Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Latest Articles
42
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Direct and mediator-based Z-scheme heterojunctions involving bi2moo6 for abatement of dyes and pharmaceuticals

, , , &

References

  • Rathi, B. S.; Kumar, P. S.; Vo, D.-V. N. Critical Review on Hazardous Pollutants in Water Environment: Occurrence, Monitoring, Fate, Removal Technologies and Risk Assessment. Sci. Total Environ. 2021, 797, 149134. DOI: 10.1016/j.scitotenv.2021.149134
  • Hanafi, M. F.; Sapawe, N., A Review on the Water Problem Associate with Organic Pollutants Derived from Phenol, Methyl Orange, and Remazol Brilliant Blue Dyes. Materials Today: Proceedings, Melaka, 2020. 31: p. A141–A150.
  • Stelo, F., Recent Advances in Bi2MoO6 Based Z-Scheme Heterojunctions for Photocatalytic Degradation of Pollutants. J. Alloys Compound. 2020, 829, 154591. DOI: 10.1016/j.jallcom.2020.154591
  • Hanafi, M. F.; Sapawe, N., A Review on the Current Techniques and Technologies of Organic Pollutants Removal from Water/wastewater. Materials Today: Proceedings, Melaka, 2020. 31: p. A158–A165.
  • Kaur, K.; Kaur, K.; Badru, R.; Singh, P. P.; Kaushal, S. Photodegradation of Organic Pollutants Using Heterojunctions: A Review. J. Environ. Chem. Eng. 2020, 8(2), 103666. DOI: 10.1016/j.jece.2020.103666
  • Bano, K.; Mittal, S. K.; Singh, P. P.; Kaushal, S. Sunlight Driven Photocatalytic Degradation of Organic Pollutants Using a MnV 2 O 6/BiVO 4 Heterojunction: Mechanistic Perception and Degradation Pathways. Nanoscale Adv. 2021, 3(22), 6446–6458. DOI: 10.1039/D1NA00499A
  • Hemmati-Eslamlu, P.; Habibi-Yangjeh, A. A Review on Impressive Z-And S-Scheme Photocatalysts Composed of G-C3N4 for Detoxification of Antibiotics. Flat. Chem. 2023, 43, 100597. DOI: 10.1016/j.flatc.2023.100597
  • Seifikar, F.; Habibi-Yangjeh, A. Floating Photocatalysts As Promising Materials for Environmental Detoxification and Energy Production: A Review. Chemosphere. 2024, 355, 141686. DOI: 10.1016/j.chemosphere.2024.141686
  • Habibi-Yangjeh, A.; Pournemati, K. A Review on Emerging Homojunction Photocatalysts with Impressive Performances for Wastewater Detoxification. Crit. Rev. Environ. Sci. Technol. 2024, 54(4), 290–320. DOI: 10.1080/10643389.2023.2239125
  • Balakrishnan, A.; Gaware, G. J.; Chinthala, M. Heterojunction Photocatalysts for the Removal of Nitrophenol: A Systematic Review. Chemosphere. 2023, 310, 136853. DOI: 10.1016/j.chemosphere.2022.136853
  • Zhu, S.; Wang, D. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Adv. Energy Mater. 2017, 7(23), 1700841. DOI: 10.1002/aenm.201700841
  • Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A. M.; Karuppuchamy, S. Recent Advances in Semiconductor Metal Oxides with Enhanced Methods for Solar Photocatalytic Applications. J. Alloys Compound. 2020, 828, 154281. DOI: 10.1016/j.jallcom.2020.154281
  • Suhan, M. B. K.; Shuchi, S. B.; Al-Mamun, M. R.; Roy, H.; Islam, M. S. Enhanced UV Light-Driven Photocatalytic Degradation of Methyl Orange Using MoO3/wo3-Fluorinated TiO2 Nanocomposites. Envir. Nanotech. Monit. & Manag. 2023, 19, 100768. DOI: 10.1016/j.enmm.2022.100768
  • Sun, H.; Qin, P.; Wu, Z.; Liao, C.; Guo, J.; Luo, S.; Chai, Y. Visible Light-Driven Photocatalytic Degradation of Organic Pollutants by a Novel Ag3VO4/Ag2CO3 P–N Heterojunction Photocatalyst: Mechanistic Insight and Degradation Pathways. J. Alloys Compound. 2020, 834, 155211. DOI: 10.1016/j.jallcom.2020.155211
  • Micheal, K.; Ayeshamariam, A.; Devanesan, S.; Bhuvaneswari, K.; Pazhanivel, T.; AlSalhi, M. S.; Aljaafreh, M. J. Environmental Friendly Synthesis of Carbon Nanoplates Supported ZnO Nanorods for Enhanced Degradation of Dyes and Organic Pollutants with Visible Light Driven Photocatalytic Performance. J. King Saud Univ. Sci. 2020, 32(1), 1081–1087. DOI: 10.1016/j.jksus.2019.10.003
