Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Latest Articles
347
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Computational Tools and Techniques in Designing Ligands for the Selective Separation of Actinide and Lanthanide: A Review

ORCID Icon & ORCID Icon

References

  • Ding, Y.; Alimi, L. O.; Du, J.; Hua, B.; Dey, A.; Yu, P.; Khashab, N. M. Pillar [3] Trianglamines: Deeper Cavity Triangular Macrocycles for Selective Hexene Isomer Separation. Chem. Sci. 2022, 13(11), 3244–3248. DOI: 10.1039/D2SC00207H.
  • Bouckaert, S.; Pales, A. F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D’Ambrosio, D.; Spencer, T.Net Zero by 2050: A Roadmap for the Global Energy Sector https://trid.trb.org/view/1856381. 2021. (Washington: The National Academies of Sciences, Engineering, and Medicine)
  • Management of Spent Nuclear Fuel and its Waste. In: Management of Spent Nuclear Fuel and Its Waste, the European Academies’ Science Advisory Council (EASAC); Brussels: Publications Office of the European Union, 2014.
  • Lennemann, W. L. The Management of High-Level Radioactive Wastes. IAEA Bull. 1978, 21, 1–16.
  • U.S.D.O. Energy. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel. U S Department of Energy. https://curie.pnnl.gov/document/assessment-disposal-options-doe-managed-high-level-radioactive-waste-and-spent-nuclear, 2014.
  • Krall, L. M.; Macfarlane, A. M.; Ewing, R. C., Nuclear Waste from Small Modular Reactors, Proceedings of the National Academy of Sciences University of Pennsylvania, Philadelphia, 119 (2022) e2111833119.
  • Mukaiyama, T.; Takizuka, T.; Mizumoto, M.; Ikeda, Y.; Ogawa, T.; Hasegawa, A.; Takada, H.; Takano, H. Review of Research and Development of Accelerator-Driven System in Japan for Transmutation of Long-Lived Nuclides. Prog. Nucl. Energy. 2001, 38(1–2), 107–134. DOI: 10.1016/S0149-1970(00)00098-6.
  • Christiansen, B.; Apostolidis, C.; Carlos, R.; Courson, O.; Glatz, J.-P.; Malmbeck, R.; Pagliosa, G.; Römer, K.; Serrano-Purroy, D. Advanced Aqueous Reprocessing in P&T Strategies: Process Demonstrations on Genuine Fuels and Targets. Radiochim. Acta. 2004, 92(8), 475–480. DOI: 10.1524/ract.92.8.475.39283.
  • Nash, K. L. A Review of the Basic Chemistry and Recent Developments in Trivalent F-Elements Separations. Solvent Extr. Ion Exch. 1993, 11(4), 729–768. DOI: 10.1080/07366299308918184.
  • Mathur, J.; Murali, M.; Nash, K. Actinide partitioning—a review. Solvent Extr. Ion Exch. 2001, 19(3), 357–390. DOI: 10.1081/SEI-100103276.
  • Choppin, G. R.; Nash, K. L. Actinide separation science. Radiochim. Acta. 1995, 70-71(s1), 225–236. DOI: 10.1524/ract.1995.7071.s1.225.
  • Nash, K. L.; Choppin, G. R. Separations Chemistry for Actinide Elements: Recent Developments and Historical Perspective. Sep. Sci. Technol. 1997, 32(1–4), 255–274. DOI: 10.1080/01496399708003198.
  • Taylor, R. Reprocessing and Recycling of Spent Nuclear Fuel; Sawston: Elsevier, 2015.
  • Simpson, M. F.; Law, J. Nuclear Fuel Reprocessing; Idaho National Laboratory: Idaho Falls, Idaho, in, 2010; pp. INL/EXT-10–17753.
  • Bertelsen, E. R.; Antonio, M. R.; Jensen, M. P.; Shafer, J. C. Electrochemistry of PUREX: R is for Reduction and Ion Transfer. Solvent Extr. Ion Exch. 2022, 40(1–2), 64–85. DOI: 10.1080/07366299.2021.1920674.
  • Cashmore, R.; Billowes, J.; Bowen, W.; Brown, C.; Grimes, R.; Howsley, R.; Livens, F.; Simpson, J.; Styles, P. Fuel cycle stewardship in a nuclear renaissance. Royal Soc. Open Sci. Policy Centre Report. 2011, 10, 1–79.
  • Peppard, D.; Mason, G.; Maier, J.; Driscoll, W. Fractional Extraction of the Lanthanides as Their di-Alkyl Orthophosphates. J. Inorg. Nucl. Chem. 1957, 4(5–6), 334–343. DOI: 10.1016/0022-1902(57)80016-5.
  • Dam, H. H.; Reinhoudt, D. N.; Verboom, W. Multicoordinate Ligands for Actinide/Lanthanide Separations. Chem. Soc. Rev. 2007, 36(2), 367–377. DOI: 10.1039/B603847F.
  • Hancock, R. D. The Pyridyl Group in Ligand Design for Selective Metal Ion Complexation and Sensing. Chem. Soc. Rev. 2013, 42(4), 1500–1524. DOI: 10.1039/C2CS35224A.
  • Trumm, S.; Geist, A.; Panak, P. J.; Fanghänel, T. An Improved Hydrolytically-Stable Bis-Triazinyl-Pyridine (BTP) for Selective Actinide Extraction. Solvent Extr. Ion Exch. 2011, 29(2), 213–229. DOI: 10.1080/07366299.2011.539129.
  • Hudson, M. J.; Boucher, C. E.; Braekers, D.; Desreux, J. F.; Drew, M. G.; Foreman, M. R. S. J.; Harwood, L. M.; Hill, C.; Madic, C.; Marken, F. New Bis (Triazinyl) Pyridines for Selective Extraction of Americium (III. New. J. Chem. 2006, 30(8), 1171–1183. DOI: 10.1039/b514108g.
  • Hill, C.; Guillaneux, D.; Berthon, L.; Madic, C. SANEX-BTP Process Development Studies. J. Nucl. Sci. Technol. 2002, 39(sup3), 309–312. DOI: 10.1080/00223131.2002.10875470.
  • Hudson, M. J.; Harwood, L. M.; Laventine, D. M.; Lewis, F. W. Use of Soft Heterocyclic N-Donor Ligands to Separate Actinides and Lanthanides. Inorg. Chem. 2013, 52(7), 3414–3428. DOI: 10.1021/ic3008848.
  • Foreman, M. R.; Hudson, M. J.; Drew, M. G.; Hill, C.; Madic, C. Complexes Formed Between the Quadridentate, Heterocyclic Molecules 6, 6′-Bis-(5, 6-Dialkyl-1, 2, 4-Triazin-3-Yl)-2, 2′-Bipyridine (BTBP) and Lanthanides (III): Implications for the Partitioning of Actinides (III) and Lanthanides (III). Dalton Trans. 2006, 13, 1645–1653. DOI: 10.1039/B511321K.
  • Magnusson, D.; Christiansen, B.; Glatz, J.-P.; Malmbeck, R.; Modolo, G.; Serrano-Purroy, D.; Sorel, C. Towards an Optimized Flow-Sheet for a SANEX Demonstration Process Using Centrifugal Contactors. rca-Radiochimica Acta. 2009, 97(3), 155–159. DOI: 10.1524/ract.2009.1587.
  • Aneheim, E.; Ekberg, C.; Fermvik, A.; Foreman, M. R. S. J.; Retegan, T.; Skarnemark, G. A TBP/BTBP-Based GANEX Separation Process. Part 1: Feasibility. Solvent Extr. Ion Exch. 2010, 28(4), 437–458. DOI: 10.1080/07366299.2010.480930.
  • Aneheim, E.; Ekberg, C.; Fermvik, A.; Foreman, M. R. S. J.; Grűner, B.; Hajkova, Z.; Kvičalová, M. A TBP/BTBP-Based GANEX Separation Process—Part 2: Ageing, Hydrolytic, and Radiolytic Stability. Solvent Extr. Ion Exch. 2011, 29(2), 157–175. DOI: 10.1080/07366299.2011.539462.
  • Lewis, F. W.; Harwood, L. M.; Hudson, M. J.; Drew, M. G.; Desreux, J. F.; Vidick, G.; Bouslimani, N.; Modolo, G.; Wilden, A.; Sypula, M. Highly Efficient Separation of Actinides from Lanthanides by a Phenanthroline-Derived Bis-Triazine Ligand. J. Am. Chem. Soc. 2011, 133(33), 13093–13102. DOI: 10.1021/ja203378m.
  • Laventine, D. M.; Afsar, A.; Hudson, M. J.; Harwood, L. M. Tuning the Solubilities of Bis-Triazinylphenanthroline Ligands (BTPhens) and Their Complexes. Heterocycles. 2012, 86, 2. DOI:10.3987/COM-12-S(N)102.
  • Distler, P.; Mindova, M.; Sebesta, J.; Gruner, B.; Bavol, D.; Egberink, R. J.; Verboom, W.; Babain, V. A.; John, J. Stability of Different BTBP and BTPhen Extracting or Masking Compounds Against γ Radiation. ACS Omega. 2021, 6(40), 26416–26427. DOI: 10.1021/acsomega.1c03678.
  • Mahmoud, J.; Higginson, M.; Thompson, P.; Gilligan, C.; Livens, F.; Heath, S. L. Rapid Separation of Americium from Complex Matrices Using Solvent Impregnated Triazine Extraction Chromatography Resins. J. Chromatography. A. 2022, 1669, 462950. DOI: 10.1016/j.chroma.2022.462950.
  • Acharya, J.; Kalita, P.; Chandrasekhar, V. High-Coordinate Mononuclear Ln (III) Complexes: Synthetic Strategies and Magnetic Properties. Magnetochemistry. 2020, 7(1), 1. DOI: 10.3390/magnetochemistry7010001.
  • Ebenezer, C.; Solomon, R. V. Impact of Coordination Modes of N-Donor Ligands on Am(iii)/Eu(iii) Separation in Nuclear Waste Water Treatment – a DFT Study. ChemistrySelect. 2021, 6(43), 11876–11886. DOI: 10.1002/slct.202102543.
  • Kaltsoyannis, N. Recent Developments in Computational Actinide Chemistry. Chem. Soc. Rev. 2003, 32(1), 9–16. DOI: 10.1039/b204253n.
  • Guillaumont, D. Quantum Chemistry Study of Actinide (III) and Lanthanide (III) Complexes with Tridentate Nitrogen Ligands. J. Phys. Chem. A. 2004, 108(33), 6893–6900. DOI: 10.1021/jp048550x.
  • Ionova, G.; Rabbe, C.; Guillaumont, R.; Ionov, S.; Madic, C.; Krupa, J.-C.; Guillaneux, D. A donor–acceptor model of Ln (III) complexation with terdentate nitrogen planar ligands. New. J. Chem. 2002, 26(2), 234–242. DOI: 10.1039/b103996m.
  • Vallet, V.; Macak, P.; Wahlgren, U.; Grenthe, I. Actinide Chemistry in Solution, Quantum Chemical Methods and Models. Theor. Chem. Acc. 2006, 115(2–3), 145–160. DOI: 10.1007/s00214-005-0051-7.
  • Vetere, V.; Maldivi, P.; Adamo, C. Comparative Studies of Quasi‐Relativistic Density Functional Methods for the Description of Lanthanide and Actinide Complexes. J. Comput. Chem. 2003, 24(7), 850–858. DOI: 10.1002/jcc.10228.
  • Ivanov, A. S.; Bryantsev, V. S. A Computational Approach to Predicting Ligand Selectivity for the Size‐Based Separation of Trivalent Lanthanides. Eur. J. Inorg. Chem. 2016, 2016(21), 3474–3479. DOI: 10.1002/ejic.201600319.
  • Dolg, M.; Stoll, H. Handbook of Chemistry and Physics of Rare Earths; Elsevier: Amsterdam, 1996; Vol. 22.
  • Cao, X.; Dolg, M. Relativistic Energy-Consistent Ab Initio Pseudopotentials as Tools for Quantum Chemical Investigations of Actinide Systems. Coord. Chem. Rev. 2006, 250(7–8), 900–910. DOI: 10.1016/j.ccr.2006.01.003.
  • Modolo, G.; Wilden, A.; Geist, A.; Magnusson, D.; Malmbeck, R. A Review of the Demonstration of Innovative Solvent Extraction Processes for the Recovery of Trivalent Minor Actinides from PUREX Raffinate. Radiochim. Acta. 2012, 100(8–9), 715–725. DOI: 10.1524/ract.2012.1962.
  • Ansari, S. A.; Pathak, P.; Mohapatra, P. K.; Manchanda, V. K. Chemistry of Diglycolamides: Promising Extractants for Actinide Partitioning. Chem. Rev. 2012, 112(3), 1751–1772. DOI: 10.1021/cr200002f.
  • Lan, J.-H.; Shi, W.-Q.; Yuan, L.-Y.; Li, J.; Zhao, Y.-L.; Chai, Z.-F. Recent Advances in Computational Modeling and Simulations on the an (III)/Ln (III) Separation Process. Coord. Chem. Rev. 2012, 256(13–14), 1406–1417. DOI: 10.1016/j.ccr.2012.04.002.
  • Panak, P. J.; Geist, A. Complexation and Extraction of Trivalent Actinides and Lanthanides by Triazinylpyridine N-Donor Ligands. Chem. Rev. 2013, 113(2), 1199–1236. DOI: 10.1021/cr3003399.
  • Mohapatra, P. K. Diglycolamide-Based Solvent Systems in Room Temperature Ionic Liquids for Actinide Ion Extraction: A Review. Chem. Prod. Process Model. 2015, 10(2), 135–145. DOI: 10.1515/cppm-2014-0030.
  • Nash, K. L. The Chemistry of TALSPEAK: A Review of the Science. Solvent Extr. Ion Exch. 2015, 33(1), 1–55. DOI: 10.1080/07366299.2014.985912.
  • Ustynyuk, Y. A.; Alyapyshev, M. Y.; Babain, V. A.; Ustynyuk, N. A. Quantum Chemical Modelling of Extraction Separation of Minor Actinides and Lanthanides: The State of the Art. Russ. Chem. Rev. 2016, 85(9), 917. DOI: 10.1070/RCR4588.
  • Alyapyshev, M. Y.; Babain, V. A.; Ustynyuk, Y. A. Recovery of Minor Actinides from High-Level Wastes: Modern Trends. Russ. Chem. Rev. 2016, 85(9), 943. DOI: 10.1070/RCR4589.
