2016, 5, 1–6. DOI: 10.1016/j.nanoso.2015.12.002.
  • Bagheri, M.; Masoomi, M. Y.; Morsali, A. High Organic Sulfur Removal Performance of a Cobalt Based Metal-Organic Framework. J. Hazard. Mater. 2017, 331, 142–149. DOI: 10.1016/j.jhazmat.2017.02.037.
  • Liu, X. L.; Yin, Q.; Huang, G.; Liu, T. F. Stable pyrazolate-based metal-organic frameworks for drug delivery. Inorg. Chem. Commun. 2018, 94, 21–26. DOI: 10.1016/j.inoche.2018.06.001.
  • Lee, G. J.; Chien, Y. W.; Anandan, S.; Lv, C.; Dong, J.; Wu, J. J. Fabrication of Metal-Doped BiOi/MOF Composite Photocatalysts with Enhanced Photocatalytic Performance. Int. J. Hydrogen. Energy. 2021, 46, 5949–5962. DOI: 10.1016/j.ijhydene.2020.03.254.
  • Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Photocatalytic Hydrogen Production from Water Using Porous Material [Ru2(p-BDC)2]n. Energy Environ. Sci. 2009, 2, 397–400. DOI: 10.1039/b814539c.
  • Liu, Y.; Liu, Z.; Huang, D.; Cheng, M.; Zeng, G.; Lai, C.; Zhang, C.; Zhou, C.; Wang, W.; Jiang, D., et al. Metal or Metal-Containing Nanoparticle@mof Nanocomposites as a Promising Type of Photocatalyst. Coord. Chem. Rev. 2019, 388, 63–78. DOI: 10.1016/j.ccr.2019.02.031.
  • Huang, G.; Yang, Q.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie. 2016, 128, 7505–7509. DOI: 10.1002/ange.201600497.
  • Shi, Y.; Yang, A. F.; Cao, C. S.; Zhao, B. Applications of MOFs: Recent Advances in Photocatalytic Hydrogen Production from Water. Coord. Chem. Rev. 2019, 390, 50–75. DOI: 10.1016/j.ccr.2019.03.012.
  • Kong, X.; Pan, Q.; Song, S.; He, Z.; Zeng, T.; Yu, Y. Dual Metal UiO-Type Metal–Organic Frameworks for Solar-Driven Photocatalytic Hydrogen Evolution. J. Phys. Chem. C. 2021, 125, 20320–20330. DOI: 10.1021/acs.jpcc.1c05866.
  • Nguyen, P. T. K.; Nguyen, H. T. D.; Nguyen, H. N.; Trickett, C. A.; Ton, Q. T.; Gutiérrez-Puebla, E.; Monge, M. A.; Cordova, K. E.; Gándara, F. New Metal-Organic Frameworks for Chemical Fixation of CO2. ACS Appl. Mater. Interfaces. 2018, 10, 733–744. DOI: 10.1021/acsami.7b16163.
  • Xiao, J.-D.; Jiang, H.-L. Thermally Stable Metal-Organic Framework-Templated Synthesis of Hierarchically Porous Metal Sulfides: Enhanced Photocatalytic Hydrogen Production. Small. 2017, 13, 1700632. DOI: 10.1002/smll.201700632.
  • Wang, Z.; Huang, J.; Mao, J.; Guo, Q.; Chen, Z.; Lai, Y. Metal–Organic Frameworks and Their Derivatives with Graphene Composites: Preparation and Applications in Electrocatalysis and Photocatalysis. J. Mater. Chem. A. 2020, 8, 2934–2961. DOI: 10.1039/c9ta12776c.
  • Wang, J. L.; Wang, C.; Lin, W. Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catal. 2012, 2, 2630–2640. DOI: 10.1021/cs3005874.
  • Whelan, É.; Steuber, F. W.; Gunnlaugsson, T.; Schmitt, W. Tuning Photoactive Metal–Organic Frameworks for Luminescence and Photocatalytic Applications. Coord. Chem. Rev. 2021, 437, 213757. DOI: 10.1016/J.CCR.2020.213757.
  • Yuan, S.; Qin, J. S.; Xu, H. Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H. L., et al. Cluster: An Ideal Inorganic Building Unit for Photoactive Metal-Organic Frameworks. ACS Cent. Sci. 2018, 4, 105–111. DOI: 10.1021/acscentsci.7b00497.
  • Reddy, D. A.; Kim, Y.; Gopannagari, M.; Kumar, D. P.; Kim, T. K. Recent Advances in Metal-Organic Framework-Based Photocatalysts for Hydrogen Production. Sustain. Energy Fuels. 2021, 5, 1597–1618. DOI: 10.1039/c9se00749k.
  • Tu, T. N.; Nguyen, M. V.; Nguyen, H. L.; Yuliarto, B.; Cordova, K. E.; Demir, S. Designing Bipyridine-Functionalized Zirconium Metal–Organic Frameworks as a Platform for Clean Energy and Other Emerging Applications. Coord. Chem. Rev. 2018, 364, 33–50. DOI: 10.1016/j.ccr.2018.03.014.
  • Zhu, J.; Li, P. Z.; Guo, W.; Zhao, Y.; Zou, R. Titanium-Based Metal–Organic Frameworks for Photocatalytic Applications. Coord. Chem. Rev. 2018, 359, 80–101. DOI: 10.1016/J.CCR.2017.12.013.
  • Lu, C.; Xiong, D.; Chen, C.; Wang, J.; Kong, Y.; Liu, T.; Ying, S.; Yi, F. Y. Indium-Based Metal-Organic Framework for Efficient Photocatalytic Hydrogen Evolution. Inorg. Chem. 2022, 61, 2587–2594. DOI: 10.1021/acs.inorgchem.1c03628.
  • Morshedy, A. S.; Abd El Salam, H. M.; El Naggar, A. M. A.; Zaki, T. Hydrogen Production and in situ Storage Through Process of Water Splitting Using Mono/Binary Metal–Organic Framework (MOF) Structures as New Chief Photocatalysts. Energy. Fuels. 2020, 34, 11660–11669. DOI: 10.1021/acs.energyfuels.0c01559.
  • Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel Phosphonate MOF as Efficient Water Splitting Photocatalyst. Nano Res. 2020, 14, 450–457. DOI: 10.1007/S12274-020-3056-6.
  • Shi, D.; Zheng, R.; Sun, M.-J.; Cao, X.; Sun, C.-X.; Cui, C.-J.; Liu, C.-S.; Zhao, J.; Du, M. Semiconductive Copper(i)–Organic Frameworks for Efficient Light-Driven Hydrogen Generation without Additional Photosensitizers and Cocatalysts. Angewandte Chemie. 2017, 129, 14829–14833. DOI: 10.1002/ANGE.201709869.
  • Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Efficient Hydrogen Production and Photocatalytic Reduction of Nitrobenzene Over a Visible-Light-Responsive Metal–Organic Framework Photocatalyst. Catal. Sci. Technol. 2013, 3, 2092–2097. DOI: 10.1039/C3CY00211J.
  • Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework. J. Am. Chem. Soc. 2013, 135, 16997–17003. DOI: 10.1021/ja407176p.
  • Toyao, T.; Saito, M.; Dohshi, S.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Horiuchi, Y.; Matsuoka, M. Development of a Ru Complex-Incorporated MOF Photocatalyst for Hydrogen Production Under Visible-Light Irradiation. Chem. Commun. 2014, 50, 6779–6781. DOI: 10.1039/c4cc02397h.
  • Song, T.; Zhang, L.; Zhang, P.; Zeng, J.; Wang, T.; Ali, A.; Zeng, H. Stable and Improved Visible-Light Photocatalytic Hydrogen Evolution Using Copper(ii)–Organic Frameworks: Engineering the Crystal Structures. J. Mater. Chem. A. 2017, 5, 6013–6018. DOI: 10.1039/C7TA00095B.
  • Shi, D.; Cui, C. J.; Hu, M.; Ren, A. H.; Bin Song, L.; Sen Liu, C.; Du, M. A Microporous Mixed-Metal (Na/Cu) Mixed-Ligand (Flexible/Rigid) Metal–Organic Framework for Photocatalytic H2 Generation. J. Mater. Chem. C. 2019, 7, 10211–10217. DOI: 10.1039/C9TC03342D.
  • Chen, D. M.; Sun, C. X.; Sen Liu, C.; Du, M. Stable Layered Semiconductive Cu(i)–Organic Framework for Efficient Visible-Light-Driven Cr(vi) Reduction and H 2 Evolution. Inorg. Chem. 2018, 57, 7975–7981. DOI: 10.1021/acs.inorgchem.8b01137.
  • Pattengale, B.; Yang, S.; Lee, S.; Huang, J. Mechanistic Probes of Zeolitic Imidazolate Framework for Photocatalytic Application. ACS Catal. 2017, 7(12), 8446–8453. DOI: https://doi.org/10.1021/acscatal.7b02467.
  • Yuan, Y. P.; Yin, L. S.; Cao, S. W.; Xu, G. S.; Li, C. H.; Xue, C. Improving Photocatalytic Hydrogen Production of Metal–Organic Framework UiO-66 Octahedrons by Dye-Sensitization. Appl. Catal. B. 2015, 168-169, 572–576. 168–169. DOI: 10.1016/J.APCATB.2014.11.007.
  • Han, S. Y.; Pan, D. L.; Chen, H.; Bu, X. B.; Gao, Y. X.; Gao, H.; Tian, Y.; Li, G. S.; Wang, G.; Cao, S. L., et al. A Methylthio-Functionalized-MOF Photocatalyst with High Performance for Visible-Light-Driven H2 Evolution. Angew. Chem. Int. Ed. 2018, 57(31), 9864–9869. DOI: 10.1002/ANIE.201806077.
  • Leng, F.; Liu, H.; Ding, M.; Lin, Q. P.; Jiang, H. L. Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catal. 2018, 8(5), 4583–4590. DOI: https://doi.org/10.1021/acscatal.8b00764.
  • Truong, Q. D.; Hoa, H. T.; Le, T. S. Pt Nanoparticles Loaded Titanium Picolinate Framework for Photocatalytic Hydrogen Generation. Catal. Commun. 2015, 59, 55–60. DOI: 10.1016/J.CATCOM.2014.09.045.
  • Li, F.; Wang, D.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and Syntheses of MOF/COF Hybrid Materials via Postsynthetic Covalent Modification: An Efficient Strategy to Boost the Visible-Light-Driven Photocatalytic Performance. Appl. Catal. B. 2019, 243, 621–628. DOI: 10.1016/J.APCATB.2018.10.043.
  • Feng, Y.; Chen, C.; Liu, Z.; Fei, B.; Lin, P.; Li, Q.; Sun, S.; Du, S. Application of a Ni Mercaptopyrimidine MOF as Highly Efficient Catalyst for Sunlight-Driven Hydrogen Generation. J. Mater. Chem. A. 2015, 3, 7163–7169. DOI: 10.1039/C5TA00136F.
  • Song, T.; Zhang, P.; Zeng, J.; Wang, T.; Ali, A.; Zeng, H. Tunable Conduction Band Energy and Metal-To-Ligand Charge Transfer for Wide-Spectrum Photocatalytic H2 Evolution and Stability from Isostructural Metal-Organic Frameworks. Int. J. Hydrogen. Energy. 2017, 42, 26605–26616. DOI: 10.1016/J.IJHYDENE.2017.09.081.
  • Zhang, R.; Liu, Y.; Wang, J.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Huang, B. Post-Synthetic Platinum Complex Modification of a Triazine Based Metal Organic Frameworks for Enhanced Photocatalytic H2 Evolution. J. Solid State Chem. 2019, 271, 260–265. DOI: 10.1016/J.JSSC.2019.01.006.
  • He, T.; Chen, S.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W.; Wang, X. Zirconium–Porphyrin-based Metal–Organic Framework Hollow Nanotubes for Immobilization of Noble-Metal Single Atoms. Angewandte Chemie. 2018, 130, 3551–3556. DOI: 10.1002/ANGE.201800817.
  • An, Y.; Liu, Y.; An, P.; Dong, J.; Xu, B.; Dai, Y.; Qin, X.; Zhang, X.; Whangbo, M.-H.; Huang, B. NiIi Coordination to an Al-Based Metal–Organic Framework Made from 2-Aminoterephthalate for Photocatalytic Overall Water Splitting. Angewandte Chemie. 2017, 129, 3082–3086. DOI: 10.1002/ANGE.201612423.
  • Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Adv.Mate. 2018, 30, 1705112. DOI: 10.1002/ADMA.201705112.
  • Xiao, Y.; Guo, X.; Liu, J.; Liu, L.; Zhang, F.; Li, C. Development of a Bismuth-Based Metal-Organic Framework for Photocatalytic Hydrogen Production. Chin. J. Catal. 2019, 40, 1339–1344. DOI: 10.1016/S1872-2067(19)63329-2.
  • Guo, W.; Lv, H.; Chen, Z.; Sullivan, K. P.; Lauinger, S. M.; Chi, Y.; Sumliner, J. M.; Lian, T.; Hill, C. L. Self-Assembly of Polyoxometalates, Pt Nanoparticles and Metal–Organic Frameworks into a Hybrid Material for Synergistic Hydrogen Evolution. J. Mater. Chem. A Mater. 2016, 4, 5952–5957. DOI: 10.1039/C6TA00011H.
  • Zhao, J.; Wang, Y.; Zhou, J.; Qi, P.; Li, S.; Zhang, K.; Feng, X.; Wang, B.; Hu, C. A Copper(ii)-Based MOF Film for Highly Efficient Visible-Light-Driven Hydrogen Production. J. Mater. Chem. A Mater. 2016, 4, 7174–7177. DOI: 10.1039/C6TA00431H.
  • Zhao, X.; Zhang, S.; Yan, J.; Li, L.; Wu, G.; Shi, W.; Yang, G.; Guan, N.; Cheng, P. Polyoxometalate-Based Metal–Organic Frameworks as Visible-Light-Induced Photocatalysts. Inorg. Chem. 2018, 57, 5030–5037. DOI: 10.1021/acs.inorgchem.8b00098.
  • Yu, Q.; Dong, H.; Zhang, X.; Zhu, Y. X.; Wang, J. H.; Zhang, F. M.; Sun, X. J. Novel Stable Metal–Organic Framework Photocatalyst for Light-Driven Hydrogen Production. CrystEngcomm. 2018, 20, 3228–3233. DOI: 10.1039/C8CE00386F.
  • Roy, S.; Bhunia, A.; Schuth, N.; Haumann, M.; Ott, S. Light-Driven Hydrogen Evolution Catalyzed by a Cobaloxime Catalyst Incorporated in a MIL-101(cr) Metal–Organic Framework, Sustain Energy Fuels. Sustain Energy Fuels. 2018, 2(6), 1148–1152. DOI: https://doi.org/10.1039/C8SE00072G.
  • Wang, D.; Song, Y.; Cai, J.; Wu, L.; Li, Z. Effective Photo-Reduction to Deposit Pt Nanoparticles on MIL-100(fe) for Visible-Light-Induced Hydrogen Evolution. New. J. Chem. 2016, 40(11), 9170–9175. DOI: https://doi.org/10.1039/C6NJ01989G.
  • Liu, X. L.; Wang, R.; Zhang, M. Y.; Yuan, Y. P.; Xue, C. Dye-Sensitized MIL-101 Metal Organic Frameworks Loaded with Ni/NiO x Nanoparticles for Efficient Visible-Light-Driven Hydrogen Generation. APL Mater. 2015, 3, 104403. DOI: 10.1063/1.4922151.
  • Xu, J.; Gao, J.; Wang, C.; Yang, Y.; Wang, L. NH2-MIL-125(Ti)/graphitic Carbon Nitride Heterostructure Decorated with NiPd Co-Catalysts for Efficient Photocatalytic Hydrogen Production. Appl. Catal. B. 2017, 219, 101–108. DOI: 10.1016/J.APCATB.2017.07.046.
  • Assi, H.; Pardo Pérez, L. C.; Mouchaham, G.; Ragon, F.; Nasalevich, M.; Guillou, N.; Martineau, C.; Chevreau, H.; Kapteijn, F.; Gascon, J., et al. Investigating the Case of Titanium(iv) Carboxyphenolate Photoactive Coordination Polymers. Inorg. Chem. 2016, 55(15), 7192–7199. DOI: https://doi.org/10.1021/acs.inorgchem.6b01060.
  • Xiao, J. D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angew. Chem. Int. Ed. 2016, 55, 9389–9393. DOI: 10.1002/ANIE.201603990.
  • Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R. Post-Synthesis Modification of a Metal–Organic Framework to Construct a Bifunctional Photocatalyst for Hydrogen Production. Energy Environ. Sci. 2013, 6, 3229–3234. DOI: 10.1039/C3EE41548A.
  • Wen, M.; Mori, K.; Kamegawa, T.; Yamashita, H. Amine-Functionalized MIL-101(cr) with Imbedded Platinum Nanoparticles as a Durable Photocatalyst for Hydrogen Production from Water. Chem. Commun. 2014, 50, 11645–11648. DOI: 10.1039/c4cc02994a.
  • Shi, X.; Zhang, J.; Cui, G.; Deng, N.; Wang, W.; Wang, Q.; Tang, B. Photocatalytic H2 Evolution Improvement for H Free-Radical Stabilization by Electrostatic Interaction of a Cu-BTC MOF with ZnO/GO. Nano Res. 2018, 11(2), 979–987. 2017). DOI: https://doi.org/10.1007/S12274-017-1710-4.
  • Shen, L.; Luo, M.; Liu, Y.; Liang, R.; Jing, F.; Wu, L. Noble-Metal-Free MoS2 Co-Catalyst Decorated UiO-66/CdS Hybrids for Efficient Photocatalytic H2 Production. Appl. Catal. B. 2015, 166-167, 445–453. 166–167. DOI: 10.1016/J.APCATB.2014.11.056.
  • Tian, L.; Yang, X.; Liu, Q.; Qu, F.; Tang, H. Anchoring Metal-Organic Framework Nanoparticles on Graphitic Carbon Nitrides for Solar-Driven Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2018, 455, 403–409. DOI: 10.1016/J.APSUSC.2018.06.014.
  • Zhou, J. J.; Wang, R.; Liu, X. L.; Peng, F. M.; Li, C. H.; Teng, F.; Yuan, Y. P. In situ Growth of CdS Nanoparticles on UiO-66 Metal-Organic Framework Octahedrons for Enhanced Photocatalytic Hydrogen Production Under Visible Light Irradiation. Appl. Surf. Sci. 2015, 346, 278–283. DOI: 10.1016/J.APSUSC.2015.03.210.
  • Tilgner, D.; Kempe, R. A Plasmonic Colloidal Photocatalyst Composed of a Metal–Organic Framework Core and a Gold/Anatase Shell for Visible-Light-Driven Wastewater Purification from Antibiotics and Hydrogen Evolution. Chem. Eur. J. 2017, 23, 3184–3190. DOI: 10.1002/CHEM.201605473.
  • Wang, Y.; Zhang, Y.; Jiang, Z.; Jiang, G.; Zhao, Z.; Wu, Q.; Liu, Y.; Xu, Q.; Duan, A.; Xu, C. Controlled Fabrication and Enhanced Visible-Light Photocatalytic Hydrogen Production of Au@cds/MIL-101 Heterostructure. Appl. Catal. B. 2016, 185, 307–314. DOI: 10.1016/J.APCATB.2015.12.020.
  • Meyer, K.; Bashir, S.; Llorca, J.; Idriss, H.; Ranocchiari, M.; van Bokhoven, J. A. Photocatalyzed Hydrogen Evolution from Water by a Composite Catalyst of NH2-MIL-125(Ti) and Surface Nickel(ii) Species. Chem. Eur. J. 2016, 22, 13894–13899. DOI: 10.1002/CHEM.201601988.
  • Bag, P. P.; Wang, X. S.; Sahoo, P.; Xiong, J.; Cao, R. Efficient Photocatalytic Hydrogen Evolution Under Visible Light by Ternary Composite CdS@NU-1000/RGO. Catal. Sci. Technol. 2017, 7, 5113–5119. DOI: 10.1039/C7CY01254C.
  • Liang, Q.; Jin, J.; Liu, C.; Xu, S.; Yao, C.; Li, Z. Fabrication of the Ternary Heterojunction Cd0.5Zn0.5S@UIO-66@g-C3N4 for Enhanced Visible-Light Photocatalytic Hydrogen Evolution and Degradation of Organic Pollutants. Inorg. Chem. Front. 2018, 5, 335–343. DOI: 10.1039/C7QI00638A.
  • Hou, C. C.; Li, T. T.; Cao, S.; Chen, Y.; Fu, W. F. Incorporation of a [Ru(dcbpy)(bpy)2]2+ Photosensitizer and a Pt(dcbpy)Cl2 Catalyst into Metal–Organic Frameworks for Photocatalytic Hydrogen Evolution from Aqueous Solution. J. Mater. Chem. A. 2015, 3, 10386–10394. DOI: 10.1039/C5TA01135C.
  • Li, Z.; Xiao, J. D.; Jiang, H. L. Encapsulating a Co(ii) Molecular Photocatalyst in Metal–Organic Framework for Visible-Light-Driven H 2 Production: Boosting Catalytic Efficiency via Spatial Charge Separation. ACS Catal. 2016, 6, 5359–5365. DOI: 10.1021/acscatal.6b01293.
  • Nasalevich, M. A.; Becker, R.; Ramos-Fernandez, E. V.; Castellanos, S.; Veber, S. L.; Fedin, M. V.; Kapteijn, F.; Reek, J. N. H.; Van Der Vlugt, J. I.; Gascon, J. Co@NH2-MIL-125(Ti): Cobaloxime-Derived Metal-Organic Framework-Based Composite for Light-Driven H2 Production. Energy Environ. Sci. 2015, 8, 364–375. DOI: 10.1039/c4ee02853h.
  • Jiang, Z.; Liu, J.; Gao, M.; Fan, X.; Zhang, L.; Zhang, J. Assembling Polyoxo-Titanium Clusters and CdS Nanoparticles to a Porous Matrix for Efficient and Tunable H2-Evolution Activities with Visible Light. Adv.Mate. 2017, 29, 1603369. DOI: 10.1002/ADMA.201603369.
  • Shah, W. A.; Ibrahim, S.; Abbas, S.; Naureen, L.; Batool, M.; Imran, M.; Nadeem, M. A. Nickel Containing Polyoxometalates Incorporated in Two Different Metal-Organic Frameworks for Hydrogen Evolution Reaction. J. Environ. Chem. Eng. 2021, 9, 106004. DOI: 10.1016/j.jece.2021.106004.
  • Li, H.; Yao, S.; Wu, H. L.; Qu, J. Y.; Zhang, Z. M.; Lu, T. B.; Lin, W.; Wang, E. B. Charge-Regulated Sequential Adsorption of Anionic Catalysts and Cationic Photosensitizers into Metal-Organic Frameworks Enhances Photocatalytic Proton Reduction. Appl. Catal. B. 2018, 224, 46–52. DOI: 10.1016/j.apcatb.2017.10.031.
  • Bu, Y.; Li, F.; Zhang, Y.; Liu, R.; Luo, X.; Xu, L. Immobilizing CdS Nanoparticles and MoS2/RGO on Zr-Based Metal–Organic Framework 12-Tungstosilicate@uiO-67 Toward Enhanced Photocatalytic H2 Evolution. R.S.C. Adv. 2016, 6, 40560–40566. DOI: 10.1039/C6RA05522B.
  • Zhang, Z. M.; Zhang, T.; Wang, C.; Lin, Z.; Long, L. S.; Lin, W. Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-type Polyoxometalate. J. Am. Chem. Soc. 2015, 137, 3197–3200. DOI: 10.1021/jacs.5b00075.
  • Kong, X. J.; Lin, Z.; Zhang, Z. M.; Zhang, T.; Lin, W. Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickel-Containing Polyoxometalates for Efficient Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 6411–6416. DOI: 10.1002/ANIE.201600431.
  • Wang, H.; Tian, J.; Xu, Z. Y.; Zhang, D. W.; Wang, H.; Xie, S. H.; Xu, D. W.; Ren, Y. H.; Liu, Y.; Li, Z. T. Supramolecular Metal-Organic Frameworks That Display High Homogeneous and Heterogeneous Photocatalytic Activity for H2 Production. Nat. Commun. 2016, 7, 1–9. DOI: 10.1038/ncomms11580.
