Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Latest Articles
54
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Progress in Metal-Organic Frameworks (MOFs) for the Detection and Removal of Heavy Metal Ions from Water: A Comprehensive Review

, , &

References

  • Dudgeon, D.; Arthington, A. H.; Gessner, M. O.; Kawabata, Z. I.; Knowler, D. J.; Lévêque, C.; Naiman, R. J.; Prieur-Richard, A. H.; Soto, D.; Stiassny, M. L. J., et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81(2), 163–182. DOI: 10.1017/S1464793105006950.
  • Ma, J.; Ding, Z.; Wei, G.; Zhao, H.; Huang, T. Sources of Water Pollution and Evolution of Water Quality in the Wuwei Basin of Shiyang River, Northwest China. J. Environ. Manag. 2009, 90(2), 1168–1177. DOI: 10.1016/J.JENVMAN.2008.05.007.
  • Jomova, K.; Makova, M.; Alomar, S. Y.; Alwasel, S. H.; Nepovimova, E.; Kuca, K.; Rhodes, C. J.; Valko, M. Essential Metals in Health and Disease. Chem. Biol. Interact. 2022, 367, 110173. DOI: 10.1016/J.CBI.2022.110173.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. EXS 2012, 101, 133–164. DOI: 10.1007/978-3-7643-8340-4_6/COVER.
  • Wang, M.; Chen, Z.; Song, W.; Hong, D.; Huang, L.; Li, Y. A Review on Cadmium Exposure in the Population and Intervention Strategies Against Cadmium Toxicity, Bull. Environ. Contam. Toxicol. 2021, 106(1), 65–74. DOI: 10.1007/S00128-020-03088-1.
  • Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. DOI: 10.1016/j.molliq.2019.111197.
  • Buzea, C.; Pacheco, I. Heavy Metals: Definition, Toxicity, and Uptake in Plants. Nanotechnol. Life. Sci. 2020, 1–17. DOI: 10.1007/978-3-030-45975-8_1.
  • Yi, Q.; Huang, C. Review of Heavy Metal Pollution by Mining. E3S Web Conference, 2019; p. 118. DOI: 10.1051/E3SCONF/201911804028.
  • Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review, Water. Air. Soil Pollut. 2019, 230(7), 1–9. DOI: 10.1007/s11270-019-4221-y.
  • Jayant Kulkarni, S. Heavy Metal Pollution: Sources, Effects, and Control Methods, Hazard. Waste Manag. Heal. Risks 2020, 97–112. DOI: 10.2174/9789811454745120010008.
  • Rasheed, T.; Bilal, M.; Nabeel, F.; Iqbal, H. M. N.; Li, C.; Zhou, Y. Fluorescent Sensor Based Models for the Detection of Environmentally-Related Toxic Heavy Metals. Sci. Total Environ. 2018, 615, 476–485. DOI: 10.1016/J.SCITOTENV.2017.09.126.
  • Al-Saidi, H. M.; Khan, S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions. Crit. Rev. Anal. Chem. 2022, 52, 1–18. DOI: 10.1080/10408347.2022.2133561.
  • Al Osman, M.; Yang, F.; Massey, I. Y. Exposure Routes and Health Effects of Heavy Metals on Children. BioMetals 2019, 32(4), 563–573. DOI: 10.1007/s10534-019-00193-5.
  • Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P. C. Human Health Risk Assessment of Heavy Metals in Soil–Vegetable System: A Multi-Medium Analysis. Sci. Total Environ. 2013, 463–464, 530–540. DOI: 10.1016/J.SCITOTENV.2013.06.064.
  • Häder, D. P.; Banaszak, A. T.; Villafañe, V. E.; Narvarte, M. A.; González, R. A.; Helbling, E. W. Anthropogenic Pollution of Aquatic Ecosystems: Emerging Problems with Global Implications. Sci. Total. Environ. 2020, 713, 136586. DOI: 10.1016/j.scitotenv.2020.136586.