  • Veliscek-Carolan, J. Separation of Actinides from Spent Nuclear Fuel: A Review. J. Hazard. Mater. 2016, 318, 266–281. DOI: 10.1016/j.jhazmat.2016.07.027.
  • Ansari, S. A.; Mohapatra, P. K. A Review on Solid Phase Extraction of Actinides and Lanthanides with Amide Based Extractants. J. Chromatography. A. 2017, 1499, 1–20. DOI: 10.1016/j.chroma.2017.03.035.
  • Leoncini, A.; Huskens, J.; Verboom, W. Ligands for F-Element Extraction Used in the Nuclear Fuel Cycle. Chem. Soc. Rev. 2017, 46(23), 7229–7273. DOI: 10.1039/C7CS00574A.
  • Gupta, N. K. Ionic liquids for TRansUranic Extraction (TRUEX)—Recent developments in nuclear waste management: A review. J. Mol. Liq. 2018, 269, 72–91. DOI: 10.1016/j.molliq.2018.08.036.
  • Baron, P.; Cornet, S.; Collins, E.; DeAngelis, G.; Del Cul, G.; Fedorov, Y.; Glatz, J.; Ignatiev, V.; Inoue, T.; Khaperskaya, A. A Review of Separation Processes Proposed for Advanced Fuel Cycles Based on Technology Readiness Level Assessments. Prog. Nucl. Energy. 2019, 117, 103091. DOI: 10.1016/j.pnucene.2019.103091.
  • Bhattacharyya, A.; Mohapatra, P. K. Separation of Trivalent Actinides and Lanthanides Using Various ‘N’, ‘S’ and Mixed ‘N,O’ Donor Ligands: A Review. Radiochim. Acta. 2019, 107(9–11), 931–949. DOI: 10.1515/ract-2018-3064.
  • Miguirditchian, M.; Vanel, V.; Marie, C.; Pacary, V.; Charbonnel, M.-C.; Berthon, L.; Hérès, X.; Montuir, M.; Sorel, C.; Bollesteros, M.-J. Americium Recovery from Highly Active PUREX Raffinate by Solvent Extraction: The EXAm Process. A Review of 10 Years of R&D. Solvent Extr. Ion Exch. 2020, 38(4), 365–387. DOI: 10.1080/07366299.2020.1753922.
  • Mattocks, J. A.; Cotruvo, J. A. Biological, Biomolecular, and Bio-Inspired Strategies for Detection, Extraction, and Separations of Lanthanides and Actinides. Chem. Soc. Rev. 2020, 49(22), 8315–8334. DOI: 10.1039/D0CS00653J.
  • Bessen, N.; Jackson, J.; Jensen, M.; Shafer, J. Sulfur Donating Extractants for the Separation of Trivalent Actinides and Lanthanides. Coord. Chem. Rev. 2020, 421, 213446. DOI: 10.1016/j.ccr.2020.213446.
  • Wang, Y.; Wan, Y.; Cai, Y.; Yuan, L.; Feng, W.; Liu, N. A Review of the Alpha Radiolysis of Extractants for Actinide Lanthanide Separation in Spent Nuclear Fuel Reprocessing. Radiochim. Acta. 2021, 109(8), 603–623. DOI: 10.1515/ract-2021-1009.
  • Matveev, P.; Mohapatra, P. K.; Kalmykov, S. N.; Petrov, V. Solvent Extraction Systems for Mutual Separation of Am (III) and Cm (III) from Nitric Acid Solutions. A Review of Recent State-Of-The-Art. Solvent Extr. Ion Exch. 2021, 39(7), 679–713. DOI: 10.1080/07366299.2020.1856998.
  • Rout, A. Separation of Plutonium from Other Actinides and Fission Products in Ionic Liquid Medium. Sep. Purif. Rev. 2023, 52(2), 98–122. DOI: 10.1080/15422119.2022.2043376.
  • Moyer, B. A. Ion Exchange and Solvent Extraction: Volume 23, Changing the Landscape in Solvent Extraction; Boca Raton, Florida: CRC Press, 2019.
  • Choppin, G. R. Separation of the Lanthanides by Ion Exchange with Alpha-Hydroxy Isobutyric Acid; Berkeley, California: University of California Radiation Laboratory, 1956.
  • Kołodyńska, D.; Hubicki, Z. Investigation of Sorption and Separation of Lanthanides on the Ion Exchangers of Various Types, Ion Exchange Technologies; London: IntechOpen, 2012, p. 101–154.
  • Li, B.; Chen, B. Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation Structure and Bonding; Berlin, Heidelberg: Springer, 2015, p. 75–107.
  • Nash, K. L.; Lumetta, G. J. Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Swaston: Elsevier, 2011.
  • Roger, M.; Belkhiri, L.; Thuéry, P.; Arliguie, T.; Fourmigué, M.; Boucekkine, A.; Ephritikhine, M. Lanthanide (III)/Actinide (III) Differentiation in Mixed Cyclopentadienyl/Dithiolene Compounds from X-Ray Diffraction and Density Functional Theory Analysis. Organometallics. 2005, 24(21), 4940–4952. DOI: 10.1021/om050329z.
  • Miguirditchian, M.; Guillaneux, D.; Guillaumont, D.; Moisy, P.; Madic, C.; Jensen, M. P.; Nash, K. L. Thermodynamic Study of the Complexation of Trivalent Actinide and Lanthanide Cations by ADPTZ, a Tridentate N-Donor Ligand. Inorg. Chem. 2005, 44(5), 1404–1412. DOI: 10.1021/ic0488785.
  • Roger, M.; Barros, N.; Arliguie, T.; Thuéry, P.; Maron, L.; Ephritikhine, M. U (SMes*) N,(n= 3, 4) and Ln (SMes*) 3 (Ln= La, Ce, Pr, Nd): Lanthanide (III)/Actinide (III) Differentiation in Agostic Interactions and an Unprecedented η3 Ligation Mode of the Arylthiolate Ligand, from X-Ray Diffraction and DFT Analysis. J. Am. Chem. Soc. 2006, 128(27), 8790–8802. DOI: 10.1021/ja0584830.
  • Cantat, T.; Graves, C. R.; Jantunen, K. C.; Burns, C. J.; Scott, B. L.; Schelter, E. J.; Morris, D. E.; Hay, P. J.; Kiplinger, J. L. Evidence for the Involvement of 5f Orbitals in the Bonding and Reactivity of Organometallic Actinide Compounds: Thorium (IV) and Uranium (IV) Bis (Hydrazonato) Complexes. J. Am. Chem. Soc. 2008, 130(51), 17537–17551. DOI: 10.1021/ja8067287.
  • Gaunt, A. J.; Reilly, S. D.; Enriquez, A. E.; Scott, B. L.; Ibers, J. A.; Sekar, P.; Ingram, K. I.; Kaltsoyannis, N.; Neu, M. P. Experimental and Theoretical Comparison of Actinide and Lanthanide Bonding in M [N (EPR2) 2] 3 Complexes (M= U, Pu, La, Ce; E= S, Se, Te; R= Ph, I Pr, H). Inorg. Chem. 2008, 47(1), 29–41. DOI: 10.1021/ic701618a.
  • Arliguie, T.; Belkhiri, L.; Bouaoud, S.-E.; Thuéry, P.; Villiers, C.; Boucekkine, A.; Ephritikhine, M. Lanthanide (III) and Actinide (III) Complexes [M (BH4) 2 (THF) 5][BPh4] and [M (BH4) 2 (18-Crown-6)][BPh4](M= Nd, Ce, U): Synthesis, Crystal Structure, and Density Functional Theory Investigation of the Covalent Contribution to Metal-Borohydride Bonding. Inorg. Chem. 2009, 48(1), 221–230. DOI: 10.1021/ic801685v.
  • Hyatt, I. F. D. Development of Nonadentate Ligands for the Selective Separation of Lanthanides and Actinides: A Computational and Synthetic Investigation; Florida: University of Florida, 2010.
  • Peterman, D.; Greenhalgh, M.; Tillotson, R.; Klaehn, J.; Harrup, M.; Luther, T.; Law, J. Selective Extraction of Minor Actinides from Acidic Media Using Symmetric and Asymmetric Dithiophosphinic Acids. Sep. Sci. Technol. 2010, 45(12–13), 1711–1717. DOI: 10.1080/01496395.2010.493787.
  • Borisova, N. E.; Eroshkina, E. A.; Korotkov, L. A.; Ustynyuk, Y. A.; Alyapyshev, M. Y.; Eliseev, I. I.; Babain, V. A. Actinide-Lanthanide Separation by Bipyridyl-Based Ligands. DFT calculations and experimental results The 10th international conference. GLOBAL 2011. Toward and over the Fukushima Daiichi accident Atomic Energy Society of Japan, Tokyo (Japan). 2011.
  • Marie, C.; Miguirditchian, M.; Guillaumont, D.; Tosseng, A.; Berthon, C.; Guilbaud, P.; Duvail, M.; Bisson, J.; Guillaneux, D.; Pipelier, M. Complexation of Lanthanides (III), Americium (III), and Uranium (VI) with Bitopic N, O Ligands: An Experimental and Theoretical Study. Inorg. Chem. 2011, 50(14), 6557–6566. DOI: 10.1021/ic200271e.
  • Schnaars, D. D.; Batista, E. R.; Gaunt, A. J.; Hayton, T. W.; May, I.; Reilly, S. D.; Scott, B. L.; Wu, G. Differences in Actinide Metal–Ligand Orbital Interactions: Comparison of U (Iv) and Pu (Iv) β-Ketoiminate N, O Donor Complexes. Chem. Commun. 2011, 47(27), 7647–7649. DOI: 10.1039/c1cc12409a.
  • Bhattacharyya, A.; Mohapatra, P.; Manchanda, V. Role of Ligand Softness and Diluent on the Separation Behaviour of Am (III) and Eu (III. J. Radioanal. Nucl. Chem. 2011, 288(3), 709–716. DOI: 10.1007/s10967-011-1027-9.
  • Bhattacharyya, A.; Ghanty, T. K.; Mohapatra, P. K.; Manchanda, V. K. Selective Americium (III) Complexation by Dithiophosphinates: A Density Functional Theoretical Validation for Covalent Interactions Responsible for Unusual Separation Behavior from Trivalent Lanthanides. Inorg. Chem. 2011, 50(9), 3913–3921. DOI: 10.1021/ic102238c.
  • Bremer, A.; Ruff, C. M.; Girnt, D.; Müllich, U.; Rothe, J. R.; Roesky, P. W.; Panak, P. J.; Karpov, A.; Müller, T. J.; Denecke, M. A. 2, 6-Bis (5-(2, 2-Dimethylpropyl)-1 H-Pyrazol-3-Yl) Pyridine as a Ligand for Efficient Actinide (III)/Lanthanide (III) Separation. Inorg. Chem. 2012, 51(9), 5199–5207. DOI: 10.1021/ic3000526.
  • Daly, S. R.; Keith, J. M.; Batista, E. R.; Boland, K. S.; Kozimor, S. A.; Martin, R. L.; Scott, B. L. Probing Ni [S2PR2] 2 Electronic Structure to Generate Insight Relevant to Minor Actinide Extraction Chemistry. Inorg. Chem. 2012, 51(14), 7551–7560. DOI: 10.1021/ic3001587.
  • Daly, S. R.; Keith, J. M.; Batista, E. R.; Boland, K. S.; Clark, D. L.; Kozimor, S. A.; Martin, R. L. Sulfur K-Edge X-Ray Absorption Spectroscopy and Time-Dependent Density Functional Theory of Dithiophosphinate Extractants: Minor Actinide Selectivity and Electronic Structure Correlations. J. Am. Chem. Soc. 2012, 134(35), 14408–14422. DOI: 10.1021/ja303999q.
  • Galletta, M.; Scaravaggi, S.; Macerata, E.; Famulari, A.; Mele, A.; Panzeri, W.; Sansone, F.; Casnati, A.; Mariani, M. 2, 9-Dicarbonyl-1, 10-Phenanthroline Derivatives with an Unprecedented Am (III)/Eu (III) Selectivity Under Highly Acidic Conditions. Dalton Trans. 2013, 42(48), 16930–16938. DOI: 10.1039/c3dt52104d.
  • Lewis, F. W.; Harwood, L. M.; Hudson, M. J.; Drew, M. G.; Hubscher-Bruder, V.; Videva, V.; Arnaud-Neu, F.; Stamberg, K.; Vyas, S. BTBPs versus BTPhens: Some Reasons for Their Differences in Properties Concerning the Partitioning of Minor Actinides and the Advantages of BTPhens. Inorg. Chem. 2013, 52(9), 4993–5005. DOI: 10.1021/ic3026842.
  • Thakur, P.; Conca, J. L.; Dodge, C. J.; Francis, A. J.; Choppin, G. R. Complexation Thermodynamics and Structural Studies of Trivalent Actinide and Lanthanide Complexes with DTPA, MS-325 and HMDTPA. Radiochim. Acta. 2013, 101(4), 221–232. DOI: 10.1524/ract.2013.2018.
  • Jensen, M. P.; Chiarizia, R.; Shkrob, I. A.; Ulicki, J. S.; Spindler, B. D.; Murphy, D. J.; Hossain, M.; Roca-Sabio, A.; Platas-Iglesias, C.; de Blas, A., et al. Aqueous Complexes for Efficient Size-Based Separation of Americium from Curium. Inorg. Chem. 2014, 53(12), 6003–6012. DOI: 10.1021/ic500244p.
  • Xiao, C.-L.; Wang, C.-Z.; Yuan, L.-Y.; Li, B.; He, H.; Wang, S.; Zhao, Y.-L.; Chai, Z.-F.; Shi, W.-Q. Excellent Selectivity for Actinides with a Tetradentate 2, 9-Diamide-1, 10-Phenanthroline Ligand in Highly Acidic Solution: A Hard–Soft Donor Combined Strategy. Inorg. Chem. 2014, 53(3), 1712–1720. DOI: 10.1021/ic402784c.
  • Shkrob, I. A.; Marin, T. W.; Jensen, M. P. Ionic Liquid Based Separations of Trivalent Lanthanide and Actinide Ions. Ind. Eng. Chem. Res. 2014, 53(9), 3641–3653. DOI: 10.1021/ie4036719.