  • Tian, P.; He, X.; Li, W.; Zhao, L.; Fang, W.; Chen, H.; Zhang, F.; Zhang, W.; Wang, W. Zr-MOFs Based on Keggin-Type Polyoxometalates for Photocatalytic Hydrogen Production. J. Mater. Sci. 2018, 53, 12016–12029. DOI: 10.1007/s10853-018-2476-0.
  • Sun, W.; An, B.; Qi, B.; Liu, T.; Jin, M.; Duan, C. Dual-Excitation Polyoxometalate-Based Frameworks for One-Pot Light-Driven Hydrogen Evolution and Oxidative Dehydrogenation. ACS Appl. Mater. Interfaces. 2018, 10, 13462–13469. DOI: 10.1021/acsami.8b00350.
  • Sun, W.; He, C.; Liu, T.; Duan, C. Synergistic Catalysis for Light-Driven Proton Reduction Using a Polyoxometalate-Based Cu–Ni Heterometallic–Organic Framework. Chem. Commun. 2019, 55, 3805–3808. DOI: 10.1039/c8cc09285k.
  • Jiao, L.; Dong, Y.; Xin, X.; Qin, L.; Lv, H. Facile Integration of Ni-Substituted Polyoxometalate Catalysts into Mesoporous Light-Responsive Metal-Organic Framework for Effective Photogeneration of Hydrogen. Appl. Catal. B. 2021, 291, 120091. DOI: 10.1016/j.apcatb.2021.120091.
  • Shi, D.; Zheng, R.; Sen Liu, C.; Chen, D. M.; Zhao, J.; Du, M. Dual-Functionalized Mixed Keggin- and Lindqvist-Type Cu 24 -Based POM@MOF for Visible-Light-Driven H 2 and O 2 Evolution. Inorg. Chem. 2019, 58(11), 7229–7235. DOI: https://doi.org/10.1021/acs.inorgchem.9b00206.
  • Wang, S.; Cao, Y.; Jia, W.; Lu, Z.; Jia, D. A Cage-Confinement Strategy to Fabricate Pt-Mo6Co6C Heterojunction for Highly Efficient PH-Universal Hydrogen Evolution. Appl. Catal. B. 2021, 298, 120579. DOI: 10.1016/j.apcatb.2021.120579.
  • Samanta, D.; Verma, P.; Roy, S.; Maji, T. K. Nanovesicular MOF with Omniphilic Porosity: Bimodal Functionality for White-Light Emission and Photocatalysis by Dye Encapsulation. ACS Appl. Mater. Interfaces. 2018, 10, 23140–23146. DOI: 10.1021/acsami.8b06363.
  • He, J.; Wang, J.; Chen, Y.; Zhang, J.; Duan, D.; Wanga, Y.; Yan, Z. A Dye-Sensitized Pt@uiO-66(zr) Metal–Organic Framework for Visible-Light Photocatalytic Hydrogen Production. Chem. Commun. 2014, 50, 7063–7066. DOI: 10.1039/c4cc01086h.
  • Thompson, W. A.; Perier, C.; Maroto-Valer, M. M. Systematic Study of Sol-Gel Parameters on TiO2 Coating for CO2 Photoreduction. Appl. Catal. B. 2018, 238, 136–146. DOI: 10.1016/j.apcatb.2018.07.018.
  • Ren, R.; Zhao, H.; Sui, X.; Guo, X.; Huang, X.; Wang, Y.; Dong, Q.; Chen, J. Exfoliated Molybdenum Disulfide Encapsulated in a Metal Organic Framework for Enhanced Photocatalytic Hydrogen Evolution. Catalysts. 2019, 9, 89. DOI: 10.3390/catal9010089.
  • Li, S.; Mei, H. M.; Yao, S. L.; Chen, Z. Y.; Lu, Y. L.; Zhang, L.; Su, C. Y. Well-Distributed Pt-Nanoparticles within Confined Coordination Interspaces of Self-Sensitized Porphyrin Metal-Organic Frameworks: Synergistic Effect Boosting Highly Efficient Photocatalytic Hydrogen Evolution Reaction. Chem. Sci. 2019, 10, 10577–10585. DOI: 10.1039/c9sc01866b.
  • Wang, Y. Y.; Tang, Z.; Ji, X. Y.; Wang, S.; Yao, Z. S.; Tao, J. Encapsulating Low-Coordinated Pt Clusters within a Metal-Organic Framework Induces Spatial Charge Separation Boosting Photocatalytic Hydrogen Evolution. Catal. Sci. Technol. 2020, 10, 5048–5059. DOI: 10.1039/d0cy00809e.
  • He, Y.; Luo, S.; Hu, X.; Cheng, Y.; Huang, Y.; Chen, S.; Fu, M.; Jia, Y.; Liu, X. NH2-MIL-125(Ti) Encapsulated with in Situ-Formed Carbon Nanodots with Up-Conversion Effect for Improving Photocatalytic NO Removal and H2 Evolution. Chem. Eng. J. 2021, 420, 127643. DOI: 10.1016/j.cej.2020.127643.
  • Xiao, J. D.; Han, L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visible-Light Photocatalysis. Angew. Chem. Int. Ed. 2018, 57, 1103–1107. DOI: 10.1002/ANIE.201711725.
  • Zhen, W.; Ma, J.; Lu, G. Small-Sized Ni(1 1 1) Particles in Metal-Organic Frameworks with Low Over-Potential for Visible Photocatalytic Hydrogen Generation. Appl. Catal. B. 2016, 190, 12–25. DOI: 10.1016/J.APCATB.2016.02.061.
  • Zhen, W.; Gao, H.; Tian, B.; Ma, J.; Lu, G. Fabrication of Low Adsorption Energy Ni–Mo Cluster Cocatalyst in Metal–Organic Frameworks for Visible Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces. 2016, 8, 10808–10819. DOI: 10.1021/acsami.5b12524.
  • Su, Y.; Zhang, Z.; Liu, H.; Wang, Y. Cd0.2Zn0.8S@UiO-66-NH2 Nanocomposites as Efficient and Stable Visible-Light-Driven Photocatalyst for H2 Evolution and CO2 Reduction. Appl. Catal. B. 2017, 200, 448–457. DOI: 10.1016/J.APCATB.2016.07.032.
  • Liu, H.; Zhang, J.; Ao, D. Construction of Heterostructured ZnIn2S4@NH2-MIL-125(Ti) Nanocomposites for Visible-Light-Driven H2 Production. Appl. Catal. B. 2018, 221, 433–442. DOI: 10.1016/J.APCATB.2017.09.043.
  • Liu, H.; Xu, C.; Li, D.; Jiang, H.-L. Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation Over MOF Composites. Angewandte Chemie. 2018, 130, 5477–5481. DOI: 10.1002/ANGE.201800320.
  • Xu, J.; Liu, J.; Li, Z.; Wang, X.; Wang, Z. Synthesis, Structure and Properties of Pd@MOF-808. J. Mater. Sci. 2019, 54. 19. 54, 12911–12924. 10.1007/S10853-019-03786-0.
  • Li, X.; Gao, K.; Mo, B.; Tang, J.; Wu, J.; Hou, H. BiOi Particles Confined into Metal-Organic Framework NU-1000 for Valid Photocatalytic Hydrogen Evolution Under Visible-Light Irradiation. Inorg. Chem. 2021, 60, 1352–1358. DOI: 10.1021/acs.inorgchem.0c02423.
  • Huang, X.; Li, X.; Luan, Q.; Zhang, K.; Wu, Z.; Li, B.; Xi, Z.; Dong, W.; Wang, G. Highly Dispersed Pt Clusters Encapsulated in MIL-125-NH2 via in situ Auto-Reduction Method for Photocatalytic H2 Production Under Visible Light. Nano Res. 2021, 14, 4250–4257. DOI: 10.1007/S12274-021-3597-3.
  • Han, J.; Wang, D.; Du, Y.; Xi, S.; Hong, J.; Yin, S.; Chen, Z.; Zhou, T.; Xu, R. Metal–Organic Framework Immobilized Cobalt Oxide Nanoparticles for Efficient Photocatalytic Water Oxidation. J. Mater. Chem. A. 2015, 3, 20607–20613. DOI: 10.1039/c5ta04675k.
  • Tang, H. L.; Sun, X. J.; Zhang, F. M. Development of MOF-Based Heterostructures for Photocatalytic Hydrogen Evolution. Dalton Trans. 2020, 49, 12136–12144. DOI: 10.1039/d0dt02309d.
  • Wen, M.; Mori, K.; Kuwahara, Y.; An, T.; Yamashita, H. Design and Architecture of Metal Organic Frameworks for Visible Light Enhanced Hydrogen Production. Appl. Catal. B. 2017, 218, 555–569. DOI: 10.1016/j.apcatb.2017.06.082.
  • Balestri, D.; Roux, Y.; Mattarozzi, M.; Mucchino, C.; Heux, L.; Brazzolotto, D.; Artero, V.; Duboc, C.; Pelagatti, P.; Marchiò, L., et al. Heterogenization of a [NiFe] Hydrogenase Mimic Through Simple and Efficient Encapsulation into a Mesoporous MOF. Inorg. Chem. 2017, 56(24), 14801–14808. DOI: https://doi.org/10.1021/acs.inorgchem.7b01824.
  • Belousov, A. S.; Suleimanov, E. V. Application of Metal–Organic Frameworks as an Alternative to Metal Oxide-Based Photocatalysts for the Production of Industrially Important Organic Chemicals. Green Chem. 2021, 23, 6172–6204. DOI: 10.1039/d1gc01690c.
  • Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and Photocatalysis by Metal Organic Frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. DOI: 10.1039/C8CS00256H.
  • Gascon, J.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I. Metal Organic Framework Catalysis: Quo Vadis? ACS Catal. 2014, 4, 361–378. DOI: 10.1021/cs400959k.
  • Yu, X.; Cohen, S. M. Photocatalytic Metal-Organic Frameworks for Selective 2,2,2-Trifluoroethylation of Styrenes. J. Am. Chem. Soc. 2016, 138, 12320–12323. DOI: 10.1021/jacs.6b06859.
  • Hawes, C. S.; Mille, G. M. O.; Byrne, K.; Schmitt, W.; Gunnlaugsson, T. Tetraarylpyrrolo[3,2- b]pyrroles as versatile and responsive fluorescent linkers in metal–organic frameworks. Dalton Trans. 2018, 47, 10080–10092. DOI: 10.1039/c8dt01784k.
  • Huang, C. W.; Nguyen, V. H.; Zhou, S. R.; Hsu, S. Y.; Tan, J. X.; Wu, K. C. W. Metal-Organic Frameworks: Preparation and Applications in Highly Efficient Heterogeneous Photocatalysis. Sustain. Energy Fuels. 2020, 4, 504–521. DOI: 10.1039/c9se00972h.
  • Choudhuri, I.; Truhlar, D. G. Photogenerated Charge Separation in a CdSe Nanocluster Encapsulated in a Metal–Organic Framework for Improved Photocatalysis. J. Phys. Chem. C. 2020, 124, 8504–8513. DOI: 10.1021/acs.jpcc.0c00007.
  • Yin, W.; An Tao, C.; Wang, F.; Huang, J.; Qu, T.; Wang, J. Tuning Optical Properties of MOF-Based Thin Films by Changing the Ligands of MOFs. Sci. China Mater. 2017, 61, 391–400. DOI: 10.1007/S40843-017-9143-5.
  • Flage-Larsen, E.; Røyset, A.; Cavka, J. H.; Thorshaug, K. Band Gap Modulations in UiO Metal–Organic Frameworks. J. Phys. Chem. C. 2013, 117, 20610–20616. DOI: 10.1021/jp405335q.
  • Ali Akbar Razavi, S.; Morsali, A. Linker Functionalized Metal-Organic Frameworks. Coord. Chem. Rev. 2019, 399, 213023. DOI: 10.1016/J.CCR.2019.213023.
  • Assen, A. H.; Adil, K.; Cordova, K. E.; Belmabkhout, Y. The Chemistry of Metal–Organic Frameworks with Face-Centered Cubic Topology. Coord. Chem. Rev. 2022, 468, 214644. DOI: 10.1016/j.ccr.2022.214644.
  • Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P., et al. Stable Metal–Organic Frameworks: Design. Synthesis, And Applications, Advanced Materials. 2018, 30, 1704303. DOI: 10.1002/ADMA.201704303.