  • Nagajyoti, P. C.; Lee, K. D.; Sreekanth, T. V. M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8(3), 199–216. DOI: 10.1007/S10311-010-0297-8.
  • Påhlsson, A. M. B. Toxicity of Heavy Metals (Zn, Cu, Cd, Pb) to Vascular Plants, Water, Air. Soil Pollut. 1989, 47(3–4), 287–319. DOI: 10.1007/BF00279329.
  • Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D., et al. Recent Advances in Metal-Organic Framework Membranes for Water Treatment: A Review. Sci. Total Environ. 2021, 800, 149662. DOI: 10.1016/J.SCITOTENV.2021.149662.
  • Yang, F.; Du, M.; Yin, K.; Qiu, Z.; Zhao, J.; Liu, C.; Zhang, G.; Gao, Y.; Pang, H. Applications of Metal-Organic Frameworks in Water Treatment: A Review. Small 2022, 18(11), 2105715. DOI: 10.1002/SMLL.202105715.
  • Razavi, S. A. A.; Morsali, A. Metal Ion Detection Using Luminescent-MOFs: Principles, Strategies and Roadmap. Coord. Chem. Rev. 2020, 415, 213299. DOI: 10.1016/J.CCR.2020.213299.
  • Castells-Gil, J.; MañMañAs-Valero, S.; Vitórica-Yrezábal, I. J.; Ananias, D.; Rocha, J.; Santiago, R.; Bromley, S. T.; Baldoví, J. J.; Coronado, E.; Souto, M., et al. Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal–Organic Frameworks. Chem. – Eur. J. 2019, 25(54), 12636–12643. DOI: 10.1002/CHEM.201902855.
  • Farha, O. K.; Hupp, J. T. Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials. Acc. Chem. Res. 2010, 43(8), 1166–1175. DOI: 10.1021/ar1000617.
  • Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today 2019, 27, 43–68. DOI: 10.1016/J.MATTOD.2018.10.038.
  • Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J. W. Metal-Organic Framework Membranes for Wastewater Treatment and Water Regeneration. Coord. Chem. Rev. 2020, 404, 213116. DOI: 10.1016/J.CCR.2019.213116.
  • Rego, R. M.; Kuriya, G.; Kurkuri, M. D.; Kigga, M. MOF Based Engineered Materials in Water Remediation: Recent Trends. J. Hazard. Mater. 2021, 403, 123605. DOI: 10.1016/J.JHAZMAT.2020.123605.
  • Yilmaz, G.; Bo Peh, S.; Zhao, D.; Wei Ho, G.; Yilmaz, G.; Ho, G. W.; Peh, S. B.; Zhao, D. Atomic- and Molecular-Level Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Adv. Sci. 2019, 6(21), 1901129. DOI: 10.1002/ADVS.201901129.
  • Hao, Y.; Chen, S.; Zhou, Y.; Zhang, Y.; Xu, M. Recent Progress in Metal–Organic Framework (MOF) Based Luminescent Chemodosimeters. Nanomaterials 2019, 9(7), 974. DOI: 10.3390/NANO9070974.
  • Kukkar, D.; Vellingiri, K.; Kim, K. H.; Deep, A. Recent Progress in Biological and Chemical Sensing by Luminescent Metal-Organic Frameworks. Sens. Actuators B Chem. 2018, 273, 1346–1370. DOI: 10.1016/J.SNB.2018.06.128.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9(6), 106381. DOI: 10.1016/J.JECE.2021.106381.
  • Hashemian, H.; Ghaedi, M.; Dashtian, K.; Mosleh, S.; Hajati, S.; Razmjoue, D.; Khan, S. Cellulose Acetate/MOF Film-Based Colorimetric Ammonia Sensor for Non-Destructive Remote Monitoring of Meat Product Spoilage. Int. J. Biol. Macromol. 2023, 249, 126065. DOI: 10.1016/J.IJBIOMAC.2023.126065.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022, 54(1), 93–109. DOI: 10.1080/10408347.2022.2063017.