  • Bhattacharyya, A.; Ansari, S. A.; Gadly, T.; Ghosh, S. K.; Mohapatra, M.; Mohapatra, P. A Remarkable Enhancement in Am 3+/Eu 3+ Selectivity by an Ionic Liquid Based Solvent Containing Bis-1, 2, 4-Triazinyl Pyridine Derivatives: DFT Validation of Experimental Results. Dalton Trans. 2015, 44(13), 6193–6201. DOI: 10.1039/C5DT00149H.
  • Zalupski, P. R.; Klaehn, J. R.; Peterman, D. R. Complete Recovery of Actinides from UREX-Like Raffinates Using a Combination of Hard and Soft Donor Ligands. II. Soft Donor Structure Variation, Solvent Extraction And Ion Exchange. 2015, 33(6), 523–539. DOI: 10.1080/07366299.2015.1064296.
  • Das, D.; Goud, E. V.; Annam, S.; Jayalakshmi, S.; Gopakumar, G.; Rao, C. B.; Sivaraman, N.; Sivaramakrishna, A.; Vijayakrishna, K. Experimental and Theoretical Studies on Extraction Behavior of di-N-Alkyl Phosphine Oxides Towards Actinides. R.S.C. Adv. 2015, 5(130), 107421–107429. DOI: 10.1039/C5RA19090H.
  • Ustynyuk, Y. A.; Borisova, N.; Babain, V.; Gloriozov, I.; Manuilov, A.; Kalmykov, S.; Alyapyshev, M. Y.; Tkachenko, L.; Kenf, E.; Ustynyuk, N. N,N′-Dialkyl-N,N′-Diaryl-1,10-Phenanthroline-2,9-Dicarboxamides as Donor Ligands for Separation of Rare Earth Elements with a High and Unusual Selectivity. DFT Computational and Experimental Studies. Chem. Commun. 2015, 51(35), 7466–7469. DOI: 10.1039/C5CC01620G.
  • Yang, Y.; Liu, J.; Yang, L.; Li, K.; Zhang, H.; Luo, S.; Rao, L. Probing the Difference in Covalence by Enthalpy Measurements: A New Heterocyclic N-Donor Ligand for Actinide/Lanthanide Separation. Dalton Trans. 2015, 44(19), 8959–8970. DOI: 10.1039/C5DT00679A.
  • Ali, S. M.; Pahan, S.; Bhattacharyya, A.; Mohapatra, P. Complexation Thermodynamics of Diglycolamide with F-Elements: Solvent Extraction and Density Functional Theory Analysis. Phys. Chem. Chem. Phys. 2016, 18(14), 9816–9828. DOI: 10.1039/C6CP00825A.
  • Edwards, A. C.; Wagner, C.; Geist, A.; Burton, N. A.; Sharrad, C. A.; Adams, R. W.; Pritchard, R. G.; Panak, P. J.; Whitehead, R. C.; Harwood, L. M. Exploring Electronic Effects on the Partitioning of Actinides (III) from Lanthanides (III) Using Functionalised Bis-Triazinyl Phenanthroline Ligands. Dalton Trans. 2016, 45(45), 18102–18112. DOI: 10.1039/C6DT02474B.
  • Li, C.; Wu, L.; Chen, L.; Yuan, X.; Cai, Y.; Feng, W.; Liu, N.; Ren, Y.; Sengupta, A.; Murali, M. S. Highly Efficient Extraction of Actinides with Pillar [5] Arene-Derived Diglycolamides in Ionic Liquids via a Unique Mechanism Involving Competitive Host–Guest Interactions. Dalton Trans. 2016, 45(48), 19299–19310. DOI: 10.1039/C6DT04229E.
  • Goud, E. V.; Das, D.; Sivaramakrishna, A.; Vijayakrishna, K.; Sabareesh, V.; Gopakumar, G.; Rao, C. B.; Lone, M. Y.; Jha, P. C. Investigations on Synthesis, Coordination Behavior and Actinide Recovery of Unexplored Dicyclohexylphosphinic Acid. Polyhedron. 2016, 117, 741–748. DOI: 10.1016/j.poly.2016.07.013.
  • Veerashekhar Goud, E.; Pavankumar, B.; Das, D., Investigations on Synthesis, Coordination Behaviour and Actinide Recovery of Unexplored Phosphine Oxides, in: Proceedings of the seventh DAE-BRNS biennial symposium on emerging trends in separation science and technology Indian Institute of Technology Guwahati, 2016.
  • Acher, E.; Hacene Cherkaski, Y.; Dumas, T.; Tamain, C.; Guillaumont, D.; Boubals, N.; Javierre, G.; Hennig, C.; Solari, P. L.; Charbonnel, M.-C. Structures of Plutonium (IV) and Uranium (VI) with N, N-Dialkyl Amides from Crystallography, X-Ray Absorption Spectra, and Theoretical Calculations. Inorg. Chem. 2016, 55(11), 5558–5569. DOI: 10.1021/acs.inorgchem.6b00592.
  • Sharma, S.; Panja, S.; Bhattacharyya, A.; Dhami, P. S.; Gandhi, P. M.; Ghosh, S. K. Synthesis and Extraction Studies with a Rationally Designed Diamide Ligand Selective to Actinide (IV) Pertinent to the Plutonium Uranium Redox Extraction Process. Dalton Trans. 2016, 45(18), 7737–7747. DOI: 10.1039/C6DT00748A.
  • Leoncini, A.; Mohapatra, P. K.; Bhattacharyya, A.; Raut, D. R.; Sengupta, A.; Verma, P. K.; Tiwari, N.; Bhattacharyya, D.; Jha, S.; Wouda, A. M. Unique selectivity reversal in Am 3+ –Eu 3+ extraction in a tripodal TREN-based diglycolamide in ionic liquid: extraction, luminescence, complexation and structural studies. Dalton Trans. 2016, 45(6), 2476–2484. DOI: 10.1039/C5DT04729C.
  • Maiwald, M. M.; Wagner, A. T.; Kratsch, J.; Skerencak-Frech, A.; Trumm, M.; Geist, A.; Roesky, P. W.; Panak, P. J. 4, 4′-Di-Tert-Butyl-6-(1 H-Tetrazol-5-Yl)-2, 2′-Bipyridine: Modification of a Highly Selective N-Donor Ligand for the Separation of Trivalent Actinides from Lanthanides. Dalton Trans. 2017, 46(30), 9981–9994. DOI: 10.1039/C7DT01864A.
  • Lavrov, H.; Ustynyuk, N.; Matveev, P.; Gloriozov, I.; Zhokhov, S.; Alyapyshev, M. Y.; Tkachenko, L.; Voronaev, I.; Babain, V.; Kalmykov, S. A Novel Highly Selective Ligand for Separation of Actinides and Lanthanides in the Nuclear Fuel Cycle. Experimental Verification of the Theoretical Prediction. Dalton Trans. 2017, 46(33), 10926–10934. DOI: 10.1039/C7DT01009E.
  • Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P. K.; Gadly, T.; Ghosh, S. K.; Manna, D.; Ghanty, T. K.; Rawat, N.; Tomar, B. S. An Insight into the Complexation of Trivalent Americium Vis-à-Vis Lanthanides with Bis(1,2,4-Triazinyl)bipyridine Derivatives. Eur. J. Inorg. Chem. 2017, 2017(4), 820–828. DOI: 10.1002/ejic.201600829.
  • Leoncini, A.; Ansari, S. A.; Mohapatra, P. K.; Boda, A.; Ali, S. M.; Sengupta, A.; Huskens, J.; Verboom, W. Benzene-centered tripodal diglycolamides: synthesis, metal ion extraction, luminescence spectroscopy, and DFT studies. Dalton Trans. 2017, 46(5), 1431–1438. DOI: 10.1039/C6DT04034A.
  • Jansone-Popova, S.; Ivanov, A. S.; Bryantsev, V. S.; Sloop, F. V., Jr; Custelcean, R.; Popovs, I.; Dekarske, M. M.; Moyer, B. A. Bis-Lactam-1, 10-Phenanthroline (BLPhen), a New Type of Preorganized Mixed N, O-Donor Ligand That Separates Am (III) Over Eu (III) with Exceptionally High Efficiency. Inorg. Chem. 2017, 56(10), 5911–5917. DOI: 10.1021/acs.inorgchem.7b00555.
  • Annam, S.; Gopakumar, G.; Brahmmananda Rao, C.; Sivaraman, N.; Sivaramakrishna, A.; Vijayakrishna, K. Experimental and Theoretical Studies on Extraction of Actinides and Lanthanides by Alicyclic H-Phosphonates. Radiochim. Acta. 2017, 105(4), 329–339. DOI: 10.1515/ract-2016-2749.
  • Das, D.; Gopakumar, G.; Brahmmananda Rao, C.; Sivaraman, N.; Sivaramakrishna, A.; Vijayakrishna, K. Extraction and Coordination Behavior of Diphenyl Hydrogen Phosphine Oxide Towards Actinides. J. Coord. Chem. 2017, 70(19), 3338–3352. DOI: 10.1080/00958972.2017.1387653.
  • Sengupta, A.; Bhattacharyya, A.; Verboom, W.; Ali, S. M.; Mohapatra, P. K. Insight into the Complexation of Actinides and Lanthanides with Diglycolamide Derivatives: Experimental and Density Functional Theoretical Studies. J. Phys. Chem B. 2017, 121(12), 2640–2649. DOI: 10.1021/acs.jpcb.6b11222.
  • Radchenko, V.; Mastren, T.; Meyer, C. A.; Ivanov, A. S.; Bryantsev, V. S.; Copping, R.; Denton, D.; Engle, J. W.; Griswold, J. R.; Murphy, K. Radiometric Evaluation of Diglycolamide Resins for the Chromatographic Separation of Actinium from Fission Product Lanthanides. Talanta. 2017, 175, 318–324. DOI: 10.1016/j.talanta.2017.07.057.
  • Williams, N. J.; Dehaudt, J.; Bryantsev, V. S.; Luo, H.; Abney, C. W.; Dai, S. Selective Separation of Americium from Europium Using 2, 9-Bis (Triazine)-1, 10-Phenanthrolines in Ionic Liquids: A New Twist on an Old Story. Chem. Commun. 2017, 53(18), 2744–2747. DOI: 10.1039/C6CC09823A.
  • Bhattacharyya, A.; Egberink, R. J.; Mohapatra, P. K.; Verma, P. K.; Yadav, A. K.; Jha, S.; Bhattacharyya, D.; Huskens, J.; Verboom, W. Separation of Am 3+ and Eu 3+ Using Hexa- N -Octylnitrilo Triacetamide (HONTA): Complexation, Extraction, Luminescence, EXAFS and DFT Studies. Dalton Trans. 2017, 46(47), 16631–16639. DOI: 10.1039/C7DT03329J.
  • Bhattacharyya, A.; Leoncini, A.; Mohapatra, P. K.; Verma, P. K.; Kanekar, A. S.; Yadav, A. K.; Jha, S.; Bhattacharyya, D.; Egberink, R. J.; Huskens, J. A Diglycolamide-Functionalized TREN-Based Dendrimer with a ‘Crab-Like’grip for the Complexation of Actinides and Lanthanides. Dalton Trans. 2018, 47(42), 15164–15172. DOI: 10.1039/C8DT03051K.
  • Das, D.; Sivaramakrishna, A.; Gopakumar, G.; Rao, C. B.; Sivaraman, N.; Vijayakrishna, K. Diphenylmorpholine CMPO: Synthesis, Coordination Behavior and Extraction Studies of Actinides. Polyhedron. 2018, 141, 215–222. DOI: 10.1016/j.poly.2017.11.036.
  • Annam, S.; Gopakumar, G.; Rao, C. B.; Sivaraman, N.; Sivaramakrishna, A.; Vijayakrishna, K. Extraction of Actinides by Tri-N-Butyl Phosphate Derivatives: Effect of Substituents. Inorganica. Chimica. Acta. 2018, 469, 123–132. DOI: 10.1016/j.ica.2017.07.048.
  • Bhattacharyya, A.; Leoncini, A.; Egberink, R. J.; Mohapatra, P. K.; Verma, P. K.; Kanekar, A. S.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Huskens, J. First Report on the Complexation of Actinides and Lanthanides Using 2, 2′, 2′′-(((1, 4, 7-Triazonane-1, 4, 7-Triyl) Tris (2-Oxoethane-2, 1-Diyl)) Tris (Oxy)) Tris (N, N-Dioctylacetamide): Synthesis, Extraction, Luminescence, EXAFS, and DFT Studies. Inorg. Chem. 2018, 57(20), 12987–12998. DOI: 10.1021/acs.inorgchem.8b02255.
  • Bhattacharyya, A.; Gadly, T.; Kanekar, A. S.; Ghosh, S. K.; Kumar, M.; Mohapatra, P. K. First Report on the Separation of Trivalent Lanthanides from Trivalent Actinides Using an Aqueous Soluble Multiple N-Donor Ligand, 2, 6-Bis (1 H-Tetrazol-5-Yl) Pyridine: Extraction, Spectroscopic, Structural, and Computational Studies. Inorg. Chem. 2018, 57(9), 5096–5107. DOI: 10.1021/acs.inorgchem.8b00142.
  • Wang, Z.; Pu, N.; Tian, Y.; Xu, C.; Wang, F.; Liu, Y.; Zhang, L.; Chen, J.; Ding, S. Highly Selective Separation of Actinides from Lanthanides by Dithiophosphinic Acids: An In-Depth Investigation on Extraction, Complexation, and DFT Calculations. Inorg. Chem. 2018, 58(9), 5457–5467. DOI: 10.1021/acs.inorgchem.8b01635.
  • Ding, J.; Tang, S.; Chen, X.; Ding, M.; Kang, J.; Wu, R.; Fu, Z.; Jin, Y.; Li, L.; Feng, X. Introduction of Benzotriazole into Graphene Oxide for Highly Selective Coadsorption of an and Ln: Facile Synthesis and Theoretical Study. Chem. Eng. J. 2018, 344, 594–603. DOI: 10.1016/j.cej.2018.03.114.
  • Baldwin, A. G.; Ivanov, A. S.; Williams, N. J.; Ellis, R. J.; Moyer, B. A.; Bryantsev, V. S.; Shafer, J. C. Outer-Sphere Water Clusters Tune the Lanthanide Selectivity of Diglycolamides. ACS Cent. Sci. 2018, 4(6), 739–747. DOI: 10.1021/acscentsci.8b00223.