  • Li, X.; Liu, S.; Fan, K.; Liu, Z.; Song, B.; Yu, J. MOF-Based Transparent Passivation Layer Modified ZnO Nanorod Arrays for Enhanced Photo-Electrochemical Water Splitting. Adv. Energy Mater. 2018, 8, 1800101. DOI: 10.1002/AENM.201800101.
  • Dong, Y. J.; Liao, J. F.; Kong, Z. C.; Xu, Y. F.; Chen, Z. J.; Chen, H. Y.; Bin Kuang, D.; Fenske, D.; Su, C. Y. Conformal Coating of Ultrathin Metal-Organic Framework on Semiconductor Electrode for Boosted Photoelectrochemical Water Oxidation. Appl. Catal. B. 2018, 237, 9–17. DOI: 10.1016/J.APCATB.2018.05.059.
  • Zhang, Q.; Wang, H.; Dong, Y.; Yan, J.; Ke, X.; Wu, Q.; Xue, S. In situ Growth of Ultrathin Co-MOF Nanosheets on α-Fe2O3 Hematite Nanorods for Efficient Photoelectrochemical Water Oxidation. Solar Energy. 2018, 171, 388–396. DOI: 10.1016/J.SOLENER.2018.06.086.
  • Liu, Z. Q.; Qiu, K.; Bai, H.; Wang, F.; Ge, Y.; Cui, W.; Zheng, G.; Cui, J.; Fan, W. Ni-MOF in-Situ Decorating ZnO Photoelectrode for Photoelectrochemical Water Splitting; https://doi.org/10.1142/S1793604718500856: Https, 2018, p. 11. DOI: 10.1142/S1793604718500856.
  • Yoon, J. W.; Kim, D. H.; Kim, J. H.; Jang, H. W.; Lee, J. H. NH2-MIL-125(Ti)/TiO2 Nanorod Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting. Appl. Catal. B. 2019, 244, 511–518. DOI: 10.1016/J.APCATB.2018.11.057.
  • Gao, C.; Lyu, F.; Yin, Y. Encapsulated Metal Nanoparticles for Catalysis. Chem. Rev. 2021, 121(2), 834–881. DOI: https://doi.org/10.1021/acs.chemrev.0c00237.
  • Ahsan, M. A.; Deemer, E.; Fernandez-Delgado, O.; Wang, H.; Curry, M. L.; El-Gendy, A. A.; Noveron, J. C. Fe Nanoparticles Encapsulated in MOF-Derived Carbon for the Reduction of 4-Nitrophenol and Methyl Orange in Water. Catal. Commun. 2019, 130, 105753. DOI: 10.1016/J.CATCOM.2019.105753.
  • Liu, Y.; Shi, W. J.; Lu, Y. K.; Liu, G.; Hou, L.; Wang, Y. Y. Nonenzymatic Glucose Sensing and Magnetic Property Based on the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF. Inorg. Chem. 2019, 58(24), 16743–16751. DOI: https://doi.org/10.1021/acs.inorgchem.9b02889.
  • Zhu, K.; Chen, C.; Lu, S.; Zhang, X.; Alsaedi, A. Hayat, MOFs-Induced Encapsulation of Ultrafine Ni Nanoparticles into 3D N-Doped Graphene-CNT Frameworks as a Recyclable Catalyst for Cr(vi) Reduction with Formic Acid. Carbon. 2019, 148, 52–63. DOI: 10.1016/J.CARBON.2019.03.044.
  • Zhang, J.; Chu, R.; Chen, Y.; Jiang, H.; Zeng, Y.; Chen, X.; Zhang, Y.; Huang, N. M.; Guo, H. MOF-Derived Transition Metal Oxide Encapsulated in Carbon Layer as Stable Lithium Ion Battery Anodes. J. Alloys Compd. 2019, 797, 83–91. DOI: 10.1016/J.JALLCOM.2019.04.162.
  • Guo, S.; Zhao, Y.; Yuan, H.; Wang, C.; Jiang, H.; Cheng, G. J. Ultrafast Laser Manufacture of Stable, Efficient Ultrafine Noble Metal Catalysts Mediated with MOF Derived High Density Defective Metal Oxides. Small. 2020, 16, 2000749. DOI: 10.1002/SMLL.202000749.
  • Huang, X.; Yan, S.; Deng, D.; Zhang, L.; Liu, R.; Lv, Y. Novel Strategy for Engineering the Metal-Oxide@mof Core@shell Architecture and Its Applications in Cataluminescence Sensing. ACS Appl. Mater. Interfaces. 2021, 13(2), 3471–3480. DOI: https://doi.org/10.1021/acsami.0c20799.
  • Subudhi, S.; Tripathy, S. P.; Parida, K. Metal Oxide Integrated Metal Organic Frameworks (MO@MOF): Rational Design, Fabrication Strategy, Characterization and Emerging Photocatalytic Applications. Inorg. Chem. Front. 2021, 8, 1619–1636. DOI: 10.1039/D0QI01117G.
  • Li, B.; Ma, J.-G.; Cheng, P. Silica-Protection-Assisted Encapsulation of Cu2O Nanocubes into a Metal–Organic Framework (ZIF-8) to Provide a Composite Catalyst. Angewandte Chemie. 2018, 130, 6950–6953. DOI: 10.1002/ANGE.201801588.
  • Zhan, G.; Zeng, H. C. Integrated Nanocatalysts with Mesoporous Silica/Silicate and Microporous MOF Materials. Coord. Chem. Rev. 2016, 320-321, 181–192. 320–321. DOI: 10.1016/J.CCR.2016.03.003.
  • Tülek, A.; Yıldırım, D.; Aydın, D.; Binay, B. Highly-Stable Madurella Mycetomatis Laccase Immobilized in Silica-Coated ZIF-8 Nanocomposites for Environmentally Friendly Cotton Bleaching Process. Colloids Surf. B Biointerfaces. 2021, 202, 111672. DOI: 10.1016/J.COLSURFB.2021.111672.
  • Begum, S.; Hassan, Z.; Bräse, S.; Tsotsalas, M. Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. Langmuir. 2020, 36(36), 10657–10673. DOI: https://doi.org/10.1021/acs.langmuir.0c01832.
  • Zheng, X.; Wang, L.; Pei, Q.; He, S.; Liu, S.; Xie, Z. Metal-Organic Framework@porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chemistry Of Materials. 2017, 29, 2374–2381. DOI: 10.1021/acs.chemmater.7b00228.
  • Xie, W.; Cui, D.; Zhang, S. R.; Xu, Y. H.; Jiang, D. L. Iodine capture in porous organic polymers and metal–organic frameworks materials. Mater. Horiz. 2019, 6, 1571–1595. DOI: 10.1039/C8MH01656A.
  • Lu, Y.; Wang, S.; Yu, K.; Yu, J.; Zhao, D.; Li, C. Encapsulating Carbon Quantum Dot and Organic Dye in Multi-Shell Nanostructured MOFs for Use in White Light-Emitting Diode. Microporous Mesoporous Mater. 2021, 319, 111062. DOI: 10.1016/J.MICROMESO.2021.111062.
  • Yan, X.; Zhao, Y.; Du, G.; Guo, Q.; Chen, H.; He, Q.; Zhao, Q.; Ye, H.; Wang, J.; Yuan, Y., et al. Magnetic Capture of Sulfur Quantum Dots Encapsulated in MOF-5-NH2 via a Target-Driven Self-Cycling Catalyzed Hairpin Assembly for the Sensitive Detection of Patulin. Chem. Eng. J. 2022, 433, 133624. DOI: 10.1016/J.CEJ.2021.133624.
  • Wang, M.; Nian, L.; Cheng, Y.; Yuan, B.; Cheng, S.; Cao, C. Encapsulation of Colloidal Semiconductor Quantum Dots into Metal-Organic Frameworks for Enhanced Antibacterial Activity Through Interfacial Electron Transfer. Chem. Eng. J. 2021, 426, 130832. DOI: 10.1016/J.CEJ.2021.130832.
  • Du, D.; Shu, J.; Guo, M.; Haghighatbin, M. A.; Yang, D.; Bian, Z.; Cui, H. Potential-Resolved Differential Electrochemiluminescence Immunosensor for Cardiac Troponin I Based on MOF-5-Wrapped CdS Quantum Dot Nanoluminophores. Anal. Chem. 2020, 92(20), 14113–14121. DOI: https://doi.org/10.1021/acs.analchem.0c03131.
  • Qiao, G. Y.; Guan, D.; Yuan, S.; Rao, H.; Chen, X.; Wang, J. A.; Qin, J. S.; Xu, J. J.; Yu, J. Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. J. Am. Chem. Soc. 2021, 143, 14253–14260. DOI: 10.1021/jacs.1c05907.
  • Angamuthu, M.; Satishkumar, G.; Landau, M. V. Precisely Controlled Encapsulation of Fe3O4 Nanoparticles in Mesoporous Carbon Nanodisk Using Iron Based MOF Precursor for Effective Dye Removal. Microporous Mesoporous Mater. 2017, 251, 58–68. DOI: 10.1016/J.MICROMESO.2017.05.045.
  • Wang, L.; Jiao, Y.; Yao, S.; Li, P.; Wang, R.; Chen, G. MOF-Derived NiO/Ni Architecture Encapsulated into N-Doped Carbon Nanotubes for Advanced Asymmetric Supercapacitors. Inorg. Chem. Front. 2019, 6, 1553–1560. DOI: 10.1039/C9QI00274J.
  • Liu, G.; Feng, K.; Cui, H.; Li, J.; Liu, Y.; Wang, M. MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries. Chem. Eng. J. 2020, 381, 122652. DOI: 10.1016/J.CEJ.2019.122652.
  • Li, B.; Suo, T.; Xie, S.; Xia, A.; Jie Ma, Y.; Huang, H.; Zhang, X.; Hu, Q. Rational Design, Synthesis, and Applications of Carbon Dots@metal–Organic Frameworks (CD@MOF) Based Sensors. TrAc Trends Anal. Chem. 2021, 135, 116163. DOI: 10.1016/J.TRAC.2020.116163.
  • Chen, S. S.; Hu, C.; Liu, C. H.; Chen, Y. H.; Ahamad, T.; Alshehri, S. M.; Huang, P. H.; Wu, K. C. W. De Novo Synthesis of Platinum-Nanoparticle-Encapsulated UiO-66-NH2 for Photocatalytic Thin Film Fabrication with Enhanced Performance of Phenol Degradation. J. Hazard. Mater. 2020, 397, 122431. DOI: 10.1016/J.JHAZMAT.2020.122431.
  • Chen, Y.; Yu, B.; Cui, Y.; Xu, S.; Gong, J. Core-Shell Structured Cyclodextrin Metal-Organic Frameworks with Hierarchical Dye Encapsulation for Tunable Light Emission. Chemistry Of Materials. 2019, 31, 1289–1295. DOI: 10.1021/acs.chemmater.8b04126.
  • Chen, X.; Zhang, Y.; Zhao, Y.; Wang, S.; Liu, L.; Xu, W.; Guo, Z.; Wang, S.; Liu, Y.; Zhang, J. Encapsulating Pt Nanoparticles Through Transforming Fe 3 O 4 into MIL-100(fe) for Well-Defined Fe 3 O 4 @pt@MIL-100(fe) Core–Shell Heterostructures with Promoting Catalytic Activity. Inorg. Chem. 2019, 58, 12433–12440. DOI: 10.1021/acs.inorgchem.9b02114.
  • Zheng, Z.; Xu, H.; Xu, Z.; Ge, J. A Monodispersed Spherical Zr-Based Metal–Organic Framework Catalyst, Pt/Au@pd@UIO-66, Comprising an Au@pd Core–Shell Encapsulated in a UIO-66 Center and Its Highly Selective CO2 Hydrogenation to Produce CO. Small. 2018, 14, 1702812. DOI: 10.1002/SMLL.201702812.
  • Wang, C.; Liao, K. Recent Advances in Emerging Metal– and Covalent–Organic Frameworks for Enzyme Encapsulation. ACS Appl. Mater. Interfaces. 2021, 13, 56752–56776. DOI: 10.1021/acsami.1c13408.
  • Hsu, P. H.; Chang, C. C.; Wang, T. H.; Lam, P. K.; Wei, M. Y.; Chen, C. T.; Chen, C. Y.; Chou, L. Y.; Shieh, F. K. Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Appl. Mater. Interfaces. 2021, 13(44), 52014–52022. DOI: https://doi.org/10.1021/acsami.1c09052.