  • Palanivel, B.; Hossain, M. S.; Macadangdang, R. R.; Sahaya Jude Dhas, S.; Al-Enizi, A. M.; Ubaidullah, M.; Kim, W. K.; Gedi, S.; Ignatius Arockiam, S. Effect of rGO Support on Gd@ ZnO for UV–Visible-light Driven Photocatalytic Organic Pollutant Degradation. J. Rare Earths. 2023, 41(10), 1525–1531. DOI: 10.1016/j.jre.2022.07.019
  • Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. DOI: 10.1016/j.apcatb.2018.11.080
  • Pan, Q.; Wang, J.; Chen, H.; Yin, P.; Cheng, Q.; Xiao, Z.; Zhao, Y.-Z.; Liu, H.-B. Piezo-Photocatalysis of Sr-Doped Bi4O5Br2/Bi2MoO6 Composite Nanofibers to Simultaneously Remove Inorganic and Organic Contaminants. J. Water Process Eng. 2023, 56, 104330. DOI: 10.1016/j.jwpe.2023.104330
  • Liu, Z.; Li, X.; Su, S.; Ding, W.; Meng, L.; Wang, Y.; Tan, M.; Luo, M. Enhancing Photocatalytic Nitrogen Fixation Performance of Co-Doped Bismuth Molybdate Through Band Engineering Tuning. Appl. Surf. Sci. 2023, 611, 155627. DOI: 10.1016/j.apsusc.2022.155627
  • Waqar, M.; Imran, M.; Adil, S. F.; Noreen, S.; Latif, S.; Khan, M.; Siddiqui, M. R. H. Enhanced Photoluminescence and Photocatalytic Efficiency of La-Doped Bismuth Molybdate: Its Preparation and Characterization. Materials. 2019, 13(1), 35. DOI: 10.3390/ma13010035
  • Jia, Q.; Nguyen, P. K.; Gu, Z.; Zhang, X.; Liu, M.; Tian, X.; Ma, L.; Gong, L.; Mu, X.; Chang, Y., et al. N-Doped Bismuth Molybdate Decorated with Pt Nanoparticles Removal Azo Dyes Efficiently via the Synergistic Effect of Adsorption and Photocatalysis. J. Alloys Compound. 2021, 863, 158336. DOI: 10.1016/j.jallcom.2020.158336
  • Zhang, Y.; Zhao, Y.; Xiong, Z.; Xiao, R.; Gao, T.; Liu, P.; Liu, J.; Zhang, J. Enhanced Photocatalytic Hg0 Oxidation Activity of Iodine Doped Bismuth Molybdate (Bi2moo6) Under Visible Light. J. Coll. Interf. Sci. 2022, 607, 1864–1875. DOI: 10.1016/j.jcis.2021.10.012
  • Wang, G.; Huo, T.; Deng, Q.; Yu, F.; Xia, Y.; Li, H.; Hou, W. Surface-Layer Bromine Doping Enhanced Generation of Surface Oxygen Vacancies in Bismuth Molybdate for Efficient Photocatalytic Nitrogen Fixation. Appl. Catal. B Environ. 2022, 310, 121319. DOI: 10.1016/j.apcatb.2022.121319
  • Yang, H. A Short Review on Heterojunction Photocatalysts: Carrier Transfer Behavior and Photocatalytic Mechanisms. Mater. Res. Bull. 2021, 142, 111406. DOI: 10.1016/j.materresbull.2021.111406
  • Cui, H.; Dong, S.; Wang, K.; Luan, M.; Huang, T. Synthesis of a Novel Type-II In2S3/Bi2MoO6 Heterojunction Photocatalyst: Excellent Photocatalytic Performance and Degradation Mechanism for Rhodamine B. Sep. Purif. Technol. 2021, 255, 117758.
  • Kanagaraj, T.; Murphin Kumar, P. S.; Thomas, R.; Kulandaivelu, R.; Subramani, R.; Mohamed, R. N.; Lee, S.; Chang, S. W.; Chung, W. J.; Nguyen, D. D., et al. Novel Pure α-, β-, and Mixed-Phase α/β-Bi2O3 Photocatalysts for Enhanced Organic Dye Degradation Under Both Visible Light and Solar Irradiation. Environ. Res. 2022, 205, 112439. DOI: 10.1016/j.envres.2021.112439
  • Dong, Y.; Ma, A.; Zhang, D.; Gao, Y.; Li, H. Preparation of High-Performance α-Bi2O3 Photocatalysts and Their Photocatalytic Activity. Sur. Inn. 2020, 8(5), 295–303. DOI: 10.1680/jsuin.20.00013
  • Lotfi, S.; Ouardi, M. E.; Ahsaine, H. A.; Assani, A. Recent Progress on the Synthesis, Morphology and Photocatalytic Dye Degradation of BiVo4 Photocatalysts: A Review. Catal. Rev. 2022, 66(1), 1–45. DOI: 10.1080/01614940.2022.2057044
  • Nguyen, T. D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V. N.; Nguyen, V. H.; Van Tran, T.; Nong, L. X.; Nguyen, T. T.; Bach, L.-G.; Abdullah, B., et al. BiVO 4 Photocatalysis Design and Applications to Oxygen Production and Degradation of Organic Compounds: A Review. Environ. Chem. Lett. 2020, 18(6), 1779–1801.