  • Kovacs, A.; Dau, P. D.; Marcalo, J.; Gibson, J. K. Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States. Inorg. Chem. 2018, 57(15), 9453–9467. DOI: 10.1021/acs.inorgchem.8b01450.
  • Reilly, S. D.; Su, J.; Keith, J. M.; Yang, P.; Batista, E. R.; Gaunt, A. J.; Harwood, L. M.; Hudson, M. J.; Lewis, F. W.; Scott, B. L. Plutonium Coordination and Redox Chemistry with the CyMe 4-BTPhen Polydentate N-Donor Extractant Ligand. Chem. Commun. 2018, 54(89), 12582–12585. DOI: 10.1039/C8CC06015K.
  • Huang, C.; Lv, H.; Zuo, C.; Yuan, Z.; Zheng, W.; Yan, T. Selective extraction of plutonium (IV) over uranium (VI), americium (III), europium (III) and zirconium (IV) with bidentate O-phenoxydiamide ligands: experimental and theoretical study. J. Radioanal. Nucl. Chem. 2018, 317(1), 103–110. DOI: 10.1007/s10967-018-5836-y.
  • Zhang, X.; Yuan, L.; Chai, Z.; Shi, W. Towards Understanding the Correlation Between UO 2 2+ Extraction and Substitute Groups in 2, 9-Diamide-1, 10-Phenanthroline. Sci. China Chem. 2018, 61(10), 1285–1292. DOI: 10.1007/s11426-018-9227-1.
  • Annam, S.; Gopakumar, G.; Rao, C. B.; Sivaraman, N.; Sivaramakrishna, A.; Vijayakrishna, K. Trihexyl Phosphate to Trihexyl Phosphine Oxide: Diverse Effect on Extraction Behavior of Actinides. J. Mol. Liq. 2018, 256, 416–423. DOI: 10.1016/j.molliq.2018.02.063.
  • Bhattacharyya, A.; Mohapatra, P. K.; Raut, D. R.; Leoncini, A.; Huskens, J.; Verboom, W. Unusual Reversal in Pu and U Extraction in an Ionic Liquid Using Two Tripodal Diglycolamide Ligands: Experimental and DFT Studies. Solvent Extr. Ion Exch. 2018, 36(6), 542–557. DOI: 10.1080/07366299.2018.1545285.
  • Blake, A. V. X-Ray Absorption Spectroscopy Studies of Metal Coordination Complexes and Investigations Toward Novel Actinide/Lanthanide Separation Methods; Iowa: The University of Iowa, 2018.
  • Gujar, R.; Ansari, S.; Verma, P.; Ali, S.; Goswami, D.; Yadav, A.; Jha, S.; Bhattacharyya, D.; Mohapatra, P. Complexation of CMPO with Trivalent F-Cations in Ionic Liquid Medium: Solvent Extraction, Spectroscopic. EXAFS And DFT Studies, Polyhedron. 2019, 162, 71–80. DOI: 10.1016/j.poly.2019.01.053.
  • Herdzik-Koniecko, I.; Wagner, C.; Trumm, M.; Müllich, U.; Schimmelpfennig, B.; Narbutt, J.; Geist, A.; Panak, P. J. Do an (III) and Ln (III) Ions Form Heteroleptic Complexes with Diglycolamide and Hydrophilic BT (B) P Ligands in Solvent Extraction Systems? A Spectroscopic and DFT Study. New. J. Chem. 2019, 43(16), 6314–6322. DOI: 10.1039/C9NJ00651F.
  • Li, Z.; Onghena, B.; Li, X.; Zhang, Z.; Binnemans, K. Enhancing metal separations using hydrophilic ionic liquids and analogues as complexing agents in the more polar phase of liquid–liquid extraction systems. Ind. Eng. Chem. Res. 2019, 58(34), 15628–15636. DOI: 10.1021/acs.iecr.9b03472.
  • Chandrasekar, A.; Sivaraman, N.; Ghanty, T. K.; Suresh, A. Experimental Evidence and Quantum Chemical Insights into Extraction and Third Phase Aggregation Trends in Ce (IV) Organophosphates. Sep. Purif. Techn. 2019, 217, 62–70. DOI: 10.1016/j.seppur.2019.02.007.
  • Ansari, S. A.; Mohapatra, P. K.; Leoncini, A.; Ali, S. M.; Huskens, J.; Verboom, W. Highly Efficient N-Pivot Tripodal Diglycolamide Ligands for Trivalent F-Cations: Synthesis, Extraction, Spectroscopy, and Density Functional Theory Studies. Inorg. Chem. 2019, 58(13), 8633–8644. DOI: 10.1021/acs.inorgchem.9b00985.
  • Zhang, X.; Wu, Q.; Lan, J.; Yuan, L.; Xu, C.; Chai, Z.; Shi, W. Highly Selective Extraction of Pu (IV) and Am (III) by N, N′-Diethyl-N, N′-Ditolyl-2, 9-Diamide-1, 10-Phenanthroline Ligand: An Experimental and Theoretical Study. Sep. Purif. Techn. 2019, 223, 274–281. DOI: 10.1016/j.seppur.2019.04.072.
  • Chandrasekar, A.; Suresh, A.; Joshi, M.; Sundararajan, M.; Ghanty, T. K.; Sivaraman, N. Highly Selective Separations of U (VI) from a Th (IV) Matrix by Branched Butyl Phosphates: Insights from Solvent Extraction, Chromatography and Quantum Chemical Calculations. Sep. Purif. Techn. 2019, 210, 182–194. DOI: 10.1016/j.seppur.2018.08.005.
  • Vijayakumar, V.; Ramesh Kumar, C.; Sivaraman, N.; Suresh, A.; Kanekar, A. S.; Bhattacharyya, A.; Mohapatra, P. K. Novel Diamide Ligands with a Central Carbonyl Group and Their Comparative Evaluation with the Diglycolamide Ligand: Synthesis, Extraction. DFT And Chromatographic Studies, Radiochimica Acta. 2019, 107(12), 1133–1144. DOI: 10.1515/ract-2019-3102.
  • Yu, J.; Yuan, L.; Wang, S.; Lan, J.; Zheng, L.; Xu, C.; Chen, J.; Wang, L.; Huang, Z.; Tao, W. Phosphonate-Decorated Covalent Organic Frameworks for Actinide Extraction: A Breakthrough Under Highly Acidic Conditions. CCS Chem. 2019, 1, 286–295.
  • Mossini, E.; Macerata, E.; Brambilla, L.; Panzeri, W.; Mele, A.; Castiglioni, C.; Mariani, M. Radiolytic Degradation of Hydrophilic PyTri Ligands for Minor Actinide Recycling. J. Radioanal. Nucl. Chem. 2019, 322(3), 1663–1673. DOI: 10.1007/s10967-019-06772-7.
  • Bhattacharyya, A.; Egberink, R. J.; Mohapatra, P. K.; Verma, P. K.; Kanekar, A. S.; Yadav, A. K.; Jha, S. N.; Bhatacharyya, D.; Huskens, J.; Verboom, W. Remarkable Enhancement in Extraction of Trivalent F-Block Elements Using a Macrocyclic Ligand with Four Diglycolamide Arms: Synthesis, Extraction, and Spectroscopic and Density Functional Theory Studies. Inorg. Chem. 2019, 58(21), 14885–14899. DOI: 10.1021/acs.inorgchem.9b02605.
  • Xu, L.; Pu, N.; Li, Y.; Wei, P.; Sun, T.; Xiao, C.; Chen, J.; Xu, C. Selective Separation and Complexation of Trivalent Actinide and Lanthanide by a Tetradentate Soft–Hard Donor Ligand: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorg. Chem. 2019, 58(7), 4420–4430. DOI: 10.1021/acs.inorgchem.8b03592.
  • Lehman-Andino, I.; Su, J.; Papathanasiou, K. E.; Eaton, T. M.; Jian, J.; Dan, D.; Albrecht-Schmitt, T. E.; Dares, C. J.; Batista, E. R.; Yang, P. Soft-donor dipicolinamide derivatives for selective actinide(iii)/lanthanide(iii) separation: the role of S- vs. O-donor sites. Chem. Commun. 2019, 55(17), 2441–2444. DOI: 10.1039/C8CC07683A.
  • Pu, N.; Xu, L.; Sun, T.; Chen, J.; Xu, C. Tremendous Impact of Substituent Group on the Extraction and Selectivity to Am (III) Over Eu (III) by Diaryldithiophosphinic Acids: Experimental and DFT Analysis. J. Radioanal. Nucl. Chem. 2019, 320(1), 219–226. DOI: 10.1007/s10967-019-06445-5.
  • Bhattacharyya, A.; Ansari, S. A.; Matveev, P. I.; Zakirova, G. G.; Borisova, N. E.; Petrov, V. G.; Sumyanova, T.; Verma, P. K.; Kalmykov, S. N.; Mohapatra, P. K. Unfolding the Complexation and Extraction of Am 3+ and Eu 3+ Using N-Heterocyclic Aromatic Diphosphonic Acids: A Combined Experimental and DFT Study. Dalton Trans. 2019, 48(43), 16279–16288. DOI: 10.1039/C9DT03422F.
  • Wilden, A.; Kowalski, P. M.; Klaß, L.; Kraus, B.; Kreft, F.; Modolo, G.; Li, Y.; Rothe, J.; Dardenne, K.; Geist, A. Unprecedented Inversion of Selectivity and Extraordinary Difference in the Complexation of Trivalent F Elements by Diastereomers of a Methylated Diglycolamide. Chem. Eur. J. 2019, 25(21), 5507–5513. DOI: 10.1002/chem.201806161.
  • Xu, L.; Zhang, A.; Pu, N.; Lu, Y.; Yang, H.; Liu, Z.; Ji, Y. Unusual Complexation Behaviors of R-BTPs with Water Molecule and Pd (II) Caused by Electronic Modulation of Substituents on BTP Backbone: New Insights into Palladium Separation Under the Framework of Minor actinides’ Partitioning. New. J. Chem. 2019, 43(23), 9052–9065. DOI: 10.1039/C9NJ00343F.
  • Bertoli, A. C.; Quintao, M. C.; De Abreu, H. A.; Ladeira, A. C. Q.; Duarte, H. A. Uranium Separation from Acid Mine Drainage Using Anionic Resins–An Experimental/Theoretical Investigation of Its Chemical Speciation and the Interaction Mechanism. J. Environ. Chem. Eng. 2019, 7(1), 102790. DOI: 10.1016/j.jece.2018.11.035.
  • Bhattacharyya, A.; Mohapatra, P. K.; Kanekar, A. S.; Dai, K.; Egberink, R. J.; Huskens, J.; Verboom, W. Combined Experimental and Density Functional Theoretical Studies of Am3+ and Eu3+ Extraction and Complexation with Different Nitrilotriacetamide (NTA) Derivatives. ChemistrySelect. 2020, 5(11), 3374–3384. DOI: 10.1002/slct.201904393.
  • Tsutsui, N.; Ban, Y.; Suzuki, H.; Nakase, M.; Ito, S.; Inaba, Y.; Matsumura, T.; Takeshita, K. Effects of Diluents on the Separation of Minor Actinides from Lanthanides with Tetradodecyl-1, 10-Phenanthroline-2, 9-Diamide from Nitric Acid Medium. Anal. Sci. 2020, 36(2), 241–245. DOI: 10.2116/analsci.19P275.
  • Pahan, S.; Sengupta, A.; Yadav, A.; Jha, S.; Bhattacharyya, D.; Ali, S. M.; Khan, P.; Debnath, A.; Banerjee, D.; Vincent, T. Exploring Functionalized Titania for Task Specific Application of Efficient Separation of Trivalent F-Block Elements. New. J. Chem. 2020, 44(16), 6151–6162. DOI: 10.1039/D0NJ01014F.
  • Jian, T.; Yu, X.; Dan, D.; Albrecht-Schmitt, T. E.; Autschbach, J.; Gibson, J. K. Gas-Phase Complexes of Americium and Lanthanides with a Bis-Triazinyl Pyridine: Reactivity and Bonding of Archetypes for F-Element Separations. J. Phys. Chem. A. 2020, 124(15), 2982–2990. DOI: 10.1021/acs.jpca.0c00675.
  • Yuan, D.; Zhang, S.; Tan, J.; Dai, Y.; Wang, Y.; He, Y.; Liu, Y.; Zhao, X.; Zhang, M.; Zhang, Q. Highly Efficacious Entrapment of Th (IV) and U (VI) from Rare Earth Elements in Concentrated Nitric Acid Solution Using a Phosphonic Acid Functionalized Porous Organic Polymer Adsorbent. Sep. Purif. Techn. 2020, 237, 116379. DOI: 10.1016/j.seppur.2019.116379.
  • Ren, P.; Huang, P.-W.; Yang, X.-F.; Zou, Y.; Tao, W.-Q.; Yang, S.-L.; Liu, Y.-H.; Wu, Q.-Y.; Yuan, L.-Y.; Chai, Z.-F. Hydrophilic Sulfonated 2, 9-Diamide-1, 10-Phenanthroline Endowed with a Highly Effective Ligand for Separation of Americium (III) from Europium (III): Extraction, Spectroscopy, and Density Functional Theory Calculations. Inorg. Chem. 2021, 60(1), 357–365. DOI: 10.1021/acs.inorgchem.0c03002.
  • Sinharoy, P.; Deb, A. S.; Ali, S. M.; Sharma, J.; Kaushik, C. Ligand Architectural Effect on Coordination, Bonding, Interaction, and Selectivity of Am (Iii) and Ln (Iii) Ions with Bitopic Ligands: Synthesis, Solvent Extraction, and DFT Studies. Phys. Chem. Chem. Phys. 2020, 22(27), 15448–15462. DOI: 10.1039/D0CP01615B.
  • Ren, P.; Wang, C.-Z.; Tao, W.-Q.; Yang, X.-F.; Yang, S.-L.; Yuan, L.-Y.; Chai, Z.-F.; Shi, W.-Q. Selective Separation and Coordination of Europium (III) and Americium (III) by Bisdiglycolamide Ligands: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorg. Chem. 2020, 59(19), 14218–14228. DOI: 10.1021/acs.inorgchem.0c02011.
  • Khan, P. N.; Bhattacharyya, A.; Sharma, J.; Manohar, S. The Recovery of Strontium from Acidic Medium Using Novel Strontium Selective Extractant: An Experimental and DFT Study. J. Hazard. Mater. 2020, 397, 122476. DOI: 10.1016/j.jhazmat.2020.122476.