  • Ren, Z.; Zhou, W.; Weng, J.; Qin, Z.; Liu, L.; Ji, N.; Chen, C.; Shi, H.; Shi, W.; Zhang, X., et al. Phase Transition of Metal–Organic Frameworks for the Encapsulation of Enzymes. J. Mater. Chem. A. 2022, 10(37), 19881–19892. DOI: https://doi.org/10.1039/D2TA02070J.
  • Sun, Y.; Shi, J.; Zhang, S.; Wu, Y.; Mei, S.; Qian, W.; Jiang, Z. Hierarchically Porous and Water-Tolerant Metal–Organic Frameworks for Enzyme Encapsulation. Ind. Eng. Chem. Res. 2019, 58, 12835–12844. DOI: 10.1021/acs.iecr.9b02164.
  • Guo, J.; Yang, L.; Gao, Z.; Zhao, C.; Mei, Y.; Song, Y. Y. Insight of MOF Environment-Dependent Enzyme Activity via MOFs-In-Nanochannels Configuration. ACS Catal. 2020, 10(10), 5949–5958. DOI: https://doi.org/10.1021/acscatal.0c00591.
  • Li, X.; Feng, Q.; Lu, K.; Huang, J.; Zhang, Y.; Hou, Y.; Qiao, H.; Li, D.; Wei, Q. Encapsulating Enzyme into Metal-Organic Framework During in-Situ Growth on Cellulose Acetate Nanofibers as Self-Powered Glucose Biosensor. Biosens. Bioelectron. 2021, 171, 112690. DOI: 10.1016/J.BIOS.2020.112690.
  • Mukhopadhyay, S.; Basu, O.; Kar, A.; Das, S. K. Efficient Electrocatalytic Water Oxidation by Fe(salen)–MOF Composite: Effect of Modified Microenvironment. Inorg. Chem. 2020, 59, 472–483. DOI: 10.1021/acs.inorgchem.9b02745.
  • Freire, C.; Nunes, M.; Pereira, C.; Fernandes, D. M.; Peixoto, A. F.; Rocha, M. Metallo(salen) Complexes as Versatile Building Blocks for the Fabrication of Molecular Materials and Devices with Tuned Properties. Coord. Chem. Rev. 2019, 394, 104–134. DOI: 10.1016/J.CCR.2019.05.014.
  • Fan, Y.; Ren, Y.; Li, J.; Yue, C.; Jiang, H. Enhanced Activity and Enantioselectivity of Henry Reaction by the Postsynthetic Reduction Modification for a Chiral Cu(salen)-Based Metal–Organic Framework. Inorg. Chem. 2018, 57, 11986–11994. DOI: 10.1021/acs.inorgchem.8b01551.
  • Zuo, L. Q.; Zhang, T. F.; Zhang, Z. K.; Hou, J. X.; Liu, G. J.; Du, J. L.; Li, L. J. A 3D Binuclear Salen-Based Multifunctional MOF: Degradation of MO Dye and Highly Selective Sensing of Fe3+. Inorg. Chem. Commun. 2019, 99, 113–118. DOI: 10.1016/J.INOCHE.2018.11.006.
  • Bhunia, A.; Dey, S.; Moreno, J. M.; Diaz, U.; Concepcion, P.; Van Hecke, K.; Janiak, C.; Van Der Voort, P. A Homochiral Vanadium–Salen Based Cadmium Bpdc MOF with Permanent Porosity as an Asymmetric Catalyst in Solvent-Free Cyanosilylation. Chem. Commun. 2016, 52(7), 1401–1404. DOI: https://doi.org/10.1039/C5CC09459C.
  • Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Cui, Y. Multivariate Metal–Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions. J. Am. Chem. Soc. 2017, 139, 8259–8266. DOI: 10.1021/jacs.7b03113.
  • Dhakshinamoorthy, A.; Asiri, A. M.; Alvaro, M.; Garcia, H. Metal Organic Frameworks as Catalysts in Solvent-Free or Ionic Liquid Assisted Conditions. Green Chem. 2018, 20, 86–107. DOI: 10.1039/C7GC02260C.
  • Meyer, T. J.; Sheridan, M. V.; Sherman, B. D. Mechanisms of Molecular Water Oxidation in Solution and on Oxide Surfaces. Chem. Soc. Rev. 2017, 46, 6148–6169. DOI: 10.1039/C7CS00465F.
  • Han, Z.; Eisenberg, R. Fuel from Water: The Photochemical Generation of Hydrogen from Water. Acc. Chem. Res. 2014, 47(8), 2537–2544. DOI: https://doi.org/10.1021/ar5001605.
  • Shamsipur, M.; Pashabadi, A. Latest Advances in PSII Features and Mechanism of Water Oxidation. Coord. Chem. Rev. 2018, 374, 153–172. DOI: 10.1016/J.CCR.2018.07.006.
  • Ishizuka, T.; Watanabe, A.; Kotani, H.; Hong, D.; Satonaka, K.; Wada, T.; Shiota, Y.; Yoshizawa, K.; Ohara, K.; Yamaguchi, K., et al. Homogeneous Photocatalytic Water Oxidation with a Dinuclear Co III –Pyridylmethylamine Complex. Inorg. Chem. 2016, 55, 1154–1164. DOI: 10.1021/acs.inorgchem.5b02336.
  • Zhao, Y.; Zhang, S.; Wang, M.; Han, J.; Wang, H.; Li, Z.; Liu, X. Engineering Iridium-Based Metal Organic Frameworks Towards Electrocatalytic Water Oxidation. Dalton Trans. 2018, 47, 4646–4652. DOI: 10.1039/C8DT00485D.
  • Garrido-Barros, P.; Gimbert-Suriñach, C.; Matheu, R.; Sala, X.; Llobet, A. How to Make an Efficient and Robust Molecular Catalyst for Water Oxidation. Chem. Soc. Rev. 2017, 46, 6088–6098. DOI: 10.1039/C7CS00248C.
  • Kuttassery, F.; Mathew, S.; Remello, S. N.; Thomas, A.; Sano, K.; Ohsaki, Y.; Nabetani, Y.; Tachibana, H. Inoue, Alternative Route to Bypass the Bottle-Neck of Water Oxidation: Two-Electron Oxidation of Water Catalyzed by Earth-Abundant Metalloporphyrins. Coord. Chem. Rev. 2018, 377, 64–72. DOI: 10.1016/J.CCR.2018.08.027.
  • Chen, K.; De Wu, C. Designed Fabrication of Biomimetic Metal–Organic Frameworks for Catalytic Applications. Coord. Chem. Rev. 2019, 378, 445–465. DOI: 10.1016/J.CCR.2018.01.016.
  • Xiao, Y.; Qi, Y.; Wang, X.; Wang, X.; Zhang, F.; Li, C. Visible-Light-Responsive 2D Cadmium–Organic Framework Single Crystals with Dual Functions of Water Reduction and Oxidation. Adv.Mate. 2018, 30, 1803401. DOI: 10.1002/ADMA.201803401.
  • Thoresen, E. M.; Øien-Ødegaard, S.; Kaur, G.; Tilset, M.; Lillerud, K. P.; Amedjkouh, M. Strongly Visible Light-Absorbing Metal–Organic Frameworks Functionalized by Cyclometalated Ruthenium(ii) Complexes. R.S.C. Adv. 2020, 10, 9052–9062. DOI: 10.1039/C9RA06984D.
  • Maurin, G.; Serre, C.; Cooper, A.; F?rey, G. The New Age of MOFs and of Their Porous-Related Solids. Chem. Soc. Rev. 2017, 46, 3104–3107. DOI: 10.1039/C7CS90049J.
  • Wang, D.; Li, Z. Iron-Based Metal–Organic Frameworks (MOFs) for Visible-Light-Induced Photocatalysis. Res. Chem. Intermed. 2017, 43, 5169–5186. DOI: 10.1007/s11164-017-3042-0.
  • Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. MIL-53(fe) as a Highly Efficient Bifunctional Photocatalyst for the Simultaneous Reduction of Cr(vi) and Oxidation of Dyes. J. Hazard. Mater. 2015, 287, 364–372. DOI: 10.1016/j.jhazmat.2015.01.048.
  • Jing, F.; Liang, R.; Xiong, J.; Chen, R.; Zhang, S.; Li, Y.; Wu, L. MIL-68(fe) as an Efficient Visible-Light-Driven Photocatalyst for the Treatment of a Simulated Waste-Water Contain Cr(vi) and Malachite Green. Appl. Catal. B. 2017, 206, 9–15. DOI: 10.1016/j.apcatb.2016.12.070.
  • Zhang, F.; Jin, Y.; Shi, J.; Zhong, Y.; Zhu, W.; El-Shall, M. S. Polyoxometalates Confined in the Mesoporous Cages of Metal-Organic Framework MIL-100(fe): Efficient Heterogeneous Catalysts for Esterification and Acetalization Reactions. Chem. Eng. J. 2015, 269, 236–244. DOI: 10.1016/j.cej.2015.01.092.
  • Redfern, L. R.; Ducamp, M.; Wasson, M. C.; Robison, L.; Son, F. A.; Coudert, F. X.; Farha, O. K. Isolating the Role of the Node-Linker Bond in the Compression of UiO-66 Metal–Organic Frameworks. Chem. Mater. 2020, 32, 5864–5871. DOI: 10.1021/acs.chemmater.0c01922.
  • Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A.; Zhou, H. C. Metal–Organic Frameworks Based on Multicarboxylate Linkers. Coord. Chem. Rev. 2021, 426, 213542. DOI: 10.1016/J.CCR.2020.213542.
  • Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R., et al. Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 10283–10293. DOI: 10.1021/jacs.9b02947.
  • Chen, L.; Zhang, X.; Cheng, X.; Xie, Z.; Kuang, Q.; Zheng, L. The Function of Metal–Organic Frameworks in the Application of MOF-Based Composites. Nanoscale Adv. 2020, 2, 2628–2647. DOI: 10.1039/D0NA00184H.
  • Cui, Y.; Zhang, J.; He, H.; Qian, G. Photonic Functional Metal–Organic Frameworks. Chem. Soc. Rev. 2018, 47, 5740–5785. DOI: 10.1039/C7CS00879A.
  • Foster, M. E.; Azoulay, J. D.; Wong, B. M.; Allendorf, M. D. Novel Metal–Organic Framework Linkers for Light Harvesting Applications. Chem. Sci. 2014, 5, 2081–2090. DOI: 10.1039/C4SC00333K.
  • Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S., et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science. 1979, 336, 1018–1023. 2012. DOI: 10.1126/science.1220131.
  • Lin, X.; Jia, J.; Zhao, X.; Thomas, K. M.; Blake, A. J.; Walker, G. S.; Champness, N. R.; Hubberstey, P.; Schröder, M. High H2 Adsorption by Coordination-Framework Materials. Angew. Chem. Int. Ed. Engl. 2006, 45, 7358–7364. DOI: 10.1002/ANIE.200601991.
  • Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130(42), 13850–13851. DOI: https://doi.org/10.1021/ja8057953.
  • Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. Tunable Rare-Earth Fcu-MOFs: A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake. J. Am. Chem. Soc. 2013, 135(20), 7660–7667. DOI: https://doi.org/10.1021/ja401429x.
  • Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088. DOI: 10.1021/ja3079219.
  • Li, T.; Kozlowski, M. T.; Doud, E. A.; Blakely, M. N.; Rosi, N. L. Stepwise Ligand Exchange for the Preparation of a Family of Mesoporous MOFs. J. Am. Chem. Soc. 2013, 135, 11688–11691. DOI: 10.1021/ja403810k.
  • Burnett, B. J.; Barron, P. M.; Hu, C.; Choe, W. Stepwise Synthesis of Metal - Organic Frameworks: Replacement of Structural Organic Linkers. J. Am. Chem. Soc. 2011, 133, 9984–9987. DOI: 10.1021/ja201911v.
  • Marshall, R. J.; Kalinovskyy, Y.; Griffin, S. L.; Wilson, C.; Blight, B. A.; Forgan, R. S. Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. J. Am. Chem. Soc. 2017, 139, 6253–6260. DOI: 10.1021/jacs.7b02184.
