Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Latest Articles
57
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Zinc–Based Batteries: From Fundamental to Applications

References

  • Energy Storage Industry could provide over 26,000 jobs to New York by 2030. United States Key Capture Energy. https://keycaptureenergy.com/energy-storage-industry-could-provide-over-26000-jobs-to-new-york-by-2030/, 2017.
  • Yoshino, A. Development and Its Commercialization of the Lithium-Ion Battery, 2011.
  • Company, N. About Li-Ion Batteries. www.nexeon.co.uk (accessed Feb 10, 2015).
  • SDI, S. Lithium Ion Battery, 2015. http://www.samsungsdi.com/main.
  • Wikipedia. Lithium-Ion Battery. 2015. http://en.wikipedia.org/wiki/Lithium-ion_battery.
  • Intelligence, B.M. 2022, https://www.benchmarkminerals.com/.
  • Service, K.M.R.I. Metal Price Trend, 2022.
  • Canada. G.O. Zinc Facts, 2021.
  • Tolcin, A. C. Zinc. U.S. Geological Survey, Mineral Commodity Summaries: U.S. Geological Survey, Mineral Commodity Summaries 2022.
  • BloombergNEF. Lithium-Ion Battery Pack Prices Rise for First Time to an Average of $151/kWh. 2022.
  • Manganese(iv) Oxide. https://www.sigmaaldrich.com/US/en/search/manganese(iv)-oxide?focus=products&page=1&perpage=30&sort=relevance&term=Manganese%28IV%29%20oxide&type=product.
  • Graphite. https://www.sigmaaldrich.com/US/en/product/aldrich/907154.
  • Reddy, B. T. Handbook of Batteries, 4th ed.; United States: McGraw-Hill, 2011.
  • Lee, D. U.; Xu, P.; Cano, Z. P.; Kashkooli, A. G.; Park, M. G.; Chen, Z. Recent Progress and Perspectives on Bi-Functional Oxygen Electrocatalysts for Advanced Rechargeable Metal–Air Batteries. J. Mater. Chem. A 2016, 4(19), 7107–7134. DOI: 10.1039/C6TA00173D.
  • Types of Batteries. https://www.monolithicpower.com.
  • Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Reversible Zinc-Based Anodes Enabled by Zincophilic Antimony Engineered MXene for Stable and Dendrite-Free Aqueous Zinc Batteries. Energy Storage Mater. 2021, 41, 343–353. DOI: 10.1016/j.ensm.2021.06.019.
  • Mainar, A. R.; Colmenares, L. C.; Grande, H.-J.; Blázquez, J. A. Enhancing the Cycle Life of a Zinc–Air Battery by Means of Electrolyte Additives and Zinc Surface Protection. Batteries. 2018, 4(3), 46. DOI: 10.3390/batteries4030046.
  • Zhang, X. G. Secondary Batteries – Zinc Systems | Zinc Electrodes: Overview. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed.; Elsevier: Netherlands, 2009; pp 454–468.
  • Guo, X.; He, G. Opportunities and Challenges of Zinc Anodes in Rechargeable Aqueous Batteries. J. Mater. Chem. A 2023, 11(23), 11987–12001. DOI: 10.1039/D3TA01904G.
  • Dirkse, T. P. The Nature of the Zinc-Containing Ion in Strongly Alkaline Solutions. J. Electrochem. Soc. 1954, 101(6), 328. DOI: 10.1149/1.2781254.
  • Lippincott, E. R.; Psellos, J. A.; Tobin, M. C. The Raman Spectra and Structures of Aluminate and Zincate Ions. J. Chem. Phys. 2004, 20(3), 536–536. DOI: 10.1063/1.1700478.
  • Leclanché Cell. https://commons.wikimedia.org/wiki/File:Leclanch%C3%A9_Cell.jpg.
  • Simms, J. W. The Boy Electrician. 1965, 61.
  • EVEREADY. History. https://www.eveready.com/.
  • Energizer Brands, L. Eveready Carbon Zinc Battery.
  • Cambridge, U.o. Zinc/Carbon Batteries. https://www.doitpoms.ac.uk/.
  • Wikipedia, t.f.e. Alkaline Battery. Nov 14, 2017. https://en.wikipedia.org/wiki/Alkaline_battery.
  • Wikipedia. Zinc–Carbon Battery. 2021. https://en.wikipedia.org/wiki/Zinc–carbon_battery.