  • Dulyasucharit, R.; Wongkasemjit, S.; Nanan, S.; Intharaksa, O.; Masingboon, C. Magnetic Fe3O4/Bi2O2 (OH)(NO3) As a Sunlight-Driven Photocatalyst for Rhodamine B Degradation. J. Solid State Chem. 2023, 319, 123784. DOI: 10.1016/j.jssc.2022.123784
  • Orimolade, B. O.; Idris, A. O.; Feleni, U.; Mamba, B. Recent Advances in Degradation of Pharmaceuticals Using Bi2WO6 Mediated Photocatalysis–A Comprehensive Review. Environ. Pollut. 2021, 289, 117891. DOI: 10.1016/j.envpol.2021.117891
  • Chankhanittha, T.; Somaudon, V.; Photiwat, T.; Hemavibool, K.; Nanan, S. Preparation, Characterization, and Photocatalytic Study of Solvothermally Grown CTAB-Capped Bi2WO6 Photocatalyst Toward Photodegradation of Rhodamine B Dye. Opt. Mater. 2021, 117, 111183. DOI: 10.1016/j.optmat.2021.111183
  • Sun, H.; Zou, C.; Liao, Y.; Tang, W.; Huang, Y.; Chen, M. Modulating Charge Transport Behavior Across the Interface via G-C3N4 Surface Discrete Modified BiOI and Bi2MoO6 for Efficient Photodegradation of Glyphosate. J. Alloys Compound. 2023, 935, 168208. DOI: 10.1016/j.jallcom.2022.168208
  • Zhong, S.; Wang, X.; Wang, Y.; Zhou, F.; Li, J.; Liang, S.; Li, C. Preparation of Y3±doped BiOcl Photocatalyst and Its Enhancing Effect on Degradation of Tetracycline Hydrochloride Wastewater. J. Alloys Compound. 2020, 843, 155598. DOI: 10.1016/j.jallcom.2020.155598
  • Meng, L.; Qu, Y.; Jing, L. Recent Advances in BiObr-Based Photocatalysts for Environmental Remediation. Chin. Chem. Lett. 2021, 32(11), 3265–3276. DOI: 10.1016/j.cclet.2021.03.083
  • Arumugam, M.; Choi, M. Y. Recent Progress on Bismuth Oxyiodide (BiOI) Photocatalyst for Environmental Remediation. J. Ind. Eng. Chem. 2020, 81, 237–268. DOI: 10.1016/j.jiec.2019.09.013
  • Chankhanittha, T.; Nanan, S. Visible-Light-Driven Photocatalytic Degradation of Ofloxacin (OFL) Antibiotic and Rhodamine B (RhB) Dye by Solvothermally Grown ZnO/Bi2MoO6 Heterojunction. J. Coll. Interf. Sci. 2021, 582, 412–427. DOI: 10.1016/j.jcis.2020.08.061
  • Xue, J.; Li, F.; Li, S.; Zhang, J.; Bi, Q. Preparation and Properties of Bismuth Molybdate (Bi2moo6) As Photoanode for Methylene Blue Degradation. Int. J. Electrochem. Sci. 2022, 17(1), 220136. DOI: 10.20964/2022.01.29
  • Xu, J.; Yue, J.; Niu, J.; Chen, M. Synergistic Removal of Cr (VI) and Dye Contaminants by 0D/2D Bismuth Molybdate Homojunction Photocatalyst Under Visible Light. Appl. Surf. Sci. 2019, 484, 1080–1088. DOI: 10.1016/j.apsusc.2019.04.146
  • Shukla, B. K.; Rawat, S.; Gautam, M. K.; Bhandari, H.; Garg, S.; Singh, J. Photocatalytic Degradation of Orange G Dye by Using Bismuth Molybdate: Photocatalysis Optimization and Modeling via Definitive Screening Designs. Molecules. 2022, 27(7), 2309. DOI: 10.3390/molecules27072309
  • Lavakusa, B.; Rama Devi, D.; Belachew, N.; Basavaiah, K. Selective Synthesis of Visible Light Active γ-Bismuth Molybdate Nanoparticles for Efficient Photocatalytic Degradation of Methylene Blue, Reduction of 4-Nitrophenol, and Antimicrobial Activity. Rsc. Adv. 2020, 10(60), 36636–36643. DOI: 10.1039/D0RA07459D
  • Qiu, Y.; Lu, J.; Yan, Y.; Niu, J.; Duan, Y. Bismuth Molybdate Photocatalyst for the Efficient Photocatalytic Degradation of Tetracycline in Water Under Visible-Light Irradiation. Surf. Interfaces. 2022, 31, 102009. DOI: 10.1016/j.surfin.2022.102009
  • Mao, Y.; Qiu, B.; Zhang, M.; Yin, H.; Yao, J.; Liu, X.; Chen, S. Bismuth Molybdate Heterojunction Composited by Nickel Hydroxide Ultrafine Nanosheet with High Photodecomposition Efficiency. Solar Ener. 2020, 207, 832–840. DOI: 10.1016/j.solener.2020.07.031
  • Peng, Y.; Zhang, Y.; Tian, F.; Zhang, J.; Yu, J. Structure Tuning of Bi2MoO6 and Their Enhanced Visible Light Photocatalytic Performances. Crit. Rev. Solid State Mater. Sci. 2017, 42(5), 347–372. DOI: 10.1080/10408436.2016.1200009
  • Yuan, Y.; Guo, R.-T.; Hong, L.-F.; Ji, X.-Y.; Lin, Z.-D.; Li, Z.-S.; Pan, W.-G. A Review of Metal Oxide-Based Z-Scheme Heterojunction Photocatalysts: Actualities and Developments. Mater. Today Energy. 2021, 21, 100829. DOI: 10.1016/j.mtener.2021.100829
  • Chou, X.; Ye, J.; He, J.; Ge, K.; Liu, J.; Fu, C.; Zhou, X.; Wang, S.; Zhang, Y.; Yang, Y. One-Step Solvothermal Synthesis of BiPO 4/Bi2 MoO6 Heterostructure with Oxygen Vacancies and Z-Scheme System for Enhanced Photocatalytic Performance. Chem. Select. 2019, 4(28), 8327–8333. DOI: 10.1002/slct.201901433
  • Si, Y.; Chen, Y.; Xu, M.; Zhang, X.; Zuo, F.; Yan, Q. Synthesis and Characterization of Z-Scheme Ag 2 WO 4/Bi 2 MoO 6 Heterojunction Photocatalyst: Enhanced Visible-Light Photodegradation of Organic Pollutant. J. Mater. Sci. Mater. Electron. 2020, 31(2), 1191–1199. DOI: 10.1007/s10854-019-02630-0
  • Li, R.; Chen, H.; Xiong, J.; Xu, X.; Cheng, J.; Liu, X.; Liu, G. A Mini Review on Bismuth-Based Z-Scheme Photocatalysts. Materials. 2020, 13(22), 5057. DOI: 10.3390/ma13225057
