919
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization for free-phase LNAPL recovery using evolutionary computation algorithms

Optimisation multi-objectif utilisant des algorithmes d’évolution pour la récupération de LLPNA libres

&
Pages 671-685 | Received 12 Apr 2012, Accepted 13 Sep 2012, Published online: 15 Feb 2013

References

  • Abido , M.A. 2002 . Optimal power flow using particle swarm optimization . Journal of Electrical Power , 24 ( 7 ) : 563 – 571 .
  • Ahlfeld , D.P. , Mulvey , J.M. and Pinder , G.F. 1988 . Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory: 2. Analysis of a field site . Water Resources Research , 24 ( 3 ) : 443 – 452 .
  • Arifovic , J. 1998 . Stability of equilibria under genetic-algorithm adaptation: an analysis . Macroeconomic Dynamics , 2 : 1 – 21 .
  • Babbar , M. and Minsker , B.S. 2006 . Groundwater remediation design using multiscale genetic algorithms . Journal of Water Resources Planning and Management, ASCE , 132 ( 5 ) : 341 – 350 .
  • Banks , M.K. 2003 . Degradation of crude oil in the rhizosphere of . Sorghum bicolor. International Journal of Phytoremediation , 5 ( 3 ) : 225 – 234 .
  • Bass , D.H. , Hastings , N.A. and Brown , R.A. 2000 . Performance of air sparging systems: a review of case studies . Journal of Hazardous Materials , 72 ( 2–3 ) : 101 – 119 .
  • Cardiff , M. 2010 . Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model . Journal of Contaminant Hydrology , 113 ( 1–4 ) : 25 – 43 .
  • Chang , L.C. , Shoemaker , C.A. and Liu , P.L.F. 1992 . Optimal time-varying pumping rates for groundwater remediation—application of a constrained optimal-control algorithm . Water Resources Research , 28 ( 12 ) : 3157 – 3173 .
  • Chen , M.J. 2006 . A stochastic analysis of transient two-phase flow in heterogeneous porous media . Water Resources Research , 42 ( W03425, doi:10.1029/2005WR004257. )
  • Chrysikopoulos , C.V. 2003 . Mass transfer coefficient and concentration boundary layer thickness for a dissolving NAPL pool in porous media . Journal of Hazardous Materials , 97 ( 1–3 ) : 245 – 255 .
  • Clerc , M. and Kennedy , J. 2002 . The particle swarm—explosion, stability, and convergence in a multidimensional complex space . IEEE Transactions in Evolutionary Computation , 6 ( 1 ) : 58 – 73 .
  • Cooper , G.S. , Peralta , R.C. and Kaluarachchi , J.J. 1998 . Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers . Advances in Water Resources , 21 ( 5 ) : 339 – 350 .
  • Culver , T.B. and Shoemaker , C.A. 1992 . Dynamic optimal-control for groundwater remediation with flexible management periods . Water Resources Research , 28 ( 3 ) : 629 – 641 .
  • del Valle , Y. 2008 . Particle swarm optimization: basic concepts, variants and applications in power systems . IEEE Tranactions on Evolutionary Computation , 12 ( 2 ) : 171 – 195 .
  • Diele , F. , Notarnicola , F. and Sgura , I. 2002 . Uniform air velocity field for a bioventing system design: some numerical results . International Journal of Engineering Science , 40 ( 11 ) : 1199 – 1210 .
  • Dokou , Z. and Karatzas , G.P. 21–24 June 2010 . “ Employing evolutionary algorithms for optimizing free phase LNAPL recovery ” . In Proceedings of the XVIII international conference on computational methods in water resources , Edited by: Carrera , J. 21–24 June , Barcelona , , Spain : Technical University of Cataluña .
  • Dokou , Z. and Karatzas , G.P. 2012 . Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach . Hydrological Sciences Journal , 57 ( 5 ) : 985 – 999 .
  • Dokou , Z. and Pinder , G.F. 2011 . Extension and field application of an integrated DNAPL source identification algorithm that utilizes stochastic modelling and a Kalman filter . Journal of Hydrology , 398 ( 3–4 ) : 277 – 291 .
  • Eberhart , R. and Kennedy , J. 1995 . “ A new optimizer using particle swarm theory ” . In Proceedings of the 6th international symposium on micro machine and human science, 4--6 October, Nagoya, Japan , 39 – 43 . Piscataway , NJ : IEEE Service Center . In:
  • Eberhart , R. and Shi , Y. 1998 . “ Comparison between genetic algorithms and particle swarm optimization. In: ” . In international conference on evolutionary programming , Proceedings of the 7th 25--27 March, San Diego, CA. Berlin: Springer, 611 – 616 .