  • Kordesch, K.; Taucher-Mautner, W. Primary Batteries – AQUEOUS Systems | Leclanché and Zinc–Carbon. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed.; Amsterdam: Elsevier, 2009; pp 43–54.
  • Cowie, I. All About Batteries, Part 5: Carbon Zinc Batteries. 2014. https://www.eetimes.com/.
  • Huot, J. Y. Chemistry, Electrochemistry, and Electrochemical Applications | Zinc. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed.; Amsterdam: Elsevier, 2009; pp 883–892.
  • Leclanché cell. 2022. https://en.wikipedia.org/.
  • The History of Silver-Zinc Batteries. (Mar 24, 2021).
  • NASA Research Helps Take Silver-Zinc Batteries from Idea to the Shelf, Dec 2, 2016.
  • Silver Oxide. http://www.duracell.com/.
  • Silver Oxide Battery. Wikipedia, The Free Encycl.
  • Technologies, E. Silver Zinc Batteries, 2022.
  • Energizer Silver Oxide (Zn/Ag2 O). 2001; https://data.energizer.com/pdfs/silveroxide_appman.pdf.
  • Morcali, M. H. Recycling of Silver and Zinc from Silver Oxide Battery Waste. Chem. Select. 2019, 4(31), 9011–9017. DOI: 10.1002/slct.201900659.
  • Wang, Z.; Peng, C.; Yliniemi, K.; Lundström, M. Recovery of High-Purity Silver from Spent Silver Oxide Batteries by Sulfuric Acid Leaching and Electrowinning. ACS Sustainable Chem. Eng. 2020, 8(41), 15573–15583. DOI: 10.1021/acssuschemeng.0c04701.
  • Monthly Battery Sales Statistics. 2020.
  • Primary Battery Market Size & Share Analysis – Growth Trends & Forecasts (2023–2028).
  • Shayesteh, A.; Yu, S.; Bernath, P. F. Gaseous HgH 2 , CdH 2, and ZnH2. Chem. A Eur. J. 2005, 11(16), 4709–4712. DOI: 10.1002/chem.200500332.
  • Corporation, S. World’s First Commercialization of Mercury-Free Silver Oxide Battery. https://www.sony.com/ (accessed Sep 29, 2004).
  • Salkind, A. J.; Karpinski, A. P.; Serenyi, J. R. Secondary Batteries – Zinc Systems | Zinc–Silver. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed.; Amsterdam: Elsevier, 2009; pp 513–523.
  • Heise, G. W. The Primary Battery; United States: John Wiley, 1971; Vol. 1.
  • Blaizot, D. La pile Louis Maiche.
  • Cambridge. U.O. Secondary Batteries. https://www.doitpoms.ac.uk/index.php.
  • SR626SW. 377, 376 Batteries Comparison Chart. 2022. https://www.batteryequivalents.com/.
  • Senthilkumar, M.; Satyavani, T. V. S. L.; Kumar, A. S. Effect of Temperature and Charge Stand on Electrochemical Performance of Silver Oxide–Zinc Cell. J. Energy Storage 2016, 6, 50–58. DOI: 10.1016/j.est.2016.02.008.
  • Harting, K.; Kunz, U.; Turek, T. Zinc-Air Batteries: Prospects and Challenges for Future Improvement. Z. Phys. Chem. 2012, 226(2), 151–166. DOI: 10.1524/zpch.2012.0152.
  • Gregory, D. P. Metal-Air Batteries; Mills and Boon: London, 1972.
  • Eos Energy Storage. 2023. https://www.eose.com/.
  • Phinergy. https://phinergy.com/.
  • Zinc8. 2023. https://www.zinc8energy.com/.
  • Linden, D.; Reddy, T. B. Zinc/Air Batteries. In Handbook of Batteries, 3rd ed.; United States: McGraw-Hill Professional, 2002.
  • Duracell: Zinc–air Technical Bulletin. www.duracell.com.
  • Wang, K.; Pei, P.; Ma, Z.; Xu, H.; Li, P.; Wang, X. Morphology Control of Zinc Regeneration for Zinc–Air Fuel Cell and Battery. J. Power Sources 2014, 271, 65–75. DOI: 10.1016/j.jpowsour.2014.07.182.
  • Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29(7), 1604685. DOI: 10.1002/adma.201604685.