  • Hu, X.; Guo, R.-T.; Chen, X.; Bi, Z.-X.; Wang, J.; Pan, W.-G. Bismuth-Based Z-Scheme Structure for Photocatalytic CO2 Reduction: A Review. J. Environ. Chem. Eng. 2022, 10(6), 108582. DOI: 10.1016/j.jece.2022.108582
  • Guo, L.; Huang, H.; Mei, L.; Li, M.; Zhang, Y. Bismuth-Based Z-Scheme Photocatalytic Systems for Solar Energy Conversion. Mater. Chem. Front. 2021, 5(6), 2484–2505. DOI: 10.1039/D0QM00895H
  • Sivakumar, R.; Lee, N. Y. Emerging Bismuth-Based Direct Z-Scheme Photocatalyst for the Degradation of Organic Dye and Antibiotic Residues. Chemosphere. 2022, 297, 134227. DOI: 10.1016/j.chemosphere.2022.134227
  • Qin, K.; Zhao, Q.; Yu, H.; Xia, X.; Li, J.; He, S.; Wei, L.; An, T. A Review of Bismuth-Based Photocatalysts for Antibiotic Degradation: Insight into the Photocatalytic Degradation Performance, Pathways and Relevant Mechanisms. Environ. Res. 2021, 199, 111360. DOI: 10.1016/j.envres.2021.111360
  • Khedr, T. M.; Wang, K.; Kowalski, D.; El-Sheikh, S. M.; Abdeldayem, H. M.; Ohtani, B.; Kowalska, E. Bi2WO6‐Based Z-Scheme Photocatalysts: Principles, Mechanisms and Photocatalytic Applications. J. Environ. Chem. Eng. 2022, 10(3), 107838. DOI: 10.1016/j.jece.2022.107838
  • Dhawan, A.; Sudhaik, A.; Raizada, P.; Thakur, S.; Ahamad, T.; Thakur, P.; Singh, P.; Hussain, C. M. BiFeo3-Based Z Scheme Photocatalytic Systems: Advances, Mechanism, and Applications. J. Ind. Eng. Chem. 2023, 117, 1–20. DOI: 10.1016/j.jiec.2022.10.001
  • Khan, N.; Stelo, F.; Santos, G. H. C.; Rossi, L. M.; Gonçalves, R. V.; Wender, H. Recent Advances on Z-Scheme Engineered BiVo4-Based Semiconductor Photocatalysts for CO2 Reduction: A Review. Appl. Sur. Sci. Adv. 2022, 11, 100289. DOI: 10.1016/j.apsadv.2022.100289
  • Wang, S.; Yang, X.; Zhang, X.; Ding, X.; Yang, Z.; Dai, K.; Chen, H. A Plate-On-Plate Sandwiched Z-Scheme Heterojunction Photocatalyst: BiObr-Bi2MoO6 with Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2017, 391, 194–201. DOI: 10.1016/j.apsusc.2016.07.070
  • Wang, D.; Shen, H.; Guo, L.; Fu, F.; Liang, Y. Design and Construction of the Sandwich-Like Z-Scheme Multicomponent CdS/Ag/Bi 2 MoO 6 Heterostructure with Enhanced Photocatalytic Performance in RhB Photodegradation. New. J. Chem. 2016, 40(10), 8614–8624. DOI: 10.1039/C6NJ01893A
  • Opoku, F.; Govender, K. K.; Sittert, C. G. C. E. V.; Govender, P. P. Insights into the Photocatalytic Mechanism of Mediator-Free Direct Z-Scheme G-C3N4/Bi2MoO6 (010) and G-C3N4/Bi2WO6 (010) Heterostructures: A Hybrid Density Functional Theory Study. Appl. Surf. Sci. 2018, 427, 487–498. DOI: 10.1016/j.apsusc.2017.09.019
  • Hu, T.; Li, H.; Liang, Z.; Du, N.; Hou, W. Facile Synthesis of Indium Hydroxide Nanosheet/Bismuth Molybdate Hierarchical Microsphere Heterojunction with Enhanced Photocatalytic Performance. J. Coll. Interf. Sci. 2019, 545, 301–310. DOI: 10.1016/j.jcis.2019.03.040
  • Zhu, P.; Chen, Y.; Duan, M.; Ren, Z.; Hu, M. Construction and Mechanism of a Highly Efficient and Stable Z-Scheme Ag 3 PO 4/Reduced Graphene Oxide/Bi 2 MoO 6 Visible-Light Photocatalyst. Catal. Sci. Technol. 2018, 8(15), 3818–3832. DOI: 10.1039/C8CY01087K
  • Chen, C.; Wang, Y.; Yi, Z.; Wang, S.; Ma, J.; Gao, H.; Wu, X.; Liu, G.; Yang, H. PH-Induced Structural Evolution, Photodegradation Mechanism and Application of Bismuth Molybdate Photocatalyst. Adv. Powder Tech. 2022, 33(12), 103858. DOI: 10.1016/j.apt.2022.103858
  • Zhao, J.; Zhang, H.; Jia, S.; Jiang, D.; Zhan, Q. Z-Scheme Bi2MoO6 Nanoplate-Decorated Flower-Like Bi12SiO20 for Efficient Photocatalytic Degradation of Organic Pollutants. J. Mater. Sci. 2021, 56(27), 15241–15257. DOI: 10.1007/s10853-021-06263-9
  • Maswanganyi, S.; Gusain, R.; Kumar, N.; Fosso-Kankeu, E.; Waanders, F. B.; Ray, S. S. Bismuth Molybdate Nanoplates Supported on Reduced Graphene Oxide: An Effective Nanocomposite for the Removal of Naphthalene via Adsorption–Photodegradation. ACS Omega. 2021, 6(26), 16783–16794. DOI: 10.1021/acsomega.1c01296
  • Jia, Y.; Lin, Y.; Ma, Y.; Shi, W. Fabrication of Hollow Bi2MoO6 Nanorods with Efficient Photocatalytic Performance. Mater. Lett. 2019, 234, 83–86. DOI: 10.1016/j.matlet.2018.09.081
  • Zhang, J.; Wang, Y.; Wang, Y.; Shuai, X.; Zhao, R.; Abubakr Yasin, U. A.; Guo, T.; Du, J.; Li, J. Modulation and Self-Assembly of Nanoparticles into Bismuth Molybdate Nanosheets As Highly Efficient Photocatalysts for Ciprofloxacin Degradation. Environ. Sci. Nano. 2022, 9(8), 2979–2989. DOI: 10.1039/D2EN00445C
  • Wang, M.; Zhang, Y.; Jin, C.; Li, Z.; Chai, T.; Zhu, T. Fabrication of Novel Ternary Heterojunctions of Pd/g-C3N4/Bi2MoO6 Hollow Microspheres for Enhanced Visible-Light Photocatalytic Performance Toward Organic Pollutant Degradation. Sep. Purif. Technol. 2019, 211, 1–9.