  • Xu, L.; Pu, N.; Ye, G.; Xu, C.; Chen, J.; Zhang, X.; Lei, L.; Xiao, C. Unraveling the Complexation Mechanism of Actinide (III) and Lanthanide (III) with a New Tetradentate Phenanthroline-Derived Phosphonate Ligand. Inorg. Chem. Front. 2020, 7(8), 1726–1740. DOI: 10.1039/D0QI00200C.
  • Patra, K.; Sadhu, B.; Sengupta, A.; Patil, C.; Mishra, R.; Kaushik, C. Achieving Highly Efficient and Selective Cesium Extraction Using 1, 3-di-Octyloxycalix [4] Arene-Crown-6 in N-Octanol Based Solvent System: Experimental and DFT Investigation. R.S.C. Adv. 2021, 11(35), 21323–21331. DOI: 10.1039/D1RA02661E.
  • Xu, L.; Hao, Y.; Yang, X.; Wang, Z.; Xu, C.; Borisova, N. E.; Sun, M.; Zhang, X.; Lei, L.; Xiao, C. Comparative Investigation into the Complexation and Extraction Properties of Tridentate and Tetradentate Phosphine Oxide‐Functionalized 1, 10‐Phenanthroline Ligands Toward Lanthanides and Actinides. Chemistry. 2021, 27(41), 10717–10730. DOI: 10.1002/chem.202101224.
  • Fan, Y.; Li, Y.; Shu, X.; Wu, R.; Chen, S.; Jin, Y.; Xu, C.; Chen, J.; Huang, C.; Xia, C. Complexation and Separation of Trivalent Actinides and Lanthanides by a Novel DGA Derived from Macrocyclic Crown Ether: Synthesis, Extraction, and Spectroscopic and Density Functional Theory Studies. ACS Omega. 2021, 6(3), 2156–2166. DOI: 10.1021/acsomega.0c05317.
  • Bessen, N. P.; Popov, I. A.; Heathman, C. R.; Grimes, T. S.; Zalupski, P. R.; Moreau, L. M.; Smith, K. F.; Booth, C. H.; Abergel, R. J.; Batista, E. R. Complexation of Lanthanides and Heavy Actinides with Aqueous Sulfur-Donating Ligands. Inorg. Chem. 2021, 60(9), 6125–6134. DOI: 10.1021/acs.inorgchem.1c00257.
  • Cai, Y.; Yan, Q.; Wang, M.; Chen, J.; Fu, H.; Ye, J.; Conradson, S. D.; Yuan, L.; Xu, C.; Feng, W. Endowing 2, 6-Bis-Triazolyl-Pyridine of Poor Extraction with Superior Efficiency for Actinide/Lanthanide Separation at High Acidity by Anchoring to a Macrocyclic Scaffold. J. Hazard. Mater. 2021, 416, 125745. DOI: 10.1016/j.jhazmat.2021.125745.
  • Das, D.; Joshi, M.; Kannan, S.; Kumar, M.; Ghanty, T. K.; Pente, A.; Sengupta, A.; Kaushik, C. Exploration of N-Oxo Pyridine 2-Carboxamide Ligands Towards Coordination Chemistry, Solvent Extraction, and DFT Investigation for the Development of Novel Solvent for Lanthanide and Actinide Separation. Polyhedron. 2021, 201, 115166. DOI: 10.1016/j.poly.2021.115166.
  • Jegan, G.; Sachin, A. R.; Sreenivasulu, B.; Gopakumar, G.; Suresh, A.; Rao, C. B.; Sivaraman, N. Exploring Long-Chain Hexaalkyl Phosphoramides for Actinide Extraction: A Combined Experimental and Theoretical Investigation. Inorganica. Chimica. Acta. 2021, 525, 120496. DOI: 10.1016/j.ica.2021.120496.
  • Bessen, N.; Yan, Q.; Pu, N.; Chen, J.; Xu, C.; Shafer, J. Extraction of the Trivalent Transplutonium Actinides Americium Through Einsteinium by the Sulfur Donor Cyanex 301. Inorg. Chem. Front. 2021, 8(18), 4177–4185. DOI: 10.1039/D1QI00076D.
  • Cai, Y.; Ansari, S. A.; Fu, K.; Zhu, B.; Ma, H.; Chen, L.; Conradson, S. D.; Qin, S.; Fu, H.; Mohapatra, P. K. Highly Efficient Actinide (III)/Lanthanide (III) Separation by Novel Pillar [5] Arene-Based Picolinamide Ligands: A Study on Synthesis, Solvent Extraction and Complexation. J. Hazard. Mater. 2021, 405, 124214. DOI: 10.1016/j.jhazmat.2020.124214.
  • Meng, R.; Xu, L.; Yang, X.; Sun, M.; Xu, C.; Borisova, N. E.; Zhang, X.; Lei, L.; Xiao, C. Influence of a N-Heterocyclic Core on the Binding Capability of N, O-Hybrid Diamide Ligands Toward Trivalent Lanthanides and Actinides. Inorg. Chem. 2021, 60(12), 8754–8764. DOI: 10.1021/acs.inorgchem.1c00715.
  • Mhatre, A.; Agarwal, C.; Nag, T. N.; Bhattacharyya, A.; Tripathi, R. Phosphate-Based Ce (IV) Ion-Imprinted Polymers for Separation of Berkelium: Testing the Homologue Imprinting Approach for Heavy Actinides. ACS Appl. Polym. Mater. 2021, 3(3), 1465–1478. DOI: 10.1021/acsapm.0c01342.
  • Wang, S.; Wang, C.; Yang, X.-F.; Yu, J.-P.; Tao, W.-Q.; Yang, S.-L.; Ren, P.; Yuan, L.-Y.; Chai, Z.-F.; Shi, W.-Q. Selective Separation of Am (III)/Eu (III) by the QL-DAPhen Ligand Under High Acidity: Extraction, Spectroscopy, and Theoretical Calculations. Inorg. Chem. 2021, 60(24), 19110–19119. DOI: 10.1021/acs.inorgchem.1c02916.
  • Simonnet, M.; Kobayashi, T.; Shimojo, K.; Yokoyama, K.; Yaita, T. Study on Phenanthroline Carboxamide for Lanthanide Separation: Influence of Amide Substituents. Inorg. Chem. 2021, 60(17), 13409–13418. DOI: 10.1021/acs.inorgchem.1c01729.
  • Xu, L.; Yang, X.; Wang, Z.; Wang, S.; Sun, M.; Xu, C.; Zhang, X.; Lei, L.; Xiao, C. Unfolding the Extraction and Complexation Behaviors of Trivalent F-Block Elements by a Tetradentate N, O-Hybrid Phenanthroline Derived Phosphine Oxide Ligand. Inorg. Chem. 2021, 60(4), 2805–2815. DOI: 10.1021/acs.inorgchem.0c03727.
  • Bhattacharyya, A.; Ansari, S.; Karthikeyan, N.; Ravichandran, C.; Venkatachalapathy, B.; Rao, T.; Seshadri, H.; Mohapatra, P. Bis-(1, 2, 4-Triazin-3-Yl) Ligand Structure Driven Selectivity Reversal Between Am 3+ and Cm 3+: Solvent Extraction and DFT Studies. Dalton Trans. 2021, 50(22), 7783–7790. DOI: 10.1039/D1DT00307K.
  • Zhang, X.; Adelman, S. L.; Arko, B. T.; De Silva, C. R.; Su, J.; Kozimor, S. A.; Mocko, V.; Shafer, J. C.; Stein, B. W.; Schreckenbach, G. Advancing the Am Extractant Design Through the Interplay Among Planarity, Preorganization, and Substitution Effects. Inorg. Chem. 2022, 61(30), 11556–11570. DOI: 10.1021/acs.inorgchem.2c00534.
  • Boda, A.; Sahu, P.; Deb, A. S.; Ali, S. M. DFT, MD Simulations and Experimental Analysis of Adsorptive Complexation and Isotope Separation of Gadolinium Ion with Macrocyclic Crown Ether Embedded Polymeric Resin. Sep. Purif. Techn. 2022, 289, 120709. DOI: 10.1016/j.seppur.2022.120709.
  • Liu, Y.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Wu, W.-S.; Shi, W.-Q. Theoretical Probing of Size-Selective Crown Ether Macrocycle Ligands for Transplutonium Element Separation. Inorg. Chem. 2022, 61(10), 4404–4413. DOI: 10.1021/acs.inorgchem.1c03853.
  • Jegan, G.; Sreenivasulu, B.; Suresh, A.; Brahmananda Rao, C.; Sivaraman, N.; Gopakumar, G. Experimental and Theoretical Studies on Solvent Extraction of Uranium (VI) with Hexapropyl and Hexabutyl Phosphoramide Extractants. Solvent Extr. Ion Exch. 2022, 40(3), 312–332. DOI: 10.1080/07366299.2021.1925000.
  • Verlinden, B.; Van Hecke, K.; Wilden, A.; Hupert, M.; Santiago-Schübel, B.; Egberink, R. J.; Verboom, W.; Kowalski, P. M.; Modolo, G.; Verwerft, M. Gamma Radiolytic Stability of the Novel Modified Diglycolamide 2, 2′-Oxybis (N, N-Didecylpropanamide)(mTDDGA) for Grouped Actinide Extraction. R.S.C. Adv. 2022, 12(20), 12416–12426. DOI: 10.1039/D1RA08761D.
  • Yang, X.-F.; Liu, Y.; Tao, W.-Q.; Wang, S.; Ren, P.; Yang, S.-L.; Yuan, L.-Y.; Tang, H.-B.; Chai, Z.-F.; Shi, W.-Q. Lipophilic Phenanthroline Diamide Ligands in 1-Octanol for Separation of Am (III) from Eu (III. J. Environ. Chem. Eng. 2022, 10(5), 108401. DOI: 10.1016/j.jece.2022.108401.
  • Matsuda, S.; Yokoyama, K.; Yaita, T.; Kobayashi, T.; Kaneta, Y.; Simonnet, M.; Sekiguchi, T.; Honda, M.; Shimojo, K.; Doi, R. Marking Actinides for Separation: Resonance-Enhanced Multiphoton Charge Transfer in Actinide Complexes. Sci. Adv. 2022, 8(20), eabn1991. DOI: 10.1126/sciadv.abn1991.
  • Yang, X.; Wang, S.; Xu, L.; Yan, Q.; Xu, C.; Matveev, P.; Lei, L.; Xiao, C. New Tetradentate N, O-Hybrid Phenanthroline-Derived Organophosphorus Extractants for the Separation and Complexation of Trivalent Actinides and Lanthanides. Inorg. Chem. Front. 2022, 9(18), 4671–4684. DOI: 10.1039/D2QI01153K.
  • Wang, Y.; Hu, B.; Li, Q.; Wu, Y.; Shang, X.; Yang, P.; Cai, Y.; Yuan, L.; Feng, W. Novel phenanthroline-derived pyrrolidone ligands for efficient uranium separation: Liquid-liquid extraction, spectroscopy, and molecular simulations. J. Mol. Liq. 2022, 364, 119909. DOI: 10.1016/j.molliq.2022.119909.
  • Cao, H.; Wei, P.; Pu, N.; Zhang, Y.; Yang, Y.; Wang, Z.; Sun, T.; Chen, J.; Xu, C. Probing the Difference in the Complexation of Trivalent Actinides and Lanthanides with a Tridentate N, O-Hybrid Ligand: Spectroscopy, Thermodynamics, and Coordination Modes. Inorg. Chem. 2022, 61(16), 6063–6072. DOI: 10.1021/acs.inorgchem.2c00114.
  • Sinharoy, P.; Nair, D.; Panja, S.; Ali, S. M.; Banerjee, D.; Sugilal, G.; Kaushik, C. Pyridine diglycolamide: A novel ligand for plutonium extraction from nitric acid medium. Sep. Purif. Techn. 2022, 282, 120026. DOI: 10.1016/j.seppur.2021.120026.
  • Liu, X.; Xiao, S.; Jin, T.; Gao, F.; Wang, M.; Gao, Y.; Zhang, W.; Ouyang, Y.; Ye, G. Selective Entrapment of Thorium Using a Three-Dimensional Covalent Organic Framework and Its Interaction Mechanism Study. Sep. Purif. Techn. 2022, 296, 121413. DOI: 10.1016/j.seppur.2022.121413.
  • Miao, Y.; Xu, L.; Yang, X.; Wang, S.; Zhang, J.; Xu, C.; Xiao, C. Separation and Complexation of Trivalent Actinides and Lanthanides by Two Novel Asymmetric N, O-Hybrid Pyridyl Ligands: A Combination of Phosphoryl and Triazinyl Groups. Inorg. Chem. 2022, 61(44), 17911–17923. DOI: 10.1021/acs.inorgchem.2c03346.
  • Verma, P. K.; Gujar, R. B.; Ansari, S. A.; Ali, S. M.; Egberink, R. J.; Huskens, J.; Verboom, W.; Mohapatra, P. K. Sequestration of Am3+ and Eu3+ into Ionic Liquid Containing Aza-Macrocycle Based Multiple-Diglycolamide Ligands: Extraction, Complexation, Luminescence and DFT Studies. J. Mol. Liq. 2022, 347, 118291. DOI: 10.1016/j.molliq.2021.118291.
  • Verma, P. K.; Mahanty, B.; Sengupta, A.; Mohapatra, P. K.; Kumar, R.; Bhattacharyya, D.; Jha, S. N.; Ali, S. M. Simple, Fast, and Selective Dissolution of Eu2O3 in an Ionic Liquid as a Sustainable Paradigm for Lanthanide–Actinide Separations in Radioactive Waste Remediation. Inorg. Chem. 2023, 62(1), 87–97. DOI: 10.1021/acs.inorgchem.2c02965.
  • Borisova, N. E.; Fedoseev, A. M.; Kostikova, G. V.; Matveev, P. I.; Starostin, L. Y.; Sokolova, M. N.; Evsiunina, M. V. Solvent Extraction and Conformation Rigidity: Actinide (IV) and Actinide (VI) Come Together. Inorg. Chem. 2022, 61(51), 20774–20784. DOI: 10.1021/acs.inorgchem.2c02578.
  • Wang, Z.; Lu, J.-B.; Dong, X.; Yan, Q.; Feng, X.; Hu, H.-S.; Wang, S.; Chen, J.; Li, J.; Xu, C. Ultra-Efficient Americium/Lanthanide Separation Through Oxidation State Control. J. Am. Chem. Soc. 2022, 144(14), 6383–6389. DOI: 10.1021/jacs.2c00594.