  • Lee, J.-S.; Tai Kim, S.; Cao, R.; Choi, N.-S.; Liu, M.; Lee, K. T.; Cho, J. Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Adv. Energy Mater. 2011, 1(1), 34–50. DOI: 10.1002/aenm.201000010.
  • Kinoshita, K. Electrochemical Oxygen Technology; United States: Wiley-Interscience, 1992.
  • Thomas, B. R. Linden’s Handbook of Batteries, 4th ed.; McGraw-Hill Education: New York, 2011.
  • Ahmed, R. Durable High Surface Area Electrodes for Rechargeable Zinc Air Batteries. 2015.
  • Gu, P.; Zheng, M.; Zhao, Q.; Xiao, X.; Xue, H.; Pang, H. Rechargeable Zinc–Air Batteries: A Promising Way to Green Energy. J. Mater. Chem. A 2017, 5(17), 7651–7666. DOI: 10.1039/C7TA01693J.
  • Energizer. Energizer Zinc Air Prismatic Handbook.
  • Binder, S. F.; Reise, T. F. Linden’s Handbook of Batteries, 2010.
  • E. Skogstad, L.O. Recycling Zinc from Alkaline Batteries, 2017.
  • Duracell. https://www.duracell.com/wp-content/uploads/2016/03/ZA6750217.pdf.
  • Zn-Air Batteries Market, 2018.
  • Ren, S.; Duan, X.; Liang, S.; Zhang, M.; Zheng, H. Bifunctional Electrocatalysts for Zn–Air Batteries: Recent Developments and Future Perspectives. J. Mater. Chem. A 2020, 8(13), 6144–6182. DOI: 10.1039/C9TA14231B.
  • Caramia, V.; Bozzini, B. Materials Science Aspects of Zinc–Air Batteries: A Review. Mater. Rene. Sustain. Energy 2014, 3(2), 28. DOI: 10.1007/s40243-014-0028-3.
  • Lin, H. E.; Ho, C. H.; Lee, C. Y. Discharge Performance of Zinc Coating Prepared by Pulse Electroplating with Different Frequencies for Application in Zinc-Air Battery.Surface and Coatings Technology. 2017, 319, 378–385. DOI: 10.1016/j.surfcoat.2017.04.020.
  • Pan, Z.; Yang, J.; Zang, W.; Kou, Z.; Wang, C.; Ding, X.; Guan, C.; Xiong, T.; Chen, H.; Zhang, Q., et al. All-Solid-State Sponge-Like Squeezable Zinc-Air Battery. Energy Storage Mater. 2019, 23, 375–382. DOI: 10.1016/j.ensm.2019.04.036.
  • Zhang, G.; Zhang, X.; Liu, H.; Li, J.; Chen, Y.; Duan, H. 3D-Printed Multi-Channel Metal Lattices Enabling Localized Electric-Field Redistribution for Dendrite-Free Aqueous Zn Ion Batteries. Adv. Energy Mater. 2021, 11(19), 2003927. DOI: 10.1002/aenm.202003927.
  • Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically Resistant Cu–Zn/zn Composite Anode for Long Cycling Aqueous Batteries. Energy Storage Mater. 2020, 27, 205–211. DOI: 10.1016/j.ensm.2020.01.032.
  • Chen, Y.; Zhao, Q.; Wang, Y.; Liu, W.; Qing, P.; Chen, L. A Dendrite-Free Zn@cuxzny Composite Anode for Rechargeable Aqueous Batteries. Electrochim. Acta. 2021, 399, 139334. DOI: 10.1016/j.electacta.2021.139334.
  • Zhao, H.; Chi, Z.; Zhang, Q.; Kong, D.; Li, L.; Guo, Z.; Wang, L. Dendrite-Free Zn Anodes Enabled by Sn-Cu Bimetal/rGO Functional Protective Layer for Aqueous Zn-Based Batteries. Appl. Surf. Sci. 2023, 613, 156129. DOI: 10.1016/j.apsusc.2022.156129.
  • Wang, S.-B.; Ran, Q.; Yao, R.-Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X.-Y.; Jiang, Q. Lamella-Nanostructured Eutectic Zinc–Aluminum Alloys as Reversible and Dendrite-Free Anodes for Aqueous Rechargeable Batteries. Nat. Commun. 2020, 11(1), 1634. DOI: 10.1038/s41467-020-15478-4.