  • Li, N.; Gao, H.; Wang, X.; Zhao, S.; Lv, D.; Yang, G.; Gao, X.; Fan, H.; Gao, Y.; Ge, L., et al. Novel Indirect Z-Scheme G-C3N4/Bi2MoO6/Bi Hollow Microsphere Heterojunctions with SPR-Promoted Visible Absorption and Highly Enhanced Photocatalytic Performance. Chin. J. Catal. 2020, 41(3), 426–434.
  • Yang, R.; Zhao, Q.; Liu, B. Two-Step Method to Prepare the Direct Z-Scheme Heterojunction Hierarchical Flower-Like Ag@ AgBr/Bi 2 MoO 6 Microsphere Photocatalysts for Waste Water Treatment Under Visible Light. J. Mater. Sci. Mater. Electron. 2020, 31(7), 5054–5067. DOI: 10.1007/s10854-020-03040-3
  • Jia, Y.; Ma, Y.; Tang, J.; Shi, W. Hierarchical Nanosheet-Based Bi 2 MoO 6 Microboxes for Efficient Photocatalytic Performance. Dalton Trans. 2018, 47(16), 5542–5547. DOI: 10.1039/C8DT00061A
  • Abazari, R.; Mahjoub, A. R.; Shariati, J.; Noruzi, S. Photocatalytic Wastewater Purification Under Visible Light Irradiation Using Bismuth Molybdate Hollow Microspheres with High Surface Area. J. Cleaner Prod. 2019, 221, 582–586. DOI: 10.1016/j.jclepro.2019.03.008
  • Kumar, R.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V. K.; Saini, A.; Saini, V.; Singh, P. An Overview on Bismuth Molybdate Based Photocatalytic Systems: Controlled Morphology and Enhancement Strategies for Photocatalytic Water Purification. J. Environ. Chem. Eng. 2020, 8(5), 104291. DOI: 10.1016/j.jece.2020.104291
  • Li, H.; Li, K.; Wang, H. Hydrothermal Synthesis and Photocatalytic Properties of Bismuth Molybdate Materials. Mater. Chem. Phys. 2009, 116(1), 134–142. DOI: 10.1016/j.matchemphys.2009.02.058
  • Zhao, X.; Xu, T.; Yao, W.; Zhu, Y. Synthesis and Photoelectrochemical Properties of Thin Bismuth Molybdates Film with Various Crystal Phases. Thin Solid Films. 2009, 517(20), 5813–5818. DOI: 10.1016/j.tsf.2009.02.135
  • Chen, L.; Ding, L.; Cheng, H.; Qi, Z. Z-Scheme Heterojunction Ag/AgBr/Bi2MoO6 with Improved Visible-Light-Induced Photocatalytic Activity. Bull. Mater. Sci. 2022, 45(3), 121. DOI: 10.1007/s12034-022-02694-5
  • Goodarzi, N.; Ashrafi-Peyman, Z.; Khani, E.; Moshfegh, A. Z. Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation. Catalysts. 2023, 13(7), 1102. DOI: 10.3390/catal13071102
  • Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43(15), 5234–5244. DOI: 10.1039/C4CS00126E
  • Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on Various Strategies for Enhancing Photocatalytic Activity of Graphene Based Nanocomposites for Water Purification. Arabian J. Chem. 2020, 13(1), 3498–3520. DOI: 10.1016/j.arabjc.2018.12.001
  • Ding, X.; Ho, W.; Shang, J.; Zhang, L. Self Doping Promoted Photocatalytic Removal of No Under Visible Light with bi2moo6: Indispensable Role of Superoxide Ions. Appl. Catal. B Environ. 2016, 182, 316–325. DOI: 10.1016/j.apcatb.2015.09.046
  • Zhu, Y.; Wang, T.; Xu, T.; Li, Y.; Wang, C. Size Effect of Pt Co-Catalyst on Photocatalytic Efficiency of G-C3N4 for Hydrogen Evolution. Appl. Surf. Sci. 2019, 464, 36–42. DOI: 10.1016/j.apsusc.2018.09.061
  • Li, L.; Gao, H.; Yi, Z.; Wang, S.; Wu, X.; Li, R.; Yang, H. Comparative Investigation on Synthesis, Morphological Tailoring and Photocatalytic Activities of Bi2O2CO3 Nanostructures. Colloids and Surfaces a. Colloids Surf. A Physicochem. Eng. Aspects. 2022, 644, 128758. DOI: 10.1016/j.colsurfa.2022.128758
  • Arotiba, O. A.; Orimolade, B. O.; Koiki, B. A. Visible Light–Driven Photoelectrocatalytic Semiconductor Heterojunction Anodes for Water Treatment Applications. Curr. Opin. Electrochem. 2020, 22, 25–34. DOI: 10.1016/j.coelec.2020.03.018
  • Pirhashemi, M.; Habibi-Yangjeh, A. Visible-Light Photosensitization of ZnO by Bi2MoO6 and AgBr: Role of Tandem Nn Heterojunctions in Efficient Charge Transfer and Photocatalytic Performances. Mater. Chem. Phys. 2018, 214, 107–119. DOI: 10.1016/j.matchemphys.2018.04.089
  • Shi, W.; Li, M.; Huang, X.; Ren, H.; Guo, F.; Tang, Y.; Lu, C. Construction of CuBi2o4/Bi2MoO6 Pn Heterojunction with Nanosheets-On-Microrods Structure for Improved Photocatalytic Activity Towards Broad-Spectrum Antibiotics Degradation. Chem. Eng. J. 2020, 394, 125009. DOI: 10.1016/j.cej.2020.125009
  • Guo, J.; Shen, C. H.; Sun, J.; Xu, X. J.; Li, X. Y.; Fei, Z. H.; Liu, Z. T.; Wen, X. J.Highly Efficient Activation of Peroxymonosulfate by Co3O4/Bi2MoO6 Pn Heterostructure Composites for the Degradation of Norfloxacin Under Visible Light Irradiation.Sep. Purif. Technol. 2021, 259, 118109.