  • Mohammad Abu-Taweel, G.; Ibrahim, M. M.; Khan, S.; Al-Saidi, H. M.; Alshamrani, M.; Alhumaydhi, F. A.; Alharthi, S. S. Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review. Crit. Rev. Anal. Chem. 2022, 54(3), 599–616. DOI: 10.1080/10408347.2022.2089839.
  • Alshareef, M. Recent Advances in Organic Sensors for the Detection of Ag+ Ions: A Comprehensive Review (2019–2023). Crit. Rev. Anal. Chem. 2023. DOI: 10.1080/10408347.2023.2263877.
  • Huangfu, M.; Wang, M.; Lin, C.; Wang, J.; Wu, P. Luminescent Metal–Organic Frameworks As Chemical Sensors Based on “Mechanism–Response”: A Review. Dalton Trans. 2021, 50(10), 3429–3449. DOI: 10.1039/D0DT04276E.
  • Zhai, X.; Cui, Z.; Shen, W. Mechanism, Structural Design, Modulation and Applications of Aggregation-Induced Emission-Based Metal-Organic Framework. Inorg. Chem. Commun. 2022, 146, 110038. DOI: 10.1016/J.INOCHE.2022.110038.
  • Wang, Q.; Ke, W.; Lou, H.; Han, Y.; Wan, J. A Novel Fluorescent Metal-Organic Framework Based on Porphyrin and AIE for Ultra-High Sensitivity and Selectivity Detection of Pb2+ Ions in Aqueous Solution. Dye. Pigm. 2021, 196, 109802. DOI: 10.1016/J.DYEPIG.2021.109802.
  • Zhang, L.; Bi, X.; Liu, X.; He, Y.; Li, L.; You, T. Advances in the Application of Metal–Organic Framework Nanozymes in Colorimetric Sensing of Heavy Metal Ions. Nanoscale 2023, 15(31), 12853–12867. DOI: 10.1039/D3NR02024J.
  • Safdar Ali, R.; Meng, H.; Li, Z. Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. Molecules 2021, 27(1), 100. DOI: 10.3390/MOLECULES27010100.
  • Sohrabi, H.; Ghasemzadeh, S.; Shakib, S.; Majidi, M. R.; Razmjou, A.; Yoon, Y.; Khataee, A. Metal–Organic Framework-Based Biosensing Platforms for the Sensitive Determination of Trace Elements and Heavy Metals: A Comprehensive Review. Ind. Eng. Chem. Res. 2023, 62(11), 4611–4627. DOI: 10.1021/acs.iecr.2c03011.
  • Kamel, R. M.; Shahat, A.; Anwar, Z. M.; El-Kady, H. A.; Kilany, E. M. A Novel Sensitive and Selective Chemosensor for Fluorescent Detection of Zn2+ in Cosmetics Creams Based on a Covalent Post Functionalized Al-MOF. New J. Chem. 2021, 45(18), 8054–8063. DOI: 10.1039/D1NJ00871D.
  • Moradi, E.; Rahimi, R.; Safarifard, V. Porphyrinic Zirconium-Based MOF with Exposed Pyrrole Lewis Base Site as an Efficient Fluorescence Sensing for Hg2+ Ions, DMF Small Molecule, and Adsorption of Hg2+ Ions from Water Solution. J. Solid State Chem. 2020, 286, 121277. DOI: 10.1016/J.JSSC.2020.121277.
  • Guo, H.; Wang, X.; Wu, N.; Xu, M.; Wang, M.; Zhang, L.; Yang, W. In-Situ Synthesis of Carbon Dots-Embedded Europium Metal-Organic Frameworks for Ratiometric Fluorescence Detection of Hg2+ in Aqueous Environment. Anal. Chim. Acta 2021, 1141, 13–20. DOI: 10.1016/J.ACA.2020.10.028.