  • Jo, Y. N.; Prasanna, K.; Kang, S. H.; Ilango, P. R.; Kim, H. S.; Eom, S. W.; Lee, C. W. The Effects of Mechanical Alloying on the Self-Discharge and Corrosion Behavior in Zn-Air Batteries. J. Ind. Eng. Chem. 2017, 53, 247–252. DOI: 10.1016/j.jiec.2017.04.032.
  • Zhang, Y.; Wu, Y.; Ding, H.; Yan, Y.; Zhou, Z.; Ding, Y.; Liu, N. Sealing ZnO Nanorods for Deeply Rechargeable High-Energy Aqueous Battery Anodes. Nano Energy 2018, 53, 666–674. DOI: 10.1016/j.nanoen.2018.09.021.
  • Li, Z.; Wang, H.; Zhong, Y.; Yuan, L.; Huang, Y.; Li, Z. Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Appl. Mater. Interfaces. 2022, 14(7), 9097–9105. DOI: 10.1021/acsami.1c22873.
  • Chen, A.; Zhao, C.; Gao, J.; Guo, Z.; Lu, X.; Zhang, J.; Liu, Z.; Wang, M.; Liu, N.; Fan, L., et al. Multifunctional SEI-Like Structure Coating Stabilizing Zn Anodes at a Large Current and Capacity. Energy Environ. Sci. 2023, 16(1), 275–284. DOI: 10.1039/D2EE02931F.
  • Lee, S.-M.; Kim, Y.-J.; Eom, S.-W.; Choi, N.-S.; Kim, K.-W.; Cho, S.-B. Improvement in Self-Discharge of Zn Anode by Applying Surface Modification for Zn–Air Batteries with High Energy Density. J. Power Sources. 2013, 227, 177–184. DOI: 10.1016/j.jpowsour.2012.11.046.
  • Zhang, Y.; Zhu, M.; Wang, G.; Du, F.-H.; Yu, F.; Wu, K.; Wu, M.; Dou, S.-X.; Liu, H.-K.; Wu, C. Dendrites-Free Zn Metal Anodes Enabled by an Artificial Protective Layer Filled with 2D Anionic Nanosheets. Small Methods. 2021, 5(10), 2100650. DOI: 10.1002/smtd.202100650.
  • Wang, K.; Pei, P.; Wang, Y.; Liao, C.; Wang, W.; Huang, S. Advanced Rechargeable Zinc-Air Battery with Parameter Optimization. Appl. Energy. 2018, 225, 848–856. DOI: 10.1016/j.apenergy.2018.05.071.
  • Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. Challenges in Zinc Electrodes for Alkaline Zinc–Air Batteries: Obstacles to Commercialization. ACS Energy Lett. 2019, 4(9), 2259–2270. DOI: 10.1021/acsenergylett.9b01541.
  • Xu, T.; Liu, K.; Sheng, N.; Zhang, M.; Liu, W.; Liu, H.; Dai, L.; Zhang, X.; Si, C.; Du, H., et al. Biopolymer-Based Hydrogel Electrolytes for Advanced Energy Storage/Conversion Devices: Properties, Applications, and Perspectives. Energy Storage Mater. 2022, 48, 244–262. DOI: 10.1016/j.ensm.2022.03.013.
  • Lee, J. M.; Choi, C.; Kim, J. H.; de Andrade, M. J.; Baughman, R. H.; Kim, S. J. Biscrolled Carbon Nanotube Yarn Structured Silver-Zinc Battery. Sci. Rep. 2018, 8(1), 11150. DOI: 10.1038/s41598-018-29266-0.
  • Li, C.; Zhang, Q.; E, S.; Li, T.; Zhu, Z.; He, B.; Zhou, Z.; Man, P.; Li, Q.; Yao, Y., et al. An Ultra-High Endurance and High-Performance Quasi-Solid-State Fiber-Shaped Zn–Ag2O Battery to Harvest Wind Energy. J. Mater. Chem. A. 2019, 7(5), 2034–2040. DOI: 10.1039/C8TA10807B.
  • Harilal, A.; Ramachandran, T.; Satheesh Babu, T.G.; Suneesh, P.V. Fabrication of Silver Peroxide– Zinc Rechargeable Battery. Materials Today: Proceedings. 2020, 24, 949–959. DOI: 10.1016/j.matpr.2020.04.407.
  • Yan, C.; Wang, X.; Cui, M.; Wang, J.; Kang, W.; Foo, C. Y.; Lee, P. S. Stretchable Silver-Zinc Batteries Based on Embedded Nanowire Elastic Conductors. Adv. Energy Mater. 2014, 4(5), 1301396. DOI: 10.1002/aenm.201301396.