  • El-Sabban, H. A.; Hegazey, R. M.; Hamdy, A.; Moustafa, Y. Study on Highly Efficient Z-Scheme P-N Heterojunction Fe3O4/N-Bi2MoO6: Synthesis, Characterization and Visible-Light-Excited Photocatalytic Activity. J. Mol. Struct. 2022, 1269, 133755. DOI: 10.1016/j.molstruc.2022.133755
  • Lai, Y.-J.; Lee, D.-J. Solid Mediator Z-Scheme Heterojunction Photocatalysis for Pollutant Oxidation in Water: Principles and Synthesis Perspectives. J. Taiwan Inst. Chem. Eng. 2021, 125, 88–114. DOI: 10.1016/j.jtice.2021.05.049
  • Zheng, Z.; Zu, X.; Zhang, Y.; Zhou, W. Rational Design of Type-II Nano-Heterojunctions for Nanoscale Optoelectronics. Today Phys. Mater. 2020, 15, 100262. DOI: 10.1016/j.mtphys.2020.100262
  • Zhao, Y.; Linghu, X.; Shu, Y.; Zhang, J.; Chen, Z.; Wu, Y.; Shan, D.; Wang, B. Classification and Catalytic Mechanisms of Heterojunction Photocatalysts and the Application of Titanium Dioxide (TiO2)-Based Heterojunctions in Environmental Remediation. J. Environ. Chem. Eng. 2022, 10(3), 108077. DOI: 10.1016/j.jece.2022.108077
  • Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al‐Ghamdi, A. A. Heterojunction Photocatalysts. Adv.Mate. 2017, 29(20), 1601694. DOI: 10.1002/adma.201601694
  • Lai, Y.-J.; Lee, D.-J. Pollutant Degradation with Mediator Z-Scheme Heterojunction Photocatalyst in Water: A Review. Chemosphere. 2021, 282, 131059. DOI: 10.1016/j.chemosphere.2021.131059
  • Adhikari, S.; Mandal, S.; Kim, D.-H. 1D/2D Constructed Bi2S3/Bi2O2CO3 Direct Z-Scheme Heterojunction: A Versatile Photocatalytic Material for Boosted Photodegradation, Photoreduction and Photoelectrochemical Detection of Water-Based Contaminants. J. Hazard. Mater. 2021, 418, 126263. DOI: 10.1016/j.jhazmat.2021.126263
  • Liu, X.; Zhang, Q.; Ma, D. Advances in 2D/2D Z‐Scheme Heterojunctions for Photocatalytic Applications. Solar Rrl. 2021, 5(2), 2000397. DOI: 10.1002/solr.202000397
  • Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W., et al. Efficient Photocatalytic H2 Evolution, CO2 Reduction and N2 Fixation Coupled with Organic Synthesis by Cocatalyst and Vacancies Engineering. Appl. Catal. B Environ. 2021, 285, 119789. DOI: 10.1016/j.apcatb.2020.119789
  • Zou, X.; Sun, B.; Wang, L.; Bai, H.; Meng, X.; Li, C.; Li, Z. Enhanced Photocatalytic Degradation of Tetracycline by SnS2/bi2moo6-X Heterojunction: Multi-Electric Field Modulation Through Oxygen Vacancies and Z-Scheme Charge Transfer. Chem. Eng. J. 2024, 482, 148818. DOI: 10.1016/j.cej.2024.148818
  • Li, J.; Yuan, H.; Zhang, W.; Jin, B.; Feng, Q.; Huang, J.; Jiao, Z. Advances in Z‐Scheme Semiconductor Photocatalysts for the Photoelectrochemical Applications: A Review. Carbon Ener. 2022, 4(3), 294–331. DOI: 10.1002/cey2.179
  • Zhang, R.; Han, Q.; Li, Y.; Zhang, T.; Liu, Y.; Zeng, K.; Zhao, C. Fabrication and Characterization of High Efficient Z-Scheme Photocatalyst Bi2MoO6/Reduced Graphene Oxide/BiObr for the Degradation of Organic Dye and Antibiotic Under Visible-Light Irradiation. J. Mater. Sci. 2019, 54(22), 14157–14170. DOI: 10.1007/s10853-019-03883-0
  • Jia, J.; Du, X.; Zhang, Q.; Liu, E.; Fan, J. Z-Scheme MgFe2o4/Bi2MoO6 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity for Malachite Green Removal. Appl. Surf. Sci. 2019, 492, 527–539. DOI: 10.1016/j.apsusc.2019.06.258
  • Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. Bi SPR-Promoted Z-Scheme Bi2MoO6/CdS-Diethylenetriamine Composite with Effectively Enhanced Visible Light Photocatalytic Hydrogen Evolution Activity and Stability. ACS Sustain. Chem. Eng. 2018, 6(1), 696–706. DOI: 10.1021/acssuschemeng.7b03032
  • Lei, J.; Yang, H.; Chen, Z.; Meng, S.; Zhou, N.; Yang, Y.; Menezes, P. W. Temperature-Dependent Photoredox Catalysis for CO2 Reduction Coupled with Selective Benzyl Alcohol Oxidation Over ZnIn 2S4/In 2O3 Heterostructure. Adv. Energy Sustainable Res. 2023, 4(12), 2300122. DOI: 10.1002/aesr.202300122
  • Yang, Y.; Gu, X.; Gong , K.; Meng, S.; Lei, J.; Zheng, X.; Feng, Y.; Chen, S. Revealing the Charge Transfer Mechanism and Assessing Product Toxicity in the 2D/1D Bi 2 O 2 CO 3/Bi 8 (CrO 4) O 11 Heterostructure System. Environ. Sci. Nano. 2023, 10, 1867–1882.