  • Wang, H.; Wang, X.; Liang, M.; Chen, G.; Kong, R. M.; Xia, L.; Qu, F. A Boric Acid-Functionalized Lanthanide Metal–Organic Framework As a Fluorescence “Turn-on” Probe for Selective Monitoring of Hg2+ and CH3Hg+, Anal. Chem. 2020, 92(4), 3366–3372. DOI: 10.1021/acs.analchem.9b05410.
  • Yang, Y.; Liu, W.; Cao, J.; Wu, Y. On-Site, Rapid and Visual Determination of Hg2+ and Cu2+ in Red Wine by Ratiometric Fluorescence Sensor of Metal-Organic Frameworks and CdTe QDs. Food Chem. 2020, 328, 127119. DOI: 10.1016/J.FOODCHEM.2020.127119.
  • Majee, P.; Singha, D. K.; Daga, P.; Hui, S.; Mahata, P.; Mondal, S. K. Photophysical Studies of a Room Temperature Phosphorescent Cd(II) Based MOF and Its Application Towards Ratiometric Detection of Hg2+ Ions in Water. CrystEngComm. 2021, 23(23), 4160–4168. DOI: 10.1039/D1CE00333J.
  • Wang, X.; Li, L.; Li, L.; Bu, T.; Yang, K.; Xia, J.; Sun, X.; Jiang, H.; Wang, L. Tris(Bipyridine)Ruthenium(II)-Functionalized Metal–Organic Frameworks for the Ratiometric Fluorescence Determination of Aluminum Ions. Microchim. Acta 2022, 189(11), 1–10. DOI: 10.1007/s00604-022-05504-1.
  • Li, H.; Li, D.; Qin, B.; Li, W.; Zheng, H.; Zhang, X.; Zhang, J. Turn-On Fluorescence in a Stable Cd(II) Metal-Organic Framework for Highly Sensitive Detection of Cr3+ in Water. Dyes. Pigm. 2020, 178, 108359. DOI: 10.1016/J.DYEPIG.2020.108359.
  • Tian, X. M.; Yao, S. L.; Qiu, C. Q.; Zheng, T. F.; Chen, Y. Q.; Huang, H.; Chen, J. L.; Liu, S. J.; Wen, H. R. Turn-On Luminescent Sensor Toward Fe3+, Cr3+, and Al3+ Based on a Co(II) Metal–Organic Framework with Open Functional Sites. Inorg. Chem. 2020, 59(5), 2803–2810. DOI: 10.1021/acs.inorgchem.9b03152.
  • Zheng, Y.; Wang, X.; Guan, Z.; Deng, J.; Liu, X.; Li, H.; Zhao, P. Application of CD and Eu3+ Dual Emission MOF Colorimetric Fluorescent Probe Based on Neural Network in Fe3+ Detection. Part. Syst. Charact. 2022, 39(10), 2200124. DOI: 10.1002/PPSC.202200124.
  • Wang, H.; Wang, X.; Kong, R. M.; Xia, L.; Qu, F. Metal-Organic Framework As a Multi-Component Sensor for Detection of Fe3+, Ascorbic Acid and Acid Phosphatase. Chinese Chem. Lett. 2021, 32(1), 198–202. DOI: 10.1016/J.CCLET.2020.10.017.
  • Xiu, J.; Wang, G. Naphthalene-Grafted MOF as a Unique Fluorescent Sensor for “Turn-Off” Detection for Fe3+ and “Turn-On” Detection for ClO4- in Different Solvents with High Selectivity and Sensitivity. Sens. Actuators B Chem. 2023, 374, 132837. DOI: 10.1016/J.SNB.2022.132837.
  • Tao, Y.; Jiang, Y.; Huang, Y.; Liu, J.; Zhang, P.; Chen, X.; Fan, Y.; Wang, L.; Xu, J. Carbon Dots@metal–Organic Frameworks As Dual-Functional Fluorescent Sensors for Fe3+ Ions and Nitro Explosives. CrystEngComm. 2021, 23(22), 4038–4049. DOI: 10.1039/D1CE00392E.