  • Bhattacharyya, A.; Kanekar, A. S.; Egberink, R. J.; Verboom, W.; Huskens, J.; Mohapatra, P. K. Unique Selectivity Reversal Between Am 3+ and Eu 3+ Ions by Incorporation of Alkyl Branching in Diglycolamide Derivatives: DFT Validation of Experimental Results. New. J. Chem. 2022, 46(38), 18543–18550. DOI: 10.1039/D2NJ03007A.
  • Burk, J.; Sikk, L.; Tämm, K.; Burk, P. Comparative DFT Study of Americium and Europium Complexation with 2, 9-Bis (1, 2-Diazin-3-Yl)-1, 10-Phenanthroline Ligand in Gas Phase. Comput. Theor. Chem. 2022, 1214, 113786. DOI: 10.1016/j.comptc.2022.113786.
  • Ansari, S. A.; Mohapatra, P. K.; Boda, A.; Sheikh, M. A.; Leoncini, A.; Huskens, J.; Verboom, W., Structural Effects on Benzene-Centered Tripodal Diglycolamides on Separation of Trivalent F-Cations: Solvent Extraction and Dft Studies, Available at SSRN 4204950.
  • Cai, Y.; Wang, M.; Yuan, L.; W., Feng, Complexation and Separation of Palladium with Tridentate 2,6-Bis-triazolyl-pyridine Ligands: Synthesis, Solvent Extraction, Spectroscopy, Crystallography, and DFT Calculations. Inorg. Chem. 2023, 23(63), 9168–9177. DOI: 10.1021/acs.inorgchem.3c01034.
  • Zhang, H.; Ao, Y.-Y.; Wang, Y.; Zhao, S.-J.; Sun, J.-Y.; Zhai, M.-L.; Li, J.-Q.; Peng, J.; Li, H.-B. Effect of Radiolysis of TODGA on the Extraction of Todga/n-Dodecane Toward Eu (III): An Experimental and DFT Study. Nucl. Sci. Tech. 2023, 34(4), 48. DOI: 10.1007/s41365-023-01198-z.
  • Wang, Y.-L.; Li, F.-F.; Xiao, Z.; Wang, C.-Z.; Liu, Y.; Shi, W.-Q.; He, H. Experimental and Theoretical Studies on the Extraction Behavior of Cf(Iii) by NTAamide(C8) Ligand and the Separation of Cf(Iii)/Cm(Iii). R.S.C. Adv. 2023, 13(6), 3781–3791. DOI: 10.1039/D2RA07660H.
  • Chen, Y.; Zhang, P.; Yang, X.; Guo, Q.; Weng, H.; Chong, H.; Shi, W.; Lin, M. Radiolysis of Diamide Phenanthroline Extractant: Exploring the Mechanism of HNO3 Enhancing the Extraction and An/Ln Separation Performance After Irradiation. Sep. Purif. Techn. 2023, 318, 123994. DOI: 10.1016/j.seppur.2023.123994.
  • Chen, H.-L.; Zhou, B.; Qi, M.; Zou, Y.; Pei, H.-W.; Ren, P.; Huang, P.-W. Selective Separation of Pu (IV) and U (VI) with Bisdiglycolamde Ligands: Solvent Extraction and DFT Calculations. J. Radioanal. Nucl. Chem. 2023, 332(8), 3361–3369. DOI: 10.1007/s10967-023-09005-0.
  • Gujar, R. B.; Verma, P. K.; Mahanty, B.; Bhattacharyya, A.; Ali, S. M.; Egberink, R. J.; Huskens, J.; Verboom, W.; Mohapatra, P. K. Sequestration of Np4+ and NpO22+ Ions by Using Diglycolamide-Functionalized Azacrown Ethers in C8mim· NTf2 Ionic Liquid: Extraction, Spectroscopic, Electrochemical and DFT Studies. J. Mol. Liq. 2023, 370, 120872. DOI: 10.1016/j.molliq.2022.120872.
  • Chen, Y.; Ning, S.; Zhong, Y.; Li, Z.; Wang, J.; Chen, L.; Yin, X.; Fujita, T.; Wei, Y. Study on Highly Efficient Separation of Zirconium from Scandium with TODGA-Modified Macroporous Silica-Polymer Based Resin. Sep. Purif. Techn. 2023, 305, 122499. DOI: 10.1016/j.seppur.2022.122499.
  • Zhang, H.; Li, A.; Li, K.; Wang, Z.; Xu, X.; Wang, Y.; Sheridan, M. V.; Hu, H.-S.; Xu, C.; Alekseev, E. V. Ultrafiltration Separation of Am (VI)-Polyoxometalate from Lanthanides. Nature. 2023, 616(7957), 482–487. DOI: 10.1038/s41586-023-05840-z.
  • Cai, Y.; Ansari, S. A.; Yuan, L.; Feng, W.; Mohapatra, P. K. Unassisted and efficient actinide/lanthanide separation with pillar [5] arene-based picolinamide ligands in ionic liquids. Ind. Eng. Chem. Res. 2023, 62(12), 5297–5304. DOI: 10.1021/acs.iecr.3c00382.
  • Lewis, F. W.; Hudson, M. J.; Harwood, L. M. Development of Highly Selective Ligands for Separations of Actinides from Lanthanides in the Nuclear Fuel Cycle. Synlett. 2011, 2011(18), 2609–2632. DOI: 10.1055/s-0030-1289557.
  • Lan, J.-H.; Shi, W.-Q.; Yuan, L.-Y.; Zhao, Y.-L.; Li, J.; Chai, Z.-F. Trivalent Actinide and Lanthanide Separations by Tetradentate Nitrogen Ligands: A Quantum Chemistry Study. Inorg. Chem. 2011, 50(19), 9230–9237. DOI: 10.1021/ic200078j.
  • Ye, Z.-R.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Chai, Z.-F.; Wang, H.-Q.; Shi, W.-Q. Theoretical Insights into the Selective Separation of Am (III)/Eu (III) Using Hydrophilic Triazolyl-Based Ligands. Inorg. Chem. 2022, 61(16), 6110–6119. DOI: 10.1021/acs.inorgchem.2c00232.
  • Wang, C.-Z.; Lan, J.-H.; Wu, Q.-Y.; Zhao, Y.-L.; Wang, X.-K.; Chai, Z.-F.; Shi, W.-Q. Density Functional Theory Investigations of the Trivalent Lanthanide and Actinide Extraction Complexes with Diglycolamides. Dalton Trans. 2014, 43(23), 8713–8720. DOI: 10.1039/c4dt00032c.
  • Lei, X.-P.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Chai, Z.-F.; Nie, C.-M.; Shi, W.-Q. Theoretical Insights into the Separation of Am (III)/Eu (III): Designing Ligands Based on a Preorganization Strategy. Dalton Trans. 2022, 51(43), 16659–16667. DOI: 10.1039/D2DT02474H.
  • Wu, H.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Liu, Z.-R.; Chai, Z.-F.; Shi, W.-Q. New Insights into the Selectivity of Four 1, 10-Phenanthroline-Derived Ligands Toward the Separation of Trivalent Actinides and Lanthanides: A DFT Based Comparison Study. Dalton Trans. 2016, 45(19), 8107–8117. DOI: 10.1039/C6DT00296J.
  • Thomas, M. G.; Ebenezer, C.; Solomon, R. V. Tuning the Structure of Disulfonated Phenanthroline Based Ligands for Effective Separation of Am (III)/Eu (III) Ions: A DFT Investigation. J. Mol. Liq. 2021, 340, 117151. DOI: 10.1016/j.molliq.2021.117151.
  • Sadhu, B.; Dolg, M. Enhancing Actinide (III) Over Lanthanide (III) Selectivity Through Hard-By-Soft Donor Substitution: Exploitation and Implication of Near-Degeneracy-Driven Covalency. Inorg. Chem. 2019, 58(15), 9738–9748. DOI: 10.1021/acs.inorgchem.9b00705.
  • Huang, P.-W. Theoretical Unraveling of the Separation of Trivalent Am and Eu Ions by Phosphine Oxide Ligands with Different Central Heterocyclic Moieties. Dalton Trans. 2022, 51(18), 7118–7126. DOI: 10.1039/D2DT00509C.
  • Smith Sockwell, A. K. 2018 Multidentate Ligand Design for the F-elements (South Carolina: Clemson University) .
  • Lei, X.-P.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Chai, Z.-F.; Nie, C.-M.; Shi, W.-Q. Theoretical Insights into the Substitution Effect of Phenanthroline Derivatives on Am (III)/Eu (III) Separation. Inorg. Chem. 2023, 62(6), 2705–2714. DOI: 10.1021/acs.inorgchem.2c03823.
  • Wu, Q.-Y.; Song, Y.-T.; Ji, L.; Wang, C.-Z.; Chai, Z.-F.; Shi, W.-Q. Theoretically Unraveling the Separation of Am (III)/Eu (III): Insights from Mixed N, O-Donor Ligands with Variations of Central Heterocyclic Moieties. Phys. Chem. Chem. Phys. 2017, 19(39), 26969–26979. DOI: 10.1039/C7CP04625A.
  • Wang, C.; Wu, Q.-Y.; Kong, X.-H.; Wang, C.-Z.; Lan, J.-H.; Nie, C.-M.; Chai, Z.-F.; Shi, W.-Q. Theoretical Insights into the Selective Extraction of Americium (III) Over Europium (III) with Dithioamide-Based Ligands. Inorg. Chem. 2019, 58(15), 10047–10056. DOI: 10.1021/acs.inorgchem.9b01200.
  • Ye, Z.-R.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Chai, Z.-F.; Wang, H.-Q.; Shi, W.-Q. Theoretical Insights into the Separation of Am (III)/Eu (III) by Hydrophilic Sulfonated Ligands. Inorg. Chem. 2021, 60(21), 16409–16419. DOI: 10.1021/acs.inorgchem.1c02256.
  • Niu, K.; Yang, F.; Gaudin, T.; Ma, H.; Fang, W. Theoretical Study of Effects of Solvents, Ligands, and Anions on Separation of Trivalent Lanthanides and Actinides. Inorg. Chem. 2021, 60(13), 9552–9562. DOI: 10.1021/acs.inorgchem.1c00657.
  • Ebenezer, C.; Solomon, R. V. Preorganization of N, O-Hybrid Phosphine Oxide Chelators for Effective Extraction of Trivalent Am/Eu Ions–A Computational Study. New. J. Chem. 2022, 46(12), 5761–5770. DOI: 10.1039/D1NJ06029E.
  • Huang, P.-W.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Shi, W.-Q. Enhanced Am/Eu Separation Ability of Disulfonated Diamide N-Heterocyclic Ligands by Adjusting N-, O-Donor Affinity: A Theoretical Comparative Study. Sep. Purif. Techn. 2023, 319, 124030. DOI: 10.1016/j.seppur.2023.124030.
  • Zou, Y.; Lan, J.-H.; Yuan, L.-Y.; Wang, C.-Z.; Wu, Q.-Y.; Chai, Z.-F.; Ren, P.; Shi, W.-Q. Theoretical Insights into the Selectivity of Hydrophilic Sulfonated and Phosphorylated Ligands to Am (III) and Eu (III) Ions. Inorg. Chem. 2023, 62(11), 4581–4589. DOI: 10.1021/acs.inorgchem.2c04476.
  • Su, D.; Liu, Y.; Li, S.; Ding, S.; Jin, Y.; Wang, Z.; Hu, X.; Zhang, L. Selective Extraction of Americium (III) Over Europium (III) Ions with Pyridylpyrazole Ligands: Structure–Property Relationships. Eur. J. Inorg. Chem. 2017, 2017(3), 651–658. DOI: 10.1002/ejic.201601011.
  • Wang, H.; Cui, T.; Sui, J.; Mocilac, P.; Wang, Y.; Guo, Z. Efficient UO22+ extraction by DAPhens with asymmetric terminal groups: The molecular design, spectral titration, liquid-liquid extraction and mechanism study. Sep. Purif. Techn. 2022, 282, 120046. DOI: 10.1016/j.seppur.2021.120046.
  • Ebenezer, C.; Solomon, R. V. Does the Length of the Alkyl Chain Affect the Complexation and Selectivity of Phenanthroline-Derived Phosphonate Ligands?–Answers from DFT Calculations. Polyhedron. 2021, 210, 115533–115535. DOI: 10.1016/j.poly.2021.115533.
  • Zsabka, P.; Hecke, K. V.; Wilden, A.; Modolo, G.; Verwerft, M.; Binnemans, K.; Cardinaels, T. Selective extraction of americium from curium and the lanthanides by the lipophilic ligand CyMe4BTPhen dissolved in Aliquat-336 nitrate ionic liquid. Solvent Extr. Ion Exch. 2020, 38(2), 194–211. DOI: 10.1080/07366299.2019.1708006.
  • Li, Y.; Yang, X.; Ren, P.; Sun, T.; Shi, W.; Wang, J.; Chen, J.; Xu, C. Substituent Effect on the Selective Separation and Complexation of Trivalent Americium and Lanthanides by N, O-Hybrid 2, 9-Diamide-1, 10-Phenanthroline Ligands in Ionic Liquid. Inorg. Chem. 2021, 60(7), 5131–5139. DOI: 10.1021/acs.inorgchem.1c00169.
  • Ustynyuk, Y. A.; Gloriozov, I. P.; Kalmykov, S. N.; Mitrofanov, A. A.; Babain, V. A.; Alyapyshev, M. Y.; Ustynyuk, N. A. Pyridinedicarboxylic Acid Diamides as Selective Ligands for Extraction and Separation of Trivalent Lanthanides and Actinides: DFT Study. Solvent Extr. Ion Exch. 2014, 32(5), 508–528. DOI: 10.1080/07366299.2014.915666.
  • Kong, X.-H.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Chai, Z.-F.; Nie, C.-M.; Shi, W.-Q. Insight into the Extraction Mechanism of Americium (III) Over Europium (III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study. J. Phys. Chem. A. 2018, 122(18), 4499–4507. DOI: 10.1021/acs.jpca.8b00177.
  • Chen, Y.-M.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Nie, C.-M.; Shi, W.-Q. Theoretical Insights into Modification of Nitrogen-Donor Ligands to Improve Performance on Am (III)/Eu (III) Separation. Inorg. Chem. 2020, 59(5), 3221–3231. DOI: 10.1021/acs.inorgchem.9b03604.