  • Lei, J.; Gu, X.; Xiao, P.; Ding, G.; Yang, Y.; Fu, X.; Long, B.; Chen, S.; Meng, S. Fabrication of 2D/2D BiObr/g-C3 N4 with Efficient Photocatalytic Activity and Clarification of Its Mechanism. Phys. Chem. Chem. Phys. 2022, 24(33), 19806–19816. DOI: 10.1039/D2CP02381D
  • Liang, C.; Feng, H.-P.; Niu, H.-Y.; Niu, C.-G.; Li, J.-S.; Huang, D.-W.; Zhang, L.; Guo, H.; Tang, N.; Liu, H.-Y., et al. A Dual Transfer Strategy for Boosting Reactive Oxygen Species Generation in Ultrathin Z-Scheme Heterojunction Driven by Electronic Field. Chem. Eng. J. 2020, 384, 123236. DOI: 10.1016/j.cej.2019.123236
  • Zhang, H.; Bian, H.; Zhang, H.; Xu, B.; Wang, C.; Zhang, L.; Li, D.; Wang, F. Magnetic Separable Bi 2 Fe 4 O 9/Bi 2 MoO 6 Heterojunctions in Z-Scheme with Enhanced Visible-Light Photocatalytic Activity for Organic Pollutant Degradation. Catal. Lett. 2020, 150(9), 2464–2473. DOI: 10.1007/s10562-020-03157-4
  • Wei, H.; Meng, F.; Li, J.; Yu, W.; Zhang, H. FeIn2s4/Bi2MoO6 Z-Scheme Heterostructural Composites Efficiently Degrade Tetracycline Hydrochloride Under Visible Light. Appl. Surf. Sci. 2023, 611, 155642. DOI: 10.1016/j.apsusc.2022.155642
  • Hu, D.; Song, L.; Yan, R.; Li, Z.; Zhang, Z.; Sun, J.; Bian, J.; Qu, Y.; Jing, L. Valence-Mixed Iron Phthalocyanines/(1 0 0) Bi2MoO6 Nanosheet Z-Scheme Heterojunction Catalysts for Efficient Visible-Light Degradation of 2-Chlorophenol via Preferential Dechlorination. Chem. Eng. J. 2022, 440, 135786. DOI: 10.1016/j.cej.2022.135786
  • Wu, L.; Hu, J.; Sun, C.; Jiao, F. Construction of Z-Scheme CoAl-LDH/Bi2MoO6 Heterojunction for Enhanced Photocatalytic Degradation of Antibiotics in Natural Water Bodies. Process Saf. Environ. Prot. 2022, 168, 1109–1119. DOI: 10.1016/j.psep.2022.11.002
  • Ju, P.; Zhang, Y.; Hao, L.; Cao, J.; Dou, K.; Jiang, F.; Sun, C. Facile in-Situ Construction of Plate-On-Plate Structured Bi2MoO6/BiOI Z-Scheme Heterojunctions Enriched with Oxygen Vacancies for Highly Efficient Photocatalytic Performances. Appl. Surf. Sci. 2022, 602, 154319. DOI: 10.1016/j.apsusc.2022.154319
  • Su, Q.; Li, J.; Wang, B.; Li, Y.; Hou, L. Direct Z-Scheme Bi2MoO6/UiO-66-NH2 Heterojunctions for Enhanced Photocatalytic Degradation of Ofloxacin and Ciprofloxacin Under Visible Light. Appl. Catal. B Environ. 2022, 318, 121820. DOI: 10.1016/j.apcatb.2022.121820
  • Wang, F.; He, T.; Gao, Y.; Li, Y.; Cui, S.; Huang, H.; Yang, J. Z-Scheme Heterojunction Bi2MoO6/NH2-UiO-66 (Zr/Ce) for Efficient Photocatalytic Degradation of Oxytetracycline: Pathways and Mechanism. Sep. Purif. Technol.2023, 325, 124596.