  • Hobday, C. L.; Bennett, T. D.; Fairen-Jimenez, D.; Graham, A. J.; Morrison, C. A.; Allan, D. R.; Düren, T.; Moggach, S. A. Tuning the Swing Effect by Chemical Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2018, 140, 382–387. DOI: 10.1021/jacs.7b10897.
  • Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide Ligands Cooperate with Catalytic Centers in Metal-Organic Frameworks for Efficient Photocatalytic CO 2 Reduction. J. Am. Chem. Soc. 2018, 140, 38–41. DOI: 10.1021/jacs.7b10107.
  • Deria, P.; Bury, W.; Hupp, J. T.; Farha, O. K. Versatile Functionalization of the Nu-1000 Platform by Solvent-Assisted Ligand Incorporation. Chem. Commun. 2014, 50, 1965–1968. DOI: 10.1039/c3cc48562e.
  • Deria, P.; Bury, W.; Hod, I.; Kung, C. W.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K. MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates Vs Carboxylates. Inorg. Chem. 2015, 54, 2185–2192. DOI: 10.1021/ic502639v.
  • Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc. 2013, 135, 16801–16804. DOI: 10.1021/ja408959g.
  • Ichiro Noro, S.; Nakamura, T. Fluorine-Functionalized Metal–Organic Frameworks and Porous Coordination Polymers, NPG Asia Mater. NPG Asia Mater. 2017, 9, e433. DOI: 10.1038/am.2017.165.
  • Yuan, S.; Qin, J. S.; Xu, H. Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H. L., et al. [Ti 8 Zr 2 O 12 (COO) 16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Cent. Sci. 2018, 4, 105–111. DOI: 10.1021/acscentsci.7b00497.
  • Yi, P.; Huang, H.; Peng, Y.; Liu, D.; Zhong, C. A Series of Europium-Based Metal Organic Frameworks with Tuned Intrinsic Luminescence Properties and Detection Capacities. R.S.C. Adv. 2016, 6, 111934–111941. DOI: 10.1039/C6RA23263A.
  • Zhang, Q.; Yu, J.; Cai, J.; Zhang, L.; Cui, Y.; Yang, Y.; Chen, B.; Qian, G. A Porous Zr-Cluster-Based Cationic Metal–Organic Framework for Highly Efficient Cr 2 O 7 2− Removal from Water. Chem. Commun. 2015, 51, 14732–14734. DOI: 10.1039/c5cc05927e.
  • Zhang, X.; Zhang, J.; Hu, Q.; Cui, Y.; Yang, Y.; Qian, G. Postsynthetic Modification of Metal-Organic Framework for Hydrogen Sulfide Detection. Appl. Surf. Sci. 2015, 355, 814–819. DOI: 10.1016/j.apsusc.2015.07.166.
  • Shi, D.; Zheng, R.; Sun, M.-J.; Cao, X.; Sun, C.-X.; Cui, C.-J.; Liu, C.-S.; Zhao, J.; Du, M. Semiconductive Copper(i)–Organic Frameworks for Efficient Light-Driven Hydrogen Generation without Additional Photosensitizers and Cocatalysts. Angew. Chem. Int. Ed. 2017, 56, 14637–14641. DOI: 10.1002/anie.201709869.
  • Chen, Y. F.; Tan, L. L.; Liu, J. M.; Qin, S.; Xie, Z. Q.; Huang, J. F.; Xu, Y. W.; Xiao, L. M.; Su, C. Y. Calix[4]arene Based Dye-Sensitized Pt@UiO-66-NH2 Metal-Organic Framework for Efficient Visible-Light Photocatalytic Hydrogen Production. Appl. Catal. B. 2017, 206, 426–433. DOI: 10.1016/j.apcatb.2017.01.040.
  • Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today. 2019, 27, 43–68. DOI: 10.1016/j.mattod.2018.10.038.
  • Yang, W.; Zhao, Y.; Chen, S.; Ren, W.; Chen, X.; Jia, C.; Su, Z.; Wang, Y.; Zhao, C. Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis. Inorg. Chem. 2020, 59, 12437–12444. DOI: 10.1021/acs.inorgchem.0c01544.
  • Wang, L.; Zhang, T.; Huang, L.; Xu, J.; Wang, G.; Zhang, H.; Wang, L. Synthesis, Crystal Structure and Photoluminescent Property of a Novel Indium (III) Supramolecular 3D Framework. J. Mol. Struct. 2010, 975, 215–219. DOI: 10.1016/j.molstruc.2010.04.026.
  • Hu, L.; Yang, S.; Zhao, Y.; He, J.; Jiang, S.; Sun, C.; Song, S. Spontaneous Polarization Electric Field Briskly Boosting Charge Separation and Transfer for Sustainable Photocatalytic H2 Bubble Evolution. Appl. Catal. B. 2021, 283, 119631. DOI: 10.1016/j.apcatb.2020.119631.
  • Huang, D.; Yan, X.; Yan, M.; Zeng, G.; Zhou, C.; Wan, J.; Cheng, M.; Xue, W. Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight. ACS Appl. Mater. Interfaces. 2018, 10, 21035–21055. DOI: 10.1021/acsami.8b03620.
  • Lan, G.; Zhu, Y. Y.; Veroneau, S. S.; Xu, Z.; Micheroni, D.; Lin, W. Electron Injection from Photoexcited Metal-Organic Framework Ligands to Ru2 Secondary Building Units for Visible-Light-Driven Hydrogen Evolution. J. Am. Chem. Soc. 2018, 140, 5326–5329. DOI: 10.1021/jacs.8b01601.
  • Zhang, W.; Bu, H.; Wang, J.; Zhao, L.; Qu, Y.; Zhao, M. Multi-functional photocatalytic activity of transition-metal tetraaza[14]annulene frameworks. J. Mater. Chem. A Mater. 2021, 9, 4221–4229. DOI: 10.1039/d0ta09879e.
  • Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. A Universal Principle for a Rational Design of Single-Atom Electrocatalysts. Nat. Catal. 2018, 1, 339–348. DOI: 10.1038/s41929-018-0063-z.
  • Horiuchi, Y.; Toyao, T.; Miyahara, K.; Zakary, L.; Do Van, D.; Kamata, Y.; Kim, T. H.; Lee, S. W.; Matsuoka, M. Visible-Light-Driven Photocatalytic Water Oxidation Catalysed by Iron-Based Metal–Organic Frameworks. Chem. Commun. 2016, 52, 5190–5193. DOI: 10.1039/c6cc00730a.
  • Chi, L.; Xu, Q.; Liang, X.; Wang, J.; Su, X. Iron-Based Metal-Organic Frameworks as Catalysts for Visible Light-Driven Water Oxidation. Small. 2016, 12, 1351–1358. DOI: 10.1002/smll.201503526.
  • Abid, H. R.; Ang, H. M.; Wang, S. Effects of Ammonium Hydroxide on the Structure and Gas Adsorption of Nanosized Zr-MOFs (UiO-66. Nanoscale. 2012, 4, 3089–3094. DOI: 10.1039/c2nr30244f.
  • Lionet, Z.; Kim, T. H.; Horiuchi, Y.; Lee, S. W.; Matsuoka, M. Linker Engineering of Iron-Based MOFs for Efficient Visible-Light-Driven Water Oxidation Reaction. J. Phys. Chem. C. 2019, 123, 27501–27508. DOI: 10.1021/acs.jpcc.9b06838.
  • Shen, L.; Liang, R.; Luo, M.; Jing, F.; Wu, L. Electronic Effects of Ligand Substitution on Metal–Organic Framework Photocatalysts: The Case Study of UiO-66. Phys. Chem. Chem. Phys. 2015, 17, 117–121. DOI: 10.1039/c4cp04162c.
  • Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J. R. Noble Metal-Free Reduced Graphene Oxide-Zn xCd 1-xS Nanocomposite with Enhanced Solar Photocatalytic H 2-production Performance. Nano Lett. 2012, 12, 4584–4589. DOI: 10.1021/nl301831h.
  • Parra, S.; Olivero, J.; Pacheco, L.; Pulgarin, C. Structural Properties and Photoreactivity Relationships of Substituted Phenols in TiO2 Suspensions. Appl. Catal. B. 2003, 43, 293–301. DOI: 10.1016/S0926-3373(02)00324-7.
  • Wang, Q.; Gao, Q.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Recent Advances in MOF-Based Photocatalysis: Environmental Remediation Under Visible Light. Inorg. Chem. Front. 2020, 7, 300–339. DOI: 10.1039/C9QI01120J.
  • Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(iv) Metal–Organic Framework. J. Phys. Chem. C. 2012, 116, 20848–20853. DOI: 10.1021/jp3046005.
  • Inagaki, A.; Akita, M. Visible-Light Promoted Bimetallic Catalysis. Coord. Chem. Rev. 2010, 254, 1220–1239. DOI: 10.1016/j.ccr.2009.11.003.
  • Zhu, M.; Lu, Y.; Du, Y.; Li, J.; Wang, X.; Yang, P. Photocatalytic Hydrogen Evolution without an Electron Mediator Using a Porphyrin-Pyrene Conjugate Functionalized Pt Nanocomposite as a Photocatalyst. Int. J. Hydrogen. Energy. 2011, 36, 4298–4304. DOI: 10.1016/j.ijhydene.2011.01.007.
  • Zhu, M.; Dong, Y.; Du, Y.; Mou, Z.; Liu, J.; Yang, P.; Wang, X. Photocatalytic Hydrogen Evolution Based on Efficient Energy and Electron Transfers in Donor-Bridge-Acceptor Multibranched-Porphyrin-Functionalized Platinum Nanocomposites, Chemistry. A European Journal. 2012, 18, 4367–4374. DOI: 10.1002/chem.201102595.
  • Becerra, J.; Nguyen, D. T.; Gopalakrishnan, V. N.; Do, T. O. Plasmonic Au Nanoparticles Incorporated in the Zeolitic Imidazolate Framework (ZIF-67) for the Efficient Sunlight-Driven Photoreduction of CO2. ACS Appl. Energy Mater. 2020, 3, 7659–7665. DOI: 10.1021/acsaem.0c01083.
  • Chen, L.; Wang, Y.; Yu, F.; Shen, X.; Duan, C. A Simple Strategy for Engineering Heterostructures of Au Nanoparticle-Loaded Metal–Organic Framework Nanosheets to Achieve Plasmon-Enhanced Photocatalytic CO2 Conversion Under Visible Light. J. Mater. Chem. A. 2019, 7, 11355–11361. DOI: 10.1039/C9TA01840A.
  • Guo, F.; Yang, S.; Liu, Y.; Wang, P.; Huang, J.; Sun, W. Y. Size Engineering of Metal–Organic Framework MIL-101(cr)–Ag Hybrids for Photocatalytic CO 2 Reduction. ACS Catal. 2019, 9, 8464–8470. DOI: 10.1021/acscatal.9b02126.
  • Deng, X.; Yang, L.; Huang, H.; Yang, Y.; Feng, S.; Zeng, M.; Li, Q.; Xu, D. Shape-Defined Hollow Structural Co-MOF-74 and Metal Nanoparticles@co-MOF-74 Composite Through a Transformation Strategy for Enhanced Photocatalysis Performance. Small. 2019, 15, 1902287. DOI: 10.1002/SMLL.201902287.
  • Robatjazi, H.; Weinberg, D.; Swearer, D. F.; Jacobson, C.; Zhang, M.; Tian, S.; Zhou, L.; Nordlander, P.; Halas, N. J. Metal-Organic Frameworks Tailor the Properties of Aluminum Nanocrystals. Sci. Adv. 2019, 5. DOI: 10.1126/SCIADV.AAV5340.
  • Guo, F.; Wei, Y. P.; Wang, S. Q.; Zhang, X. Y.; Wang, F. M.; Sun, W. Y. Pt Nanoparticles Embedded in Flowerlike NH2-UiO-68 for Enhanced Photocatalytic Carbon Dioxide Reduction. J. Mater. Chem. A. 2019, 7, 26490–26495. DOI: 10.1039/C9TA10575A.
  • Han, Y.; Xu, H.; Su, Y.; Liang Xu, Z.; Wang, K.; Wang, W. Noble Metal (Pt, Au@pd) Nanoparticles Supported on Metal Organic Framework (MOF-74) Nanoshuttles as High-Selectivity CO2 Conversion Catalysts. J. Catal. 2019, 370, 70–78. DOI: 10.1016/J.JCAT.2018.12.005.