  • Yang, H.; Qi, D.; Chen, Z.; Cao, M.; Deng, Y.; Liu, Z.; Shao, C.; Yang, L. A Zn-Based Metal–Organic Framework as Bifunctional Chemosensor for the Detection of Nitrobenzene and Fe3+. J. Solid State Chem. 2021, 296, 121970. DOI: 10.1016/J.JSSC.2021.121970.
  • Fan, L.; Wang, Y.; Li, L.; Zhou, J. Carbon Quantum Dots Activated Metal Organic Frameworks for Selective Detection of Cu(II) and Fe(III), Colloids Surfaces a Physicochem. Eng. Asp. 2020, 588, 124378. DOI: 10.1016/J.COLSURFA.2019.124378.
  • Wang, Q.; Du, X. M.; Zhao, B.; Pang, M.; Li, Y.; Ruan, W. J. A Luminescent MOF As a Fluorescent Sensor for the Sequential Detection of Al3+ and Phenylpyruvic Acid. New J. Chem. 2020, 44(4), 1307–1312. DOI: 10.1039/C9NJ05439A.
  • Wang, X. Q.; Tang, J.; Ma, X.; Wu, D.; Yang, J. A Water-Stable Zinc(II)–Organic Framework As an “On–Off–On” Fluorescent Sensor for Detection of Fe3+ and Reduced Glutathione. CrystEngComm. 2021, 23(5), 1243–1250. DOI: 10.1039/D0CE01741H.
  • Rajaji, P.; Panneerselvam, P. A Novel Polydopamine Grafted 3D MOF Nanocubes Mediated GR-5/GC DNAzyme Complex with Enhanced Fluorescence Emission Response Toward Spontaneous Detection of Pb(II) and Ag(I) Ions. ACS Omega 2020, 5(39), 25188–25198. DOI: 10.1021/acsomega.0c03257.
  • Jiang, X.; Li, W.; Liu, M.; Yang, J.; Liu, M.; Gao, D.; Li, H.; Ning, Z.; Mol, A. A. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe3+ and AA. Molecules 2023, 28(15), 5847. DOI: 10.3390/MOLECULES28155847.
  • Wang, L.; Zhao, X.; Zhang, J.; Xiong, Z. Selective Adsorption of Pb(II) Over the Zinc-Based MOFs in Aqueous Solution-Kinetics, Isotherms, and the Ion Exchange Mechanism. Environ. Sci. Pollut. Res. 2017, 24(16), 14198–14206. DOI: 10.1007/s11356-017-9002-9.
  • Wen, J.; Fang, Y.; Zeng, G. Progress and Prospect of Adsorptive Removal of Heavy Metal Ions from Aqueous Solution Using Metal–Organic Frameworks: A Review of Studies from the Last Decade. Chemosphere 2018, 201, 627–643. DOI: 10.1016/J.CHEMOSPHERE.2018.03.047.
  • Yu, L.; Lan, T.; Yuan, G.; Duan, C.; Pu, X.; Liu, N. Synthesis and Application of a Novel Metal–Organic Frameworks-Based Ion-Imprinted Polymer for Effective Removal of Co(II) from Simulated Radioactive Wastewater. Polymers 2023, 15(9), 2150. DOI: 10.3390/polym15092150.
  • Wang, C.; Lin, G.; Xi, Y.; Li, X.; Huang, Z.; Wang, S.; Zhao, J.; Zhang, L. Development of Mercaptosuccinic Anchored MOF Through One-Step Preparation to Enhance Adsorption Capacity and Selectivity for Hg(II) and Pb(II). J. Mol. Liq. 2020, 317, 113896. DOI: 10.1016/J.MOLLIQ.2020.113896.
  • Wu, N.; Guo, H.; Xue, R.; Wang, M.; Cao, Y.; Wang, X.; Xu, M.; Yang, W. A Free Nitrogen-Containing Sm-MOF for Selective Detection and Facile Removal of Mercury(II), Colloids Surfaces a Physicochem. Eng. Asp. 2021, 618, 126484. DOI: 10.1016/J.COLSURFA.2021.126484.