  • Ruan, X.; Hu, H.; Che, G.; Zhou, P.; Liu, C.; Dong, H. Fabrication of Z-Scheme γ-Bi2MoO6/Bi12GeO20 Heterostructure for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants. Appl. Surf. Sci. 2020, 499, 143668. DOI: 10.1016/j.apsusc.2019.143668
  • Guo, J.; Wang, L.; Wei, X.; Alothman, Z. A.; Albaqami, M. D.; Malgras, V.; Yamauchi, Y.; Kang, Y.; Wang, M.; Guan, W., et al. Direct Z-Scheme CuIns2/Bi2MoO6 Heterostructure for Enhanced Photocatalytic Degradation of Tetracycline Under Visible Light. J. Hazard. Mater. 2021, 415, 125591. DOI: 10.1016/j.jhazmat.2021.125591
  • Liu, J.; Wang, G.; Li, B.; Ma, X.; Hu, Y.; Cheng, H. A High-Efficiency Mediator-Free Z-Scheme Bi2MoO6/AgI Heterojunction with Enhanced Photocatalytic Performance. Sci. Total Environ. 2021, 784, 147227. DOI: 10.1016/j.scitotenv.2021.147227
  • Yi, J.; Zeng, H.; Lin, H.; Li, M.; Xie, R.; Chen, B.; Ding, R.; Liu, Z.; Li, D.; Li, N., et al. Fabrication of Direct Z-Scheme Ag2O/Bi2MoO6 Heterostructured Microsphere with Enhanced Visible-Light Photocatalytic Activity. J. Alloys Compound. 2023, 935, 168151. DOI: 10.1016/j.jallcom.2022.168151
  • Yang, H.; Li, J.; Su, Q.; Wang, B.; Zhang, Z.; Dai, Y.; Li, Y.; Hou, L. Construction of Bi2MoO6/CoWo4 Z-Scheme Heterojunction for High-Efficiency Photocatalytic Degradation of Norfloxacin Under Visible Light: Performance and Mechanism Insights. Chem. Eng. J. 2023, 470, 144139. DOI: 10.1016/j.cej.2023.144139
  • Ashok, B.; Ramesh, K.; Madhu, D.; Nagesh, T.; Vijaya Kumar, B.; Upender, G. Characterization and Photocatalysis of Visible Light Driven Z-Scheme Bi2WO6/Bi2MoO6 Heterojunction for Rhodamine B Degradation. Inorg. Chem. Commun. 2023, 150, 110495. DOI: 10.1016/j.inoche.2023.110495
  • Khademi, D.; Zargazi, M.; Chahkandi, M.; Baghayeri, M. A Novel γ‒BMO@ BMWO Z‒Scheme Heterojunction for Promotion Photocatalytic Performance: Nanofibers Thin Film by Co‒Axial‒Electrospun. Environ. Res. 2023, 219, 115154. DOI: 10.1016/j.envres.2022.115154
  • Adorna, V. D., Jr; Adorna, J.; Annadurai, T.; Bui, T. A. N.; Tran, H. L.; Lin, L.-Y.; Doong, R.-A. Indirect Z-Scheme Nitrogen-Doped Carbon Dot Decorated Bi2MoO6/g-C3N4 Photocatalyst for Enhanced Visible-Light-Driven Degradation of Ciprofloxacin. Chem. Engi. J. 2021, 422, 130103. DOI: 10.1016/j.cej.2021.130103
  • Du, C.; Yang, L.; Tan, S.; Song, J.; Zhang, Z.; Wang, S.; Xiong, Y.; Yu, G.; Chen, H.; Zhou, L., et al. Reduced Graphene Oxide Modified Z-Scheme AgI/Bi 2 MoO 6 Heterojunctions with Boosted Photocatalytic Activity for Water Treatment Originated from the Efficient Charge Pairs Partition and Migration. Environ. Sci. Pollut. Res. 2021, 28(47), 66589–66601.
  • Wang, C.; Li, S.; Cai, M.; Yan, R.; Dong, K.; Zhang, J.; Liu, Y. Rationally Designed Tetra (4-Carboxyphenyl) Porphyrin/Graphene Quantum Dots/Bismuth Molybdate Z-Scheme Heterojunction for Tetracycline Degradation and Cr (VI) Reduction: Performance, Mechanism, Intermediate Toxicity Appraisement. J. Coll. Interf. Sci. 2022, 619, 307–321. DOI: 10.1016/j.jcis.2022.03.075
  • Xue, Y.; Tang, W.; Si, C.; Lu, Q.; Guo, E.; Wei, M.; Pang, Y. 0D/2D/1D Silver-Decorated CuPc/Bi2MoO6 Z-Scheme Heterojunctions Enable Better Visible-Light-Driven Tetracycline Photocatalysis. Opt. Mater. 2022, 128, 112400. DOI: 10.1016/j.optmat.2022.112400
  • Bao, Y.; Liu, Y.; Pan, J.; Chen, P.; Liu, X.; Li, Y.; Tang, X.; Zhang, W.; Liu, B.; Liu, J., et al. Constructing 2D Layered PCN/Ti3C2/Bi2MoO6 Heterojunction with MXene as Charge Mediator for Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2022, 589, 152883. DOI: 10.1016/j.apsusc.2022.152883
  • Guo, F.; Chen, Z.; Huang, X.; Cao, L.; Cheng, X.; Shi, W.; Chen, L. Ternary Ni2P/Bi2MoO6/g-C3N4 Composite with Z-Scheme Electron Transfer Path for Enhanced Removal Broad-Spectrum Antibiotics by the Synergistic Effect of Adsorption and Photocatalysis. Chin. J. Chem. Eng. 2022, 44, 157–168. DOI: 10.1016/j.cjche.2021.08.024
  • Wang, Z.; Li, J.; Fu, S.; Guo, D.; Tang, J.; Yang, X.; Xu, R.; Sui, G.; Chen, S. Construction of MoS2/CdS/Bi2MoO6 Z-Scheme Photocatalyst for Efficient Photocatalytic Degradation Under Visible-Light. J. Solid State Chem. 2023, 322, 123957. DOI: 10.1016/j.jssc.2023.123957
  • Gao, Q.; Sun, K.; Cui, Y.; Wang, S.; Liu, C.; Liu, B. In Situ Growth of 2D/3D Bi2MoO6/CeO2 Heterostructures Toward Enhanced Photodegradation and Cr (VI) Reduction. Sep. Purif. Technol. 2022, 285, 120312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.