  • Chang, C.-C.; Lee, Y.-C.; Liao, H.-J.; Kao, Y.-T.; An, J.-Y.; Wang, D.-Y. Flexible Hybrid Zn–Ag/air Battery with Long Cycle Life. ACS Sustainable Chem. Eng. 2019, 7(2), 2860–2866. DOI: 10.1021/acssuschemeng.8b06328.
  • Ho, C. C.; Murata, K.; Steingart, D. A.; Evans, J. W.; Wright, P. K. A Super Ink Jet Printed Zinc–Silver 3D Microbattery. J. Micromech. Microeng. 2009, 19(9), 094013. DOI: 10.1088/0960-1317/19/9/094013.
  • Ozgit, D.; Hiralal, P.; Amaratunga, G. A. J. Improving Performance and Cyclability of Zinc–Silver Oxide Batteries by Using Graphene As a Two Dimensional Conductive Additive. ACS Appl. Mater. Interfaces. 2014, 6(23), 20752–20757. DOI: 10.1021/am504932j.
  • Tan, P.; Chen, B.; Xu, H.; Cai, W.; He, W.; Zhang, H.; Liu, M.; Shao, Z.; Ni, M. Integration of Zn–Ag and Zn–Air Batteries: A Hybrid Battery with the Advantages of Both. ACS Appl. Mater. Interfaces. 2018, 10(43), 36873–36881. DOI: 10.1021/acsami.8b10778.
  • Mainar, A. R.; Iruin, E.; Blázquez, J. A. High Performance Secondary Zinc-Air/silver Hybrid Battery. J. Energy Storage. 2021, 33, 102103. DOI: 10.1016/j.est.2020.102103.
  • Liu, Y.; Li, J.; Li, W.; Li, Y.; Chen, Q.; Liu, Y. Spinel LiMn2o4 Nanoparticles Dispersed on Nitrogen-Doped Reduced Graphene Oxide Nanosheets As an Efficient Electrocatalyst for Aluminium-Air Battery. Int. J. Hydrogen Energy. 2015, 40(30), 9225–9234. DOI: 10.1016/j.ijhydene.2015.05.153.
  • Ma, H.; Wang, B. A bifunctional electrocatalyst α-MnO2-LaNiO3/carbon nanotube composite for rechargeable zinc–air batteries. RSC Adv. 2014, 4(86), 46084–46092. DOI: 10.1039/C4RA07401G.
  • Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.-A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J., et al. Regulating Fe-Spin State by Atomically Dispersed Mn-N in Fe-N-C Catalysts with High Oxygen Reduction Activity. Nat. Commun. 2021, 12(1), 1734.
  • Li, X., et al. Tailoring the Spin State of Active Sites in Amorphous Transition Metal Sulfides to Promote Oxygen Electrocatalysis. Sci. China Mater. 2022, 65(12), 3479–3489.
  • See, D. M.; White, R. E. Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide. J. Chem. Eng. Data 1997, 42(6), 1266–1268. DOI: 10.1021/je970140x.
  • Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew Chem. Int Ed 2012, 51(4), 933–935. DOI: 10.1002/anie.201106307.
  • Yan, J.; Ye, M.; Zhang, Y.; Tang, Y.; Chao Li, C. Layered Zirconium Phosphate-Based Artificial Solid Electrolyte Interface with Zinc Ion Channels Towards Dendrite-Free Zn Metal Anodes. Chem. Eng. J. 2022, 432, 134227. DOI: 10.1016/j.cej.2021.134227.
  • Zhong, X.; Shao, Y.; Chen, B.; Li, C.; Sheng, J.; Xiao, X.; Xu, B.; Li, J.; Cheng, H.-M.; Zhou, G., et al. Rechargeable Zinc–Air Batteries with an Ultralarge Discharge Capacity per Cycle and an Ultralong Cycle Life. Adv. Mater. 2023, 35(30), 2301952.
  • Zhong, X.; Yi, W.; Qu, Y.; Zhang, L.; Bai, H.; Zhu, Y.; Wan, J.; Chen, S.; Yang, M.; Huang, L., et al. Co Single-Atom Anchored on Co3O4 and Nitrogen-Doped Active Carbon Toward Bifunctional Catalyst for Zinc-Air Batteries. Appl. Catalysis B: Environ. 2020, 260, 118188. DOI: 10.1016/j.apcatb.2019.118188.