  • Koppula, S.; Jagasia, P.; Panchangam, M. K.; Manabolu Surya, S. B. Synthesis of Bimetallic Metal-Organic Frameworks Composite for the Removal of Copper(II), Chromium(VI), and Uranium(VI) from the Aqueous Solution Using Fixed-Bed Column Adsorption. J. Solid State Chem. 2022, 312, 123168. DOI: 10.1016/J.JSSC.2022.123168.
  • Zheng, Y.; Rao, F.; Zhang, M.; Li, J.; Huang, W. Efficient, Selective, and Reusable Metal–Organic Framework-Based Adsorbent for the Removal of Pb(II) and Cr(VI) Heavy-Metal Pollutants from Wastewater. Clean. Eng. Technol. 2021, 5, 100344. DOI: 10.1016/J.CLET.2021.100344.
  • Zeng, B.; Lin, G.; Li, J.; Wang, W.; Zhang, L. Thiodiacetic Acid-Functionalized Zr-MOFs as a Robust Adsorbent for Efficient Removal of Hg(II) and Pb(II) from Aqueous Solution. Microporous. Mesoporous. Mater. 2022, 345, 112251. DOI: 10.1016/J.MICROMESO.2022.112251.
  • Zhang, Y.; Liu, L.; Yu, D.; Liu, J.; Zhao, L.; Liu, J.; Liu, S. Preparation of Magnetic MIL-68(Ga) Metal–Organic Framework and Heavy Metal Ion Removal Application. Molecules 2022, 27(11), 3443. DOI: 10.3390/molecules27113443.
  • Zhong Hu, S.; Huang, T.; Zhang, N.; Zhou Lei, Y.; Wang, Y. Chitosan-Assisted MOFs Dispersion via Covalent Bonding Interaction Toward Highly Efficient Removal of Heavy Metal Ions from Wastewater. Carbohydr. Polym. 2022, 277, 118809. DOI: 10.1016/J.CARBPOL.2021.118809.
  • Abo El-Yazeed, W. S.; Abou El-Reash, Y. G.; Elatwy, L. A.; Ahmed, A. I. Facile Fabrication of Bimetallic Fe–Mg MOF for the Synthesis of Xanthenes and Removal of Heavy Metal Ions. RSC Adv. 2020, 10(16), 9693–9703. DOI: 10.1039/C9RA10300G.
  • Xie, Z.; Diao, S.; Xu, R.; Wei, G.; Wen, J.; Hu, G.; Tang, T.; Jiang, L.; Li, X.; Li, M., et al. Construction of Carboxylated-GO and MOFs Composites for Efficient Removal of Heavy Metal Ions. Appl. Surf. Sci. 2023, 636, 157827. DOI: 10.1016/J.APSUSC.2023.157827.
  • Yazdi, M. N.; Dadfarnia, S.; Haji Shabani, A. M. Synthesis of Stable S-Functionalized Metal-Organic Framework Using MoS42- and Its Application for Selective and Efficient Removal of Toxic Heavy Metal Ions in Wastewater Treatment. J. Environ. Chem. Eng. 2021, 9(1), 104696. DOI: 10.1016/J.JECE.2020.104696.
  • Karbalaee Hosseini, A.; Tadjarodi, A. Novel Zn Metal–Organic Framework with the Thiazole Sites for Fast and Efficient Removal of Heavy Metal Ions from Water. Sci. Rep. 2023, 13(1), 1–9. DOI: 10.1038/s41598-023-38523-w.
  • Zhang, Y.; Zheng, H.; Zhang, P.; Zheng, X.; Zuo, Q. A Facile Method to Achieve Dopamine Polymerization in MOFs Pore Structure for Efficient and Selective Removal of Trace Lead(II) Ions from Drinking Water. J. Hazard. Mater. 2021, 408, 124917. DOI: 10.1016/J.JHAZMAT.2020.124917.