  • Wang, J.; Hou, Y.-C.; Guo, Y.-R.; Wang, X.-Y.; Ding, S.-D.; Pan, Q.-J. Tuning the Alkyl Chain of Nitrilotriacetamide for Selectively Extracting Trivalent Am Over Eu Ions. Inorg. Chem. 2023, 62(27), 10762–10771. DOI: 10.1021/acs.inorgchem.3c01297.
  • Ebenezer, C.; Solomon, R. V. Uptake of Am (III) Ions and Eu (III) Ions Using Cyclic Substituted N, O‐Hybrid 1, 10‐Phenanthroline Derived Phosphine Oxide Ligands‐A DFT Exploration. ChemistrySelect. 2022, 7(17), e202200446. DOI: 10.1002/slct.202200446.
  • Ebenezer, C.; Solomon, R. V. Complexation of N-Heterocyclic Substituted 1,10-Phenanthroline-2,9-Diamide with Am 3+ /Eu 3+ Ions for Nuclear Waste Water Treatment. ChemistrySelect. 2022, 7(45), e202203535. DOI: 10.1002/slct.202203535.
  • Yang, Y.; Fang, Y.; Liu, J.; Hu, S.; Hu, S.; Yang, L.; Wang, D.; Zhang, H.; Luo, S. Complexation Behavior of Eu (III), Tb (III), Tm (III), and Am (III) with Three 1, 10-Phenanthroline-Type Ligands: Insights from Density Functional Theory. J. Mol. Model. 2015, 21(7), 1–29. DOI: 10.1007/s00894-015-2721-2.
  • Yang, Y.; Hu, S.; Fang, Y.; Wei, H.; Hu, S.; Wang, D.; Yang, L.; Zhang, H.; Luo, S. Density Functional Theory Study of the Eu (III) and Am (III) Complexes with Two 1, 10-Phenanthroline-Type Ligands. Polyhedron. 2015, 95, 86–90. DOI: 10.1016/j.poly.2015.03.032.
  • Kong, X.-H.; Wu, Q.-Y.; Lan, J.-H.; Wang, C.-Z.; Chai, Z.-F.; Nie, C.-M.; Shi, W.-Q. Theoretical Insights into Preorganized Pyridylpyrazole-Based Ligands Toward the Separation of Am (III)/Eu (III. Inorg. Chem. 2018, 57(23), 14810–14820. DOI: 10.1021/acs.inorgchem.8b02550.
  • Mason, M. M.; Smith, C.; Vasiliu, M.; Carrick, J. D.; Dixon, D. A. Prediction of an (III)/Ln (III) Separation by 1, 2, 4-Triazinylpyridine Derivatives. J. Phys. Chem. A. 2021, 125(30), 6529–6542. DOI: 10.1021/acs.jpca.1c01854.
  • Ebenezer, C.; Solomon, R. V. Tailoring the Selectivity of Phenanthroline Derivatives for the Partitioning of Trivalent Am/Eu Ions–A Relativistic DFT Study. Inorg. Chem. Front. 2021, 8(12), 3012–3024. DOI: 10.1039/D1QI00097G.
  • Liu, Y.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Liu, Q.; Shi, W.-Q. Theoretical Insights into Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-Triazine Ligands. Inorg. Chem. 2021, 60(14), 10267–10279. DOI: 10.1021/acs.inorgchem.1c00668.
  • Ebenezer, C.; Solomon, R. V. Role of Sulphur and Oxygen in Phosphine Ligands in the Extraction Process of Am3+ Over Eu3+ Ions in Water Medium–A Theoretical Study. J. Mol. Liq. 2023, 382, 122035. DOI: 10.1016/j.molliq.2023.122035.
  • Ebenezer, C.; Solomon, R. V. Selective Complexation of Trivalent Americium Over Europium with Substituted Triazolebipyridine-Based Ligand in High Level-Liquid Waste-A DFT Investigation. Polyhedron. 2022, 220, 115832. DOI: 10.1016/j.poly.2022.115832.
  • Vinod, S.; Ebenezer, C.; Solomon, R. V. Do Mono-Or Diphenol Substitutions in Phenanthroline-Based Ligands Serve in Effective Separation of Am3+/Eu3+ Ions?-Insights from DFT Calculations. Sep. Sci. Technol. 2023, 58(4), 627–641. DOI: 10.1080/01496395.2022.2160352.
  • Zhang, S.-M.; Wu, Q.-Y.; Yuan, L.-Y.; Wang, C.-Z.; Lan, J.-H.; Chai, Z.-F.; Liu, Z.-R.; Shi, W.-Q. Theoretical Insights into the Substitution Effect of Phenanthroline Derivative Ligands on the Extraction of Mo (VI). Sep. Purif. Technol. 2022, 280, 119817. DOI: 10.1016/j.seppur.2021.119817.
  • Borisova, N. E.; Kostin, A. A.; Reshetova, M. D.; Lyssenko, K. A.; Belova, E. V.; Myasoedov, B. F. The Structurally Rigid Tetradentate N, N′, O, O′-Ligands Based on Phenanthroline for Binding of F-Elements: The Substituents Vs. Structures of the Complexes. Inorganica. Chimica. Acta. 2018, 478, 148–154. DOI: 10.1016/j.ica.2018.03.042.
  • Wu, Y.; Liu, N.; Ding, S. Water-Soluble Ligands Used in the Separation of Actinides and the Partitioning of Trivalent Lanthanides from Actinides. Progress In Chemistry. 2014, 26, 1655.
  • Sundararajan, M. Designing Novel Nanomaterials Through Functionalization of Carbon Nanotubes with Supramolecules for Application in Nuclear Waste Management. Sep. Sci. Technol. 2013, 48(16), 2391–2396. DOI: 10.1080/01496395.2013.807829.
  • Yu, J.; Ma, J.; Yang, C.; Yu, H. Binding Affinity of Pyridines with Am III/Cm III Elucidated by Density Functional Theory Calculations. Dalton Trans. 2019, 48(5), 1613–1623. DOI: 10.1039/C8DT04669G.
  • Wu, S.; Zhang, Y.; Li, A. Y. Effects of Electron-Withdrawing and -Donating Substituents in N-Donor Scorpionate Ligands and the Metal 5 F /4 F Orbitals on Am(iii)/Eu(iii) Complexation and Separation. ChemistrySelect. 2022, 7(47), e202203622. DOI: 10.1002/slct.202203622.
  • Augustine, L. J.; Kasper, J. M.; Forbes, T. Z.; Mason, S. E.; Batista, E. R.; Yang, P. Influencing Bonding Interactions of the Neptunyl (V, VI) Cations with Electron-Donating And-Withdrawing Groups. Inorg. Chem. 2023, 62(15), 6055–6064. DOI: 10.1021/acs.inorgchem.2c04538.
  • Jennifer, A. G.; Ebenezer, C.; Solomon, R. V. Selective Complexation of Trivalent Americium Over Europium with Substituted Triazolebipyridine-Based Ligand in High Level-Liquid Waste-A DFT Investigation. Polyhedron. 2022, 220, 115832. DOI: 10.1016/j.poly.2022.115832.
  • Ebenezer, C.; Solomon, R. V. Do Nitrate Ions Preferentially Bind to Ln/An Ion in Nuclear Waste Treatment?–Answers from DFT Calculations. Polyhedron. 2022, 215, 115691–115695. DOI: 10.1016/j.poly.2022.115691.
  • Ebenezer, C.; Solomon, R. V. Exploring the Solvation of Water Molecules Around Radioactive Elements in Nuclear Waste Water Treatment. Phys. Sci. Rev. 2023. DOI: 10.1515/psr-2022-0262.
  • Zaytsev, A. V.; Bulmer, R.; Kozhevnikov, V. N.; Sims, M.; Modolo, G.; Wilden, A.; Waddell, P. G.; Geist, A.; Panak, P. J.; Wessling, P. Exploring the Subtle Effect of Aliphatic Ring Size on Minor Actinide‐Extraction Properties and Metal Ion Speciation in Bis‐1, 2, 4‐Triazine Ligands. Chemistry. 2020, 26(2), 428–437. DOI: 10.1002/chem.201903685.
  • Ta, A. T.; Hegde, G. A.; Etz, B. D.; Baldwin, A. G.; Yang, Y.; Shafer, J. C.; Jensen, M. P.; Maupin, C. M.; Vyas, S. Solvation Dynamics of HEHEHP Ligand at the Liquid–Liquid Interface. J. Phys. Chem B. 2018, 122(22), 5999–6006. DOI: 10.1021/acs.jpcb.8b03165.
  • Rode, J. E.; Narbutt, J.; Dudek, M. K.; Kaźmierski, S.; Dobrowolski, J. C. On the Conformation of the Actinide-Selective Hydrophilic SO3-Ph-BTP Ligand in Aqueous Solution. A Computational Study. J. Mol. Liq. 2016, 219, 224–231. DOI: 10.1016/j.molliq.2016.02.085.
  • Huang, P.-W.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Song, G.; Chai, Z.-F.; Shi, W.-Q. Understanding Am 3+/Cm 3+ Separation with H 4 TPAEN and Its Hydrophilic Derivatives: A Quantum Chemical Study. Phys. Chem. Chem. Phys. 2018, 20(20), 14031–14039. DOI: 10.1039/C7CP08441B.
  • Huang, P.-W.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Shi, W.-Q. Quantum Chemical Studies of Selective Back-Extraction of Am (III) from Eu (III) and Cm (III) with Two Hydrophilic 1, 10-Phenanthroline-2, 9-Bis-Triazolyl Ligands. Radiochim. Acta. 2020, 108(7), 517–526. DOI: 10.1515/ract-2019-3197.
  • Manna, D.; Ghanty, T. K. Complexation Behavior of Trivalent Actinides and Lanthanides with 1, 10-Phenanthroline-2, 9-Dicarboxylic Acid Based Ligands: Insight from Density Functional Theory. Phys. Chem. Chem. Phys. 2012, 14(31), 11060–11069. DOI: 10.1039/c2cp40083a.
  • Kimura, T.; Kaneko, M.; Watanabe, M.; Miyashita, S.; Nakashima, S. Computational Chemical Analysis of Eu (Iii) and Am (Iii) Complexes with Pnictogen-Donor Ligands Using DFT Calculations. Dalton Trans. 2018, 47(42), 14924–14931. DOI: 10.1039/C8DT01973H.
  • Kaneko, M.; Watanabe, M. Correlation Between Am (III)/Eu (III) Selectivity and Covalency in Metal–Chalcogen Bonds Using Density Functional Calculations. J. Radioanal. Nucl. Chem. 2018, 316(3), 1129–1137. DOI: 10.1007/s10967-017-5683-2.
  • Bhattacharyya, A.; Mohapatra, P. K. Ligand Structure and Topology Effects in Complexation Selectivity of Am 3+ and Eu 3+ with ′O′, ′N′ and ′S′ Heterocyclic Diamides: A DFT Study. ChemistrySelect. 2021, 6(19), 4651–4660. DOI: 10.1002/slct.202101289.
  • Cárdenas, R.; Martínez-Seoane, J.; Amero, C. Combining Experimental Data and Computational Methods for the Non-Computer Specialist. Molecules. 2020, 25(20), 4783. DOI: 10.3390/molecules25204783.
  • Council, N. R. Opportunities in Protection Materials Science and Technology for Future Army Applications; Washington D.C.: National Academies Press, 2011.
  • Dasgupta, A.; Pecht, M. G.; Mathieu, B. Design-Of-Experiment Methods for Computational Parametric Studies in Electronic Packaging. Finite Ele. Anal. Des. 1998, 30(1–2), 125–146. DOI: 10.1016/S0168-874X(98)00033-X.
  • Coupez, B.; Boehme, C.; Wipff, G. Interaction of Bifunctional Carbonyl and Phosphoryl Ligands with M 3+ Lanthanide Cations: How Strong is the Bidentate Effect? The Role of Ligand Size and Counterions Investigated by Quantum Mechanics. Phys. Chem. Chem. Phys. 2002, 4(23), 5716–5729. DOI: 10.1039/B207177K.
  • Berny, F.; Muzet, N.; Troxler, L.; Dedieu, A.; Wipff, G. Interaction of M3+ Lanthanide Cations with Amide, Pyridine, and Phosphoryl O PPh3 Ligands: A Quantum Mechanics Study. Inorg. Chem. 1999, 38(6), 1244–1252. DOI: 10.1021/ic980788a.
  • Meskaldji, S.; Belkhiri, L.; Arliguie, T.; Fourmigué, M.; Ephritikhine, M.; Boucekkine, A. Density Functional Theory Investigations of the Homoleptic Tris (Dithiolene) Complexes [M (Dddt) 3]− Q (Q= 3, 2; M= Nd3+ and U3+/4+) Related to Lanthanide (III)/Actinide (III) Differentiation. Inorg. Chem. 2010, 49(7), 3192–3200. DOI: 10.1021/ic902135t.
  • Chatterjee, T.; Sarma, M.; Das, S. K. Supramolecular architectures from ammonium-crown ether inclusion complexes in polyoxometalate association: synthesis, structure, and spectroscopy. Cryst. Growth Des. 2010, 10(7), 3149–3163. DOI: 10.1021/cg100292u.
  • Petit, L.; Adamo, C.; Maldivi, P. Toward a Clear-Cut Vision on the Origin of 2, 6-di (1, 2, 4-Triazin-3-Yl) Pyridine Selectivity for Trivalent Actinides: Insights from Theory. Inorg. Chem. 2006, 45(21), 8517–8522. DOI: 10.1021/ic060227g.
  • Petit, L.; Joubert, L.; Maldivi, P.; Adamo, C. A Comprehensive Theoretical View of the Bonding in Actinide Molecular Complexes. J. Am. Chem. Soc. 2006, 128(7), 2190–2191. DOI: 10.1021/ja056908c.
  • Cao, X.; Heidelberg, D.; Ciupka, J.; Dolg, M. First-Principles Study of the Separation of AmIII/CmIII from EuIII with Cyanex301. Inorg. Chem. 2010, 49(22), 10307–10315. DOI: 10.1021/ic100844t.
  • Lendvay, G. Bond Orders from Ab Initio Calculations and a Test of the Principle of Bond Order Conservation. J. Phys. Chem. 1989, 93(11), 4422–4429. DOI: 10.1021/j100348a011.