  • Li, M.; Luo, F.; Zhang, Q.; Yang, Z.; Xu, Z. Atomic Layer Co3O4-X Nanosheets As Efficient and Stable Electrocatalyst for Rechargeable Zinc-Air Batteries. J. Catal. 2020, 381, 395–401. DOI: 10.1016/j.jcat.2019.11.020.
  • Tan, P.; Chen, B.; Xu, H.; Cai, W.; He, W.; Ni, M. Growth of Al and Co Co-Doped NiO Nanosheets on Carbon Cloth As the Air Electrode for Zn-Air Batteries with High Cycling Stability. Electrochim. Acta 2018, 290, 21–29. DOI: 10.1016/j.electacta.2018.09.057.
  • Tan, P.; Chen, B.; Xu, H.; Cai, W.; He, W.; Ni, M. In-Situ Growth of Co3O4 Nanowire-Assembled Clusters on Nickel Foam for Aqueous Rechargeable Zn-Co3O4 and Zn-Air Batteries. Appl. Catalysis B: Environ. 2019, 241, 104–112. DOI: 10.1016/j.apcatb.2018.09.017.
  • Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K. Hydroponics Gel As a New Electrolyte Gelling Agent for Alkaline Zinc–Air Cells. J. Power Sources 2001, 103(1), 34–41. DOI: 10.1016/S0378-7753(01)00823-0.
  • Cui, T.; Wang, Y.-P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering Dual Single-Atom Sites on 2D Ultrathin N-Doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew Chem. Int Ed. 2022, 61(12), e202115219. DOI: 10.1002/anie.202115219.
  • Fu, J.; Lee, D. U.; Hassan, F. M.; Yang, L.; Bai, Z.; Park, M. G.; Chen, Z. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc–Air Batteries. Adv. Mater. 2015, 27(37), 5617–5622. DOI: 10.1002/adma.201502853.
  • Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Porous Nanocomposite Gel Polymer Electrolyte with High Ionic Conductivity and Superior Electrolyte Retention Capability for Long-Cycle-Life Flexible Zinc–Air Batteries. Nano Energy. 2019, 56, 454–462. DOI: 10.1016/j.nanoen.2018.11.057.
  • Zhu, X.; Yang, H.; Cao, Y.; Ai, X. Preparation and Electrochemical Characterization of the Alkaline Polymer Gel Electrolyte Polymerized from Acrylic Acid and KOH Solution. Electrochim. Acta. 2004, 49(16), 2533–2539. DOI: 10.1016/j.electacta.2004.02.008.
  • Wu, G. M.; Lin, S. J.; Yang, C. C. Preparation and Characterization of High Ionic Conducting Alkaline Non-Woven Membranes by Sulfonation. J. Membr. Sci. 2006, 284(1), 120–127. DOI: 10.1016/j.memsci.2006.07.025.
  • Wu, G. M.; Lin, S. J.; You, J. H.; Yang, C. C. Study of High-Anionic Conducting Sulfonated Microporous Membranes for Zinc-Air Electrochemical Cells. Mater. Chem. Phys. 2008, 112(3), 798–804. DOI: 10.1016/j.matchemphys.2008.06.058.
  • Kim, H.-W.; Lim, J.-M.; Lee, H.-J.; Eom, S.-W.; Hong, Y. T.; Lee, S.-Y. Artificially Engineered, Bicontinuous Anion-Conducting/-Repelling Polymeric Phases As a Selective Ion Transport Channel for Rechargeable Zinc–Air Battery Separator Membranes. J. Mater. Chem. A. 2016, 4(10), 3711–3720. DOI: 10.1039/C5TA09576J.
  • Hwang, H. J.; Chi, W. S.; Kwon, O.; Lee, J. G.; Kim, J. H.; Shul, Y.-G. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc–Air Battery Systems. ACS Appl. Mater. Interfaces. 2016, 8(39), 26298–26308. DOI: 10.1021/acsami.6b07841.
  • Pei, Z.; Ding, L.; Wang, C.; Meng, Q.; Yuan, Z.; Zhou, Z.; Zhao, S.; Chen, Y. Make it Stereoscopic: Interfacial Design for Full-Temperature Adaptive Flexible Zinc–Air Batteries. Energy Environ. Sci. 2021, 14(9), 4926–4935. DOI: 10.1039/D1EE01244D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.