  • Abdel-Magied, A. F.; Abdelhamid, H. N.; Ashour, R. M.; Fu, L.; Dowaidar, M.; Xia, W.; Forsberg, K. Magnetic Metal-Organic Frameworks for Efficient Removal of Cadmium(II), and Lead(II) from Aqueous Solution. J. Environ. Chem. Eng. 2022, 10(3), 107467. DOI: 10.1016/J.JECE.2022.107467.
  • Seyfi Hasankola, Z.; Rahimi, R.; Shayegan, H.; Moradi, E.; Safarifard, V. Removal of Hg2+ Heavy Metal Ion Using a Highly Stable Mesoporous Porphyrinic Zirconium Metal-Organic Framework. Inorganica Chim. Acta 2020, 501, 119264. DOI: 10.1016/J.ICA.2019.119264.
  • El-Hakam, S. A.; Ibrahim, A. A.; Elatwy, L. A.; El-Yazeed, W. S. A.; Salama, R. S.; El-Reash, Y. G. A.; Ahmed, A. I. Greener Route for the Removal of Toxic Heavy Metals and Synthesis of 14-Aryl-14H Dibenzo[a,j] Xanthene Using a Novel and Efficient Ag-Mg Bimetallic MOF as a Recyclable Heterogeneous Nanocatalyst. J. Taiwan Inst. Chem. Eng. 2021, 122, 176–189. DOI: 10.1016/J.JTICE.2021.04.036.
  • Tan, T. L.; Binti, H.; Somat, A.; Bin, M. A.; Latif, M.; Rashid, S. A. One-Pot Solvothermal Synthesis of Zr-Based MOFs with Enhanced Adsorption Capacity for Cu2+ Ions Removal. J. Solid State Chem. 2022, 315, 123429. DOI: 10.1016/J.JSSC.2022.123429.
  • Wang, M.; Shao, L.; Jia, M. Shape Memory and Underwater Superelastic Mof@Cellulose Aerogels for Rapid and Large-Capacity Adsorption of Metal Ions. Cellulose 2022, 29(15), 8243–8254. DOI: 10.1007/s10570-022-04774-5.
  • Shahriyari Far, H.; Hasanzadeh, M.; Najafi, M.; Masale Nezhad, T. R.; Rabbani, M. Efficient Removal of Pb(II) and Co(II) Ions from Aqueous Solution with a Chromium-Based Metal–Organic Framework/Activated Carbon Composites. Ind. Eng. Chem. Res. 2021, 60(11), 4332–4341. DOI: 10.1021/acs.iecr.0c06199.
  • Subramaniyam, V.; Thangadurai, T. D.; Lee, Y. I. Zirconium Based Metal-Organic Framework for the Adsorption of Cu(II) Ions in Real Water Samples. Clean. Eng. Technol. 2022, 9, 100526. DOI: 10.1016/J.CLET.2022.100526.
  • Ul Mehdi, S.; Aravamudan, K. Adsorption of Cadmium Ions on Silica Coated Metal Organic Framework. Mater. Today Proc. 2022, 61, 487–497. DOI: 10.1016/J.MATPR.2021.12.304.
  • Wang, H.; Wang, S.; Wang, S.; Fu, L.; Zhang, L. Efficient Metal-Organic Framework Adsorbents for Removal of Harmful Heavy Metal Pb(II) from Solution: Activation Energy and Interaction Mechanism. J. Environ. Chem. Eng. 2023, 11(2), 109335. DOI: 10.1016/J.JECE.2023.109335.
  • Ragheb, E.; Shamsipur, M.; Jalali, F.; Mousavi, F. Modified Magnetic-Metal Organic Framework As a Green and Efficient Adsorbent for Removal of Heavy Metals. J. Environ. Chem. Eng. 2022, 10(2), 107297. DOI: 10.1016/J.JECE.2022.107297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.