  • Su, Y.; Xu, H.; Wang, J.; Luo, X.; Liang Xu, Z.; Wang, K.; Wang, W. Nanorattle Au@ptag Encapsulated in ZIF-8 for Enhancing CO2 Photoreduction to CO. Nano Res. 2018, 12, 625–630. DOI: 10.1007/S12274-018-2269-4.
  • Yang, X.; Huang, T.; Gao, S.; Cao, R. Boosting Photocatalytic Oxidative Coupling of Amines by a Ru-Complex-Sensitized Metal-Organic Framework. J. Catal. 2019, 378, 248–255. DOI: 10.1016/J.JCAT.2019.08.038.
  • Lang, P.; Habermehl, J.; Troyanov, S. I.; Rau, S.; Schwalbe, M. Photocatalytic Generation of Hydrogen Using Dinuclear π-Extended Porphyrin-Platinum Compounds, Chemistry. A European Journal. 2018, 24, 3225–3233. DOI: 10.1002/chem.201704999.
  • Ladomenou, K.; Natali, M.; Iengo, E.; Charalampidis, G.; Scandola, F.; Coutsolelos, A. G. Photochemical Hydrogen Generation with Porphyrin-Based Systems. Coord. Chem. Rev. 2015, 304-305, 38–54. 304–305. DOI: 10.1016/J.CCR.2014.10.001.
  • Tinker, L. L.; McDaniel, N. D.; Curtin, P. N.; Smith, C. K.; Ireland, M. J.; Bernhard, S. Visible Light Induced Catalytic Water Reduction without an Electron Relay, Chemistry. A European Journal. 2007, 13, 8726–8732. DOI: 10.1002/chem.200700480.
  • Mori, K.; Aoyama, J.; Kawashima, M.; Yamashita, H. Visible-light driven H2 production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix. Dalton Trans. 2014, 43, 10541–10547. DOI: 10.1039/c3dt53110d.
  • Hong, Y. H.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II. J. Am. Chem. Soc. 2022, 144, 695–700. DOI: 10.1021/jacs.1c11707.
  • Zhang, R.; Zhang, L.; Zheng, Q.; Gao, P.; Zhao, J.; Yang, J. Direct Z-Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van der Waals Heterostructures. J. Phys. Chem. Lett. 2018, 9, 5419–5424. DOI: 10.1021/acs.jpclett.8b02369.
  • Sasan, K.; Lin, Q.; Mao, C. Y.; Feng, P. Incorporation of Iron Hydrogenase Active Sites into a Highly Stable Metal–Organic Framework for Photocatalytic Hydrogen Generation. Chem. Commun. 2014, 50, 10390–10393. DOI: 10.1039/c4cc03946g.
  • Lazarides, T.; Delor, M.; Sazanovich, I. V.; Mc Cormick, T. M.; Georgakaki, I.; Charalambidis, G.; Weinstein, J. A.; Coutsolelos, A. G. Photocatalytic Hydrogen Production from a Noble Metal Free System Based on a Water Soluble Porphyrin Derivative and a Cobaloxime Catalyst. Chem. Commun. 2014, 50, 521–523. DOI: 10.1039/c3cc45025b.
  • Roy, S.; Pascanu, V.; Pullen, S.; González Miera, G.; Martín-Matute, B.; Ott, S. Catalyst Accessibility to Chemical Reductants in Metal–Organic Frameworks. Chem. Commun. 2017, 53, 3257–3260. DOI: 10.1039/c7cc00022g.
  • Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501–7519. DOI: 10.1039/c3cs60405e.
  • Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Ru(ii) Polypyridine Complexes: Photophysics, Photochemistry, Eletrochemistry, and Chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. DOI: 10.1016/0010-8545(88)80032-8.
  • De Sio, L.; Placido, T.; Comparelli, R.; Lucia Curri, M.; Striccoli, M.; Tabiryan, N.; Bunning, T. J. Next-Generation Thermo-Plasmonic Technologies and Plasmonic Nanoparticles in Optoelectronics. Prog Quantum Electron. 2015, 41, 23–70. DOI: 10.1016/j.pquantelec.2015.03.001.
  • Pfeffer, M. G.; Kowacs, T.; Wächtler, M.; Guthmuller, J.; Dietzek, B.; Vos, J. G.; Rau, S. Optimization of Hydrogen-Evolving Photochemical Molecular Devices. Angew. Chem. Int. Ed. 2015, 54, 6627–6631. DOI: 10.1002/anie.201409442.
  • Granadeiro, C. M.; Barbosa, A. D. S.; Ribeiro, S.; Santos, I. C. M. S.; De Castro, B.; Cunha-Silva, L.; Balula, S. S. Oxidative Catalytic Versatility of a Trivacant Polyoxotungstate Incorporated into MIL-101(cr. Catal. Sci. Technol. 2014, 4, 1416–1425. DOI: 10.1039/c3cy00853c.
  • Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous Catalysis by Polyoxometalates in Metal-Organic Frameworks. ACS Catal. 2019, 9, 10174–10191. DOI: 10.1021/acscatal.9b03439.
  • Paille, G.; Gomez-Mingot, M.; Roch-Marchal, C.; Haouas, M.; Benseghir, Y.; Pino, T.; Ha-Thi, M. H.; Landrot, G.; Mialane, P.; Fontecave, M., et al. Thin Films of Fully Noble Metal-Free POM@MOF for Photocatalytic Water Oxidation. ACS Appl. Mater. Interfaces. 2019, 11, 47837–47845. DOI: 10.1021/acsami.9b13121.
  • Stuckart, M.; Monakhov, K. Y. Polyoxometalate Encapsulation into Metal–Organic Frameworks: The Way Towards Functional Nanomaterials for Water Splitting. J. Mater. Chem. A. 2018, 6, 17849–17853. DOI: 10.1039/c8ta06213g.
  • Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations. ACS Catal. 2018, 8, 10809–10825. DOI: 10.1021/acscatal.8b03498.
  • Guo, Y.; Hu, C. Heterogeneous Photocatalysis by Solid Polyoxometalates. J. Mol. Catal A Chem. 2007, 262, 136–148. DOI: 10.1016/j.molcata.2006.08.039.
  • Ye, J. J.; De Wu, C. Immobilization of Polyoxometalates in Crystalline Solids for Highly Efficient Heterogeneous Catalysis. Dalton Trans. 2016, 45, 10101–10112. DOI: 10.1039/c6dt01378c.
  • Sun, J.; Abednatanzi, S.; Van Der Voort, P.; Liu, Y.-Y.; Leus, K. POM@MOF Hybrids: Synthesis and Applications. Catalysts. 2020, 10, 578. DOI: 10.3390/catal10050578.
  • Zhang, S.; Ou, F.; Ning, S.; Cheng, P. Polyoxometalate-Based Metal-Organic Frameworks for Heterogeneous Catalysis. Inorg. Chem. Front. 2021, 8, 1865–1899. DOI: 10.1039/d0qi01407a.
  • Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of Polyoxometalates and Other Metal-Based Complexes in Metal-Organic Frameworks: From Synthesis to Characterisation and Applications in Catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220. DOI: 10.1039/d0cs00323a.
  • Jiao, L.; Dong, Y.; Xin, X.; Wang, R.; Lv, H. Three-In-One: Achieving a Robust and Effective Hydrogen-Evolving Hybrid Material by Integrating Polyoxometalate, a Photo-Responsive Metal–Organic Framework, and in situ Generated Pt Nanoparticles. J. Mater. Chem. A. 2021, 9, 19725–19733. DOI: 10.1039/d1ta02792a.
  • Cui, T.; Qin, L.; Fu, F.; Xin, X.; Li, H.; Fang, X.; Lv, H. Pentadecanuclear Fe-Containing Polyoxometalate Catalyst for Visible-Light-Driven Generation of Hydrogen. Inorg. Chem. 2021, 60, 4124–4132. DOI: 10.1021/acs.inorgchem.1c00267.
  • Zhang, Z. M.; Zhang, T.; Wang, C.; Lin, Z.; Long, L. S.; Lin, W. Photosensitizing Metal-Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells-Dawson-Type Polyoxometalate. J. Am. Chem. Soc. 2015, 137, 3197–3200. DOI: 10.1021/jacs.5b00075.
  • Shah, W. A.; Waseem, A.; Nadeem, M. A.; Kögerler, P. Leaching-Free Encapsulation of Cobalt-Polyoxotungstates in MIL-100 (Fe) for Highly Reproducible Photocatalytic Water Oxidation. Appl. Catal. A. 2018, 567, 132–138. DOI: 10.1016/j.apcata.2018.08.002.
  • Buru, C. T.; Li, P.; Mehdi, B. L.; Dohnalkova, A.; Platero-Prats, A. E.; Browning, N. D.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-Type Metal–Organic Framework. Chem. Mater. 2017, 29, 5174–5181. DOI: 10.1021/acs.chemmater.7b00750.
  • Sun, D.; Li, Z. Double-Solvent Method to Pd Nanoclusters Encapsulated Inside the Cavity of NH 2 –Uio-66(Zr) for Efficient Visible-Light-Promoted Suzuki Coupling Reaction. J. Phys. Chem. C. 2016, 120, 19744–19750. DOI: 10.1021/acs.jpcc.6b06710.
  • Liu, J.; Li, R.; Wang, Y.; Wang, Y.; Zhang, X.; Fan, C. The Active Roles of ZIF-8 on the Enhanced Visible Photocatalytic Activity of Ag/AgCl: Generation of Superoxide Radical and Adsorption. J. Alloys Compd. 2017, 693, 543–549. DOI: 10.1016/J.JALLCOM.2016.09.201.
  • Qiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. Modified Metal-Organic Frameworks as Photocatalysts. Appl. Catal. B. 2018, 231, 317–342. DOI: 10.1016/J.APCATB.2018.03.039.
  • Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal–Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations. Chem. Soc. Rev. 2015, 44, 6804–6849. DOI: 10.1039/C4CS00395K.
  • Song, J.; Gu, X.; Cheng, J.; Fan, N.; Zhang, H.; Su, H. Remarkably Boosting Catalytic H2 Evolution from Ammonia Borane Through the Visible-Light-Driven Synergistic Electron Effect of Non-Plasmonic Noble-Metal-Free Nanoparticles and Photoactive Metal-Organic Frameworks. Appl. Catal. B. 2018, 225, 424–432. DOI: 10.1016/J.APCATB.2017.12.024.
  • Sun, D.; Mazumder, V.; Metin, Ö.; Sun, S. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano. 2011, 5(8), 6458–6464. DOI: https://doi.org/10.1021/nn2016666.
  • Akbayrak, S.; Kaya, M.; Volkan, M.; Özkar, S. Palladium(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite: A Highly Active, Magnetically Isolable and Reusable Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. Appl. Catal. B. 2014, 147, 387–393. DOI: 10.1016/J.APCATB.2013.09.023.
  • Védrine, J. C. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSuschem. 2019, 12, 577–588. DOI: 10.1002/CSSC.201802248.
  • Huang, D.; Hu, Z.; Peng, Z.; Zeng, G.; Chen, G.; Zhang, C.; Cheng, M.; Wan, J.; Wang, X.; Qin, X. Cadmium Immobilization in River Sediment Using Stabilized Nanoscale Zero-Valent Iron with Enhanced Transport by Polysaccharide Coating. J. Environ. Manage. 2018, 210, 191–200. DOI: 10.1016/J.JENVMAN.2018.01.001.
  • Shen, L.; Wu, W.; Liang, R.; Lin, R.; Wu, L. Highly Dispersed Palladium Nanoparticles Anchored on UiO-66(NH2) Metal-Organic Framework as a Reusable and Dual Functional Visible-Light-Driven Photocatalyst. Nanoscale. 2013, 5, 9374–9382. DOI: 10.1039/C3NR03153E.
  • Liang, R.; Luo, S.; Jing, F.; Shen, L.; Qin, N.; Wu, L. A Simple Strategy for Fabrication of Pd@MIL-100(fe) Nanocomposite as a Visible-Light-Driven Photocatalyst for the Treatment of Pharmaceuticals and Personal Care Products (PPCPs. Appl. Catal. B. 2015, 176-177, 240–248. 176–177. DOI: 10.1016/J.APCATB.2015.04.009.
  • Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. M@MIL-100(fe) (M = Au, Pd, Pt) Nanocomposites Fabricated by a Facile Photodeposition Process: Efficient Visible-Light Photocatalysts for Redox Reactions in Water. Nano Res. 2015, 8, 3237–3249. DOI: 10.1007/S12274-015-0824-9.
  • Wang, B.; Deng, Z.; Fu, X.; Xu, C.; Li, Z. Photodeposition of Pd Nanoparticles on ZnIn2S4 for Efficient Alkylation of Amines and ketones’ α-H with Alcohols Under Visible Light. Appl. Catal. B. 2018, 237, 970–975. DOI: 10.1016/J.APCATB.2018.06.067.
  • Lin, L.; Liu, H.; Zhang, X. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs. Appl. Surf. Sci. 2018, 433, 602–609. DOI: 10.1016/J.APSUSC.2017.10.047.
  • Yang, X.; Yuan, S.; Zou, L.; Drake, H.; Zhang, Y.; Qin, J.; Alsalme, A.; Zhou, H.-C. One-Step Synthesis of Hybrid Core–Shell Metal–Organic Frameworks. Angewandte Chemie. 2018, 130, 3991–3996. DOI: 10.1002/ANGE.201710019.
  • Chang, L.; Li, Y. One-Step Encapsulation of Pt-Co Bimetallic Nanoparticles within MOFs for Advanced Room Temperature Nanocatalysis. Mol. Catal. 2017, 433, 77–83. DOI: 10.1016/J.MCAT.2017.01.009.
  • Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J. Am. Chem. Soc. 2015, 137, 6018–6025. DOI: 10.1021/jacs.5b01650.
  • Yang, Q.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd Nanocubes@ZIF-8: Integration of Plasmon-Driven Photothermal Conversion with a Metal–Organic Framework for Efficient and Selective Catalysis. Angew. Chem. Int. Ed. 2016, 55, 3685–3689. DOI: 10.1002/ANIE.201510655.
  • Hao, X.; Jin, Z.; Yang, H.; Lu, G.; Bi, Y. Peculiar Synergetic Effect of MoS2 Quantum Dots and Graphene on Metal-Organic Frameworks for Photocatalytic Hydrogen Evolution. Appl. Catal. B. 2017, 210, 45–56. DOI: 10.1016/J.APCATB.2017.03.057.
  • Guo, H.; Guo, D.; Zheng, Z.; Weng, W.; Chen, J. Visible-Light Photocatalytic Activity of Ag@MIL-125(ti) Microspheres. Appl. Organomet. Chem. 2015, 29, 618–623. DOI: 10.1002/AOC.3341.
  • Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J., et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5(1), 1–6. DOI: https://doi.org/10.1038/ncomms5695.
  • Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W., et al. Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS 2 Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. DOI: 10.1021/ja511572q.
  • Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T. Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework. ACS Appl. Mater. Interfaces. 2016, 8, 20675–20681. DOI: 10.1021/acsami.6b04729.
  • Noh, H.; Cui, Y.; Peters, A. W.; Pahls, D. R.; Ortuno, M. A.; Vermeulen, N. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. J. Am. Chem. Soc. 2016, 138, 14720–14726. DOI: 10.1021/jacs.6b08898.
  • Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuño, M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z.; Ray, D., et al. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework. J. Am. Chem. Soc. 2017, 139, 10294–10301. DOI: 10.1021/jacs.7b02936.
  • Huang, Y.; Zhang, Y.; Chen, X.; Wu, D.; Yi, Z.; Cao, R. Bimetallic Alloy Nanocrystals Encapsulated in ZIF-8 for Synergistic Catalysis of Ethylene Oxidative Degradation. Chem. Commun. 2014, 50, 10115–10117. DOI: 10.1039/C4CC04479G.
  • Zhang, Y.; Park, S. J. Stabilization of Dispersed CuPd Bimetallic Alloy Nanoparticles on ZIF-8 for Photoreduction of Cr(vi) in Aqueous Solution. Chem. Eng. J. 2019, 369, 353–362. DOI: 10.1016/J.CEJ.2019.03.083.
  • Kampouri, S.; Nguyen, T. N.; Ireland, C. P.; Valizadeh, B.; Ebrahim, F. M.; Capano, G.; Ongari, D.; Mace, A.; Guijarro, N.; Sivula, K., et al. Photocatalytic Hydrogen Generation from a Visible-Light Responsive Metal–Organic Framework System: The Impact of Nickel Phosphide Nanoparticles. J. Mater. Chem. A. 2018, 6, 2476–2481. DOI: 10.1039/c7ta10225a.
  • Tong, Z.; Yang, D.; Li, Z.; Nan, Y.; Ding, F.; Shen, Y.; Jiang, Z. Thylakoid-Inspired Multishell G-C 3 N 4 Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis. ACS Nano. 2017, 11, 1103–1112. DOI: 10.1021/ACSNANO.6B08251.
  • Zada, A.; Humayun, M.; Raziq, F.; Zhang, X.; Qu, Y.; Bai, L.; Qin, C.; Jing, L.; Fu, H. Exceptional Visible-Light-Driven Cocatalyst-Free Photocatalytic Activity of g-C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190. DOI: 10.1002/AENM.201601190.
  • Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Adv.Mate. 2011, 23, 5801–5806. DOI: 10.1002/ADMA.201102866.
  • Zhang, X.; Dong, H.; Sun, X. J.; Yang, D. D.; Sheng, J. L.; Tang, H. L.; Bin Meng, X.; Zhang, F. M. Step-By-Step Improving Photocatalytic Hydrogen Evolution Activity of NH 2 –UiO-66 by Constructing Heterojunction and Encapsulating Carbon Nanodots. ACS Sustainable Chem. Eng. 2018, 6(9), 11563–11569. DOI: https://doi.org/10.1021/acssuschemeng.8b01740.
  • Mao, S.; Zou, Y.; Sun, G.; Zeng, L.; Wang, Z.; Ma, D.; Guo, Y.; Cheng, Y.; Wang, C.; Shi, J. W. Thio Linkage Between CdS Quantum Dots and UiO-66-type MOFs as an Effective Transfer Bridge of Charge Carriers Boosting Visible-Light-Driven Photocatalytic Hydrogen Production. J. Colloid. Interface. Sci. 2021, 581, 1–10. DOI: 10.1016/j.jcis.2020.07.121.
  • Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J. T.; Farha, O. K. Transmetalation: Routes to Metal Exchange within Metal–Organic Frameworks. J. Mater. Chem. A. 2013, 1, 5453–5468. DOI: 10.1039/C3TA10784A.
  • Sheybani, S.; Abbas, M.; Firouzi, H. R.; Xiao, Z.; Zhou, H. C.; Balkus, K. J. Synthesis of Fluoro-Bridged Ho3+ and Gd3+ 1,3,5-Tris(4-Carboxyphenyl)benzene Metal-Organic Frameworks from Perfluoroalkyl Substances. Inorg. Chem. 2022. DOI: 10.1021/acs.inorgchem.2c04470.
  • Wasson, M. C.; Buru, C. T.; Chen, Z.; Islamoglu, T.; Farha, O. K. Metal–Organic Frameworks: A Tunable Platform to Access Single-Site Heterogeneous Catalysts. Appl. Catal. A. 2019, 586, 117214. DOI: 10.1016/J.APCATA.2019.117214.
  • Liu, T. F.; Zou, L.; Feng, D.; Chen, Y. P.; Fordham, S.; Wang, X.; Liu, Y.; Zhou, H. C. Stepwise Synthesis of Robust Metal–Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nodes in a Single-Crystal to Single-Crystal Transformation. J. Am. Chem. Soc. 2014, 136, 7813–7816. DOI: 10.1021/ja5023283.
  • Melillo, A.; Franconetti, A.; Alvaro, M.; Ferrer, B.; Garcia, H. Metal Nodes of Metal-Organic Frameworks can Activate Molecular Hydrogen, Chemistry. A European Journal. 2023, 29, e202202625. DOI: 10.1002/CHEM.202202625.
  • Ye, G.; Gu, Y.; Zhou, W.; Xu, W.; Sun, Y. Synthesis of Defect-Rich Titanium Terephthalate with the Assistance of Acetic Acid for Room-Temperature Oxidative Desulfurization of Fuel Oil. ACS Catal. 2020, 10, 2384–2394. DOI: 10.1021/acscatal.9b04937.
  • Ye, G.; Wan, L.; Zhang, Q.; Liu, H.; Zhou, J.; Wu, L.; Zeng, X.; Wang, H.; Chen, X.; Wang, J. Boosting Catalytic Performance of MOF-808(zr) by Direct Generation of Rich Defective Zr Nodes via a Solvent-Free Approach. Inorg. Chem. 2022. DOI: 10.2139/ssrn.4289676.
  • Jiao, Y.; Pei, J.; Chen, D.; Yan, C.; Hu, Y.; Zhang, Q.; Chen, G. Mixed-Metallic MOF Based Electrode Materials for High Performance Hybrid Supercapacitors. J. Mater. Chem. A. 2017, 5, 1094–1102. DOI: 10.1039/C6TA09805C.
  • Duan, H.; Chen, X.; Yang, Y. N.; Zhao, J.; Lin, X. C.; Tang, W. J.; Gao, Q.; Ning, G. H.; Li, D. Tailoring Stability, Catalytic Activity and Selectivity of Covalent Metal–Organic Frameworks via Steric Modification of Metal Nodes. J. Mater. Chem. A Mater. 2023, 11, 12777–12783. DOI: 10.1039/D2TA08797A.
  • Lin, Y.; Wu, S.; Yang, C.; Chen, M.; Li, X. Preparation of Size-Controlled Silver Phosphate Catalysts and Their Enhanced Photocatalysis Performance via Synergetic Effect with MWCNTs and PANI. Appl. Catal. B. 2019, 245, 71–86. DOI: 10.1016/J.APCATB.2018.12.048.
  • Xiang, Q.; Lang, D.; Shen, T.; Liu, F. Graphene-Modified Nanosized Ag3PO4 Photocatalysts for Enhanced Visible-Light Photocatalytic Activity and Stability. Appl. Catal. B. 2015, 162, 196–203. DOI: 10.1016/J.APCATB.2014.06.051.
  • Rehan, M.; Barhoum, A.; Khattab, T. A.; Gätjen, L.; Wilken, R. Colored, Photocatalytic, Antimicrobial and UV-Protected Viscose Fibers Decorated with Ag/Ag2CO3 and Ag/Ag3PO4 Nanoparticles. Cellulose. 2019, 26, 5437–5453. DOI: 10.1007/s10570-019-02497-8.
  • Miao, X.; Yue, X.; Ji, Z.; Shen, X.; Zhou, H.; Liu, M.; Xu, K.; Zhu, J.; Zhu, G.; Kong, L., et al. Nitrogen-Doped Carbon Dots Decorated on g-C3N4/Ag3PO4 Photocatalyst with Improved Visible Light Photocatalytic Activity and Mechanism Insight. Appl. Catal. B. 2018, 227, 459–469. DOI: 10.1016/J.APCATB.2018.01.057.
  • Cai, T.; Zeng, W.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Xia, X. A Promising Inorganic-Organic Z-Scheme Photocatalyst Ag3PO4/PDI Supermolecule with Enhanced Photoactivity and Photostability for Environmental Remediation. Appl. Catal. B. 2020, 263, 118327. DOI: 10.1016/J.APCATB.2019.118327.
  • Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme Photocatalyst. Adv.Mate. 2022, 34, 2107668. DOI: 10.1002/ADMA.202107668.
  • Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. Design Principle of S-Scheme Heterojunction Photocatalyst. J. Mater. Sci. Technol. 2022, 124, 171–173. DOI: 10.1016/J.JMST.2022.02.016.
  • Li, T.; Tsubaki, N.; Jin, Z. S-Scheme Heterojunction in Photocatalytic Hydrogen Production. J. Mater. Sci. Technol. 2023. DOI: 10.1016/J.JMST.2023.04.049.
  • Shao, Y.; Hao, X.; Jin, Z. Construction of Double S-Scheme ZIF-67@gdy/CuI Heterojunction by Graphdiyne (G-nH2n−2) Nanosheets-Coated ZIF-67 on Synergized Charge Transfer for Enhanced Photocatalytic Hydrogen Evolution. Solar Rrl. 2023, 7, 2201054. DOI: 10.1002/SOLR.202201054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.