  • Mulliken, R. S. Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 1955, 23(10), 1841–1846. DOI: 10.1063/1.1740589.
  • Matta, C. F.; Boyd, R. J. An Introduction to the Quantum Theory of Atoms in Molecules, the Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug DesignA; Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
  • Morokuma, K. Molecular Orbital Studies of Hydrogen Bonds. III. C= O··· H–O Hydrogen Bond in H2CO··· H2O and H2CO··· 2H2O. J. Chem. Phys. 1971, 55(3), 1236–1244. DOI: 10.1063/1.1676210.
  • Wiberg, K. B. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron. 1968, 24(3), 1083–1096. DOI: 10.1016/0040-4020(68)88057-3.
  • Mayer, I. Charge, Bond Order and Valence in the AB Initio SCF Theory. Chem. Phys. Lett. 1983, 97(3), 270–274. DOI: 10.1016/0009-2614(83)80005-0.
  • Nalewajski, R. F.; Mrozek, J.; Michalak, A. Two‐Electron Valence Indices from the Kohn‐Sham Orbitals. Int. J. Quant. Chem. 1997, 61(3), 589–601. DOI: 10.1002/(SICI)1097-461X(1997)61:3<589:AID-QUA28>3.0.CO;2-2.
  • Pople, J. Application of Self-Consistent Molecular Orbital Methods to π-Electrons. J. Phys. Chem. 1957, 61(1), 6–10. DOI: 10.1021/j150547a002.
  • Nalewajski, R. F.; Mrozek, J. Modified Valence Indices from the Two‐Particle Density Matrix. Int J. Quant. Chem. 1994, 51(4), 187–200. DOI: 10.1002/qua.560510403.
  • Nalewajski, R. F.; Formosinho, S. J.; Varandas, A. J.; Mrozek, J. Quantum Mechanical Valence Study of a Bond‐Breaking–bond‐Forming Process in Triatomic Systems. Int. J. Quantum Chem. 1994, 52(5), 1153–1176. DOI: 10.1002/qua.560520504.
  • Nalewajski, R. F.; Mrozek, J. Hartree‐Fock Difference Approach to Chemical Valence: Three‐Electron Indices in UHF Approximation. Int. J. Quantum Chem. 1996, 57(3), 377–389. DOI: 10.1002/(SICI)1097-461X(1996)57:3<377:AID-QUA11>3.0.CO;2-1.
  • Nalewajski, R. F.; Mrozek, J.; Mazur, G. Quantum chemical valence indices from the one-determinantal difference approach. Can. J. Chem. 1996, 74(6), 1121–1130. DOI: 10.1139/v96-126.
  • Mrozek, J.; Nalewajski, R. F.; Michalak, A. Exploring Bonding Patterns of Molecular Systems Using Quantum Mechanical Bond Multiplicities. Pol. J. Chem. 1998, 72, 1779–1791.
  • Zou, Y.; Lan, J.-H.; Yuan, L.-Y.; Wang, C.-Z.; Wu, Q.-Y.; Chai, Z.-F.; Ren, P.; Shi, W.-Q. Theoretical Insights into Phenanthroline-Based Ligands Toward the Separation of Am (III)/Eu (III. Inorg. Chem. 2022, 61(39), 15423–15431. DOI: 10.1021/acs.inorgchem.2c01952.
  • Wu, H.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Liu, Z.-R.; Chai, Z.-F.; Shi, W.-Q. Theoretical Insights into the Separation of Am (III) Over Eu (III) with PhenBHPPA. Dalton Trans. 2015, 44(38), 16737–16745. DOI: 10.1039/C5DT02528A.
  • Wang, C.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Nie, C.-M.; Chai, Z.-F.; Shi, W.-Q. Theoretical Insights into Selective Separation of Trivalent Actinide and Lanthanide by Ester and Amide Ligands Based on Phenanthroline Skeleton. Dalton Trans. 2020, 49(13), 4093–4099. DOI: 10.1039/D0DT00218F.
  • Woolley, R. Must a Molecule Have a Shape? J. Am. Chem. Soc. 1978, 100(4), 1073–1078. DOI: 10.1021/ja00472a009.
  • Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. What is an Atom in a Molecule? J. Phys. Chem. A. 2005, 109(17), 3957–3959. DOI: 10.1021/jp0404596.
  • Löwdin, P. O. On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals. J. Chem. Phys. 1950, 18(3), 365–375. DOI: 10.1063/1.1747632.
  • Foster, A. J.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102(24), 7211–7218. DOI: 10.1021/ja00544a007.
  • Rives, A.; Weinhold, F. Natural Hybrid Orbitals: Ab Initio SCF and CI Results for CO and NiCO. Int. J. Quantum Chem. 1980, 18(S14), 201–209. DOI: 10.1002/qua.560180824.
  • Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near‐Hartree–fock Water Dimer. J. Chem. Phys. 1983, 78(6), 4066–4073. DOI: 10.1063/1.445134.
  • Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83(2), 735–746. DOI: 10.1063/1.449486.
  • Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta. 1977, 44(2), 129–138. DOI: 10.1007/BF00549096.
  • Narbutt, J.; Oziminski, W. P. Selectivity of Bis-Triazinyl Bipyridine Ligands for Americium (III) in Am/Eu Separation by Solvent Extraction. Part 1. Quantum Mechanical Study on the Structures of BTBP Complexes and on the Energy of the Separation. Dalton Trans. 2012, 41(47), 14416–14424. DOI: 10.1039/c2dt31503c.
  • Huang, P.-W.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Shi, W.-Q. Enhancing the Am 3+/Cm 3+ Separation Ability by Weakening the Binding Affinity of N Donor Atoms: A Comparative Theoretical Study of N, O Combined Extractants. Dalton Trans. 2021, 50(10), 3559–3567. DOI: 10.1039/D0DT04266H.
  • Qu, N.; Su, D.-M.; Wu, Q.-Y.; Shi, W.-Q.; Pan, Q.-J. Metal-Metal Multiple Bond in Low-Valent Diuranium Porphyrazines and Its Correlation with Metal Oxidation State: A Relativistic DFT Study. Comput. Theor. Chem. 2017, 1108, 29–39. DOI: 10.1016/j.comptc.2017.03.011.
  • Kirk, S. R.; Jenkins, S. Beyond Energetic and Scalar Measures: Next Generation Quantum Theory of Atoms in Molecules. WIREs Comput. Mol. Sci. 2022, 12(6), e1611. DOI: 10.1002/wcms.1611.
  • Kirker, I.; Kaltsoyannis, N. Does Covalency Really Increase Across the 5f Series? A Comparison of Molecular Orbital, Natural Population, Spin and Electron Density Analyses of AnCp 3 (An = Th–Cm; Cp = η 5 -C 5 H 5). Dalton Trans. 2011, 40(1), 124–131. DOI: 10.1039/C0DT01018A.
  • Mountain, A. R.; Kaltsoyannis, N. Do QTAIM Metrics Correlate with the Strength of Heavy Element–Ligand Bonds? Dalton Trans. 2013, 42(37), 13477–13486. DOI: 10.1039/c3dt51337h.
  • Arnold, P. L.; Prescimone, A.; Farnaby, J. H.; Mansell, S. M.; Parsons, S.; Kaltsoyannis, N. Characterizing Pressure‐Induced Uranium C? H Agostic Bonds. Angewandte Chemie. 2015, 127(23), 6839–6843. DOI: 10.1002/ange.201411250.
  • Kaltsoyannis, N. Does Covalency Increase or Decrease Across the Actinide Series? Implications for Minor Actinide Partitioning. Inorg. Chem. 2013, 52(7), 3407–3413. DOI: 10.1021/ic3006025.
  • Kaltsoyannis, N. Covalency Hinders AnO 2 (H 2 O) + → AnO(oh) 2 + Isomerisation (An = Pa–Pu). Dalton Trans. 2016, 45(7), 3158–3162. DOI: 10.1039/C5DT04317D.
  • Huang, Q.-R.; Kingham, J. R.; Kaltsoyannis, N. The Strength of Actinide–Element Bonds from the Quantum Theory of Atoms-In-Molecules. Dalton Trans. 2015, 44(6), 2554–2566. DOI: 10.1039/C4DT02323D.
  • Tassell, M. J.; Kaltsoyannis, N. Covalency in AnCp4 (An= Th–Cm): A Comparison of Molecular Orbital, Natural Population and Atoms-In-Molecules Analyses. Dalton Trans. 2010, 39(29), 6719–6725. DOI: 10.1039/c000704h.
  • Vlaisavljevich, B.; Miró, P.; Cramer, C. J.; Gagliardi, L.; Infante, I.; Liddle, S. T. On the Nature of Actinide– and Lanthanide–Metal Bonds in Heterobimetallic Compounds. Chemistry. 2011, 17(30), 8424–8433. DOI: 10.1002/chem.201100774.
  • Kerridge, A. Quantification of F-Element Covalency Through Analysis of the Electron Density: Insights from Simulation. Chem. Commun. 2017, 53(50), 6685–6695. DOI: 10.1039/C7CC00962C.
  • Arnold, P. L.; Turner, Z. R.; Kaltsoyannis, N.; Pelekanaki, P.; Bellabarba, R. M.; Tooze, R. P. Covalency in Ce IV and U IV Halide and N-Heterocyclic Carbene Bonds. Chemistry. 2010, 16(31), 9623–9629. DOI: 10.1002/chem.201001471.
  • Schnaars, D. D.; Gaunt, A. J.; Hayton, T. W.; Jones, M. B.; Kirker, I.; Kaltsoyannis, N.; May, I.; Reilly, S. D.; Scott, B. L.; Wu, G. Bonding Trends Traversing the Tetravalent Actinide Series: Synthesis, Structural, and Computational Analysis of AnIV (Aracnac) 4 Complexes (An= Th, U, Np, Pu; Aracnac= Ar NC (Ph) CHC (Ph) O; Ar= 3, 5-T Bu2C6H3). Inorg. Chem. 2012, 51(15), 8557–8566. DOI: 10.1021/ic301109f.
  • Ziegler, T.; Rauk, A. On the Calculation of Bonding Energies by the Hartree Fock Slater Method. Theoret. Chim. Acta. 1977, 46(1), 1–10. DOI: 10.1007/BF02401406.
  • Hopffgarten, M. V.; Frenking, G. Energy Decomposition Analysis, Wiley Interdisciplinary Reviews. WIREs Comput. Mol. Sci. 2012, 2(1), 43–62. DOI: 10.1002/wcms.71.
  • Stone, A. Intermolecular forces. In Molecular Liquids, ed.; Yarwood, J.; Dordrecht: Springer, 1984; pp. 1–34.
  • Szalewicz, K.; Jeziorski, B. Symmetry-Adapted Double-Perturbation Analysis of Intramolecular Correlation Effects in Weak Intermolecular Interactions: The He-He Interaction. Mol. Phys. 1979, 38, 191–208. DOI: 10.1080/00268977900101601.
  • Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94(7), 1887–1930. DOI: 10.1021/cr00031a008.
  • Misquitta, A. J.; Podeszwa, R.; Jeziorski, B.; Szalewicz, K. Intermolecular Potentials Based on Symmetry-Adapted Perturbation Theory with Dispersion Energies from Time-Dependent Density-Functional Calculations. J. Chem. Phys. 2005, 123(21), 214103. DOI: 10.1063/1.2135288.
  • Williams, H. L.; Chabalowski, C. F. Using Kohn− Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions. J. Phys. Chem. A. 2001, 105(3), 646–659. DOI: 10.1021/jp003883p.
  • Jansen, G.; Hesselmann, A. Comment on “Using Kohn−sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions”. J. Phys. Chem. A. 2001, 105(49), 11156–11157. DOI: 10.1021/jp0112774.
  • Heßelmann, A.; Jansen, G. First-Order Intermolecular Interaction Energies from Kohn–Sham Orbitals. Chem. Phys. Lett. 2002, 357(5–6), 464–470. DOI: 10.1016/S0009-2614(02)00538-9.
  • Te Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22(9), 931–967. DOI: 10.1002/jcc.1056.
  • Bickelhaupt, F.; Baerends, E. Reviews in Computational Chemistry, In; John Wiley and Sons: New York, NY, USA, 2000; pp. 1–86.
  • Mitoraj, M. P.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5(4), 962–975. DOI: 10.1021/ct800503d.
  • Glendening, E. D. Natural Energy Decomposition Analysis: Extension to Density Functional Methods and Analysis of Cooperative Effects in Water Clusters. J. Phys. Chem. A. 2005, 109(51), 11936–11940. DOI: 10.1021/jp058209s.
  • Reinhardt, P.; Piquemal, J.-P.; Savin, A. Fragment-Localized Kohn− Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis. J. Chem. Theory Comput. 2008, 4(12), 2020–2029. DOI: 10.1021/ct800242n.
  • Luo, J.; Wang, C.; Lan, J.; Wu, Q.; Zhao, Y.; Chai, Z.; Nie, C.; Shi, W. Theoretical Studies on the Complexation of Eu (III) and Am (III) with HDEHP: Structure, Bonding Nature and Stability. Sci. China Chem. 2016, 59(3), 324–331. DOI: 10.1007/s11426-015-5489-4.
  • Ho, J.; Klamt, A.; Coote, M. L. Comment on the Correct Use of Continuum Solvent Models. J. Phys. Chem. A. 2010, 114(51), 13442–13444. DOI: 10.1021/jp107136j.
  • Narbutt, J.; Wodyński, A.; Pecul, M. The Selectivity of Diglycolamide (TODGA) and Bis-Triazine-Bipyridine (BTBP) Ligands in Actinide/Lanthanide Complexation and Solvent Extraction Separation–A Theoretical Approach. Dalton Trans. 2015, 44(6), 2657–2666. DOI: 10.1039/C4DT02657H.
  • Kaneko, M.; Miyashita, S.; Nakashima, S. Bonding Study on the Chemical Separation of Am (III) from Eu (III) by S-, N-, and O-Donor Ligands by Means of All-Electron ZORA-DFT Calculation. Inorg. Chem. 2015, 54(14), 7103–7109. DOI: 10.1021/acs.inorgchem.5b01204.
  • Kaneko, M.; Miyashita, S.; Nakashima, S. Benchmark Study of the Mössbauer Isomer Shifts of Eu and Np Complexes by Relativistic DFT Calculations for Understanding the Bonding Nature of F-Block Compounds. Dalton Trans. 2015, 44(17), 8080–8088. DOI: 10.1039/C4DT03064H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.