  • Erickson , M. , Mayer , A. and Horn , J. 2001 . The niched Pareto genetic algorithm 2 applied to the design of groundwater remediation systems. In: Evolutionary multi-criterion optimization . Lecture Notes in Computer Science , 1993/2001 : 681 – 695 .
  • Erickson , M. , Mayer , A. and Horn , J. 2002 . Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) . Advances in Water Resources , 25 ( 1 ) : 51 – 65 .
  • Gaur , S. , Chahar , B.R. and Graillot , D. 2011 . Analytic elements method and particle swarm optimization based simulation-optimization model for groundwater management . Journal of Hydrology , 402 ( 3–4 ) : 217 – 227 .
  • Gidarakos , E. and Aivalioti , M. 2007 . Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site . Journal of Hazardous Materials , 149 ( 3 ) : 574 – 581 .
  • Goldberg , D.E. 1989 . “ Genetic algorithms in search ” . In optimization and machine learning , Boston , MA : Addison-Wesley Longman .
  • Gorelick , S.M. 1984 . Aquifer reclamation design—the use of contaminant transport simulation combined with nonlinear-programming . Water Resources Research , 20 ( 4 ) : 415 – 427 .
  • Hilton , A.B.C. and Culver , T.B. 2005 . Groundwater remediation design under uncertainty using genetic algorithms . Journal of Water Resources Planning and Management, ASCE , 131 ( 1 ) : 25 – 34 .
  • Hinchee , R.E. 1991 . Enhancing biodegradation of petroleum-hydrocarbons through soil venting . Journal of Hazardous Materials , 27 ( 3 ) : 315 – 325 .
  • Hsiao , C.T. and Chang , L.C. 2002 . Dynamic optimal groundwater management with inclusion of fixed costs . Journal of Water Resources Planning and Management, ASCE , 128 ( 1 ) : 57 – 65 .
  • Huang , Y.F. 2006 . An integrated numerical and physical modelling system for an enhanced in situ bioremediation process . Environmental Pollution , 144 ( 3 ) : 872 – 885 .
  • Johnson , V.M. and Rogers , L.L. 1995 . Location analysis in groundwater remediation using neural networks . Ground Water , 33 ( 5 ) : 749 – 758 .
  • Karatzas , G.P. and Pinder , G.F. 1993 . Groundwater-management using numerical-simulation and the outer approximation method for global optimization . Water Resources Research , 29 ( 10 ) : 3371 – 3378 .
  • Karatzas , G.P. and Pinder , G.F. 1996 . The solution of groundwater quality management problems with a nonconvex feasible region using a cutting plane optimization technique . Water Resources Research , 32 ( 4 ) : 1091 – 1100 .
  • Karterakis , S.M. 2007 . Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria . Journal of Hydrology , 342 ( 3–4 ) : 270 – 282 .
  • Khaitan , S. 2006 . Remediation of sites contaminated by oil refinery operations . Environmental Progress , 25 ( 1 ) : 20 – 31 .
  • Liu , Y. and Minsker , B.S. 2002 . Efficient multiscale methods for optimal in situ bioremediation design . Journal of Water Resources Planning and Management, ASCE , 128 ( 3 ) : 227 – 236 .
  • Liu , Y. and Minsker , B.S. 2004 . Full multiscale approach for optimal control of in situ bioremediation . Journal of Water Resources Planning and Management, ASCE , 130 ( 1 ) : 26 – 32 .
  • Lu , G.P. 1999 . Natural attenuation of BTEX compounds: model development and field-scale application . Ground Water , 37 ( 5 ) : 707 – 717 .
  • Matott , L.S. , Rabideau , A.J. and Craig , J.R. 2006 . Pump-and-treat optimization using analytic element method flow models . Advances in Water Resources , 29 ( 5 ) : 760 – 775 .
  • Mayer , A. and Endres , K.L. 2007 . Simultaneous optimization of dense non-aqueous phase liquid (DNAPL) source and contaminant plume remediation . Journal of Contaminant Hydrology , 91 ( 3–4 ) : 288 – 311 .
  • Mayer , A.S. , Kelley , C.T. and Miller , C.T. 2002 . Optimal design for problems involving flow and transport phenomena in saturated subsurface systems . Advances in Water Resources , 25 ( 8–12 ) : 1233 – 1256 .
  • McKinney , D.C. and Lin , M.D. 1994 . Genetic algorithm solution of groundwater-management models . Water Resources Research , 30 ( 6 ) : 1897 – 1906 .
  • McPhee , J. and Yeh , W.W.G. 2006 . Experimental design for groundwater modelling and management . Water Resources Research , 42 ( W02408 ) doi: 10.1029/2005WR003997
  • Miettinen , K. , Makela , M.M. and Mannikko , T. 1998 . Optimal control of continuous casting by nondifferentiable multiobjective optimization . Computational Optimization and Applications , 11 ( 2 ) : 177 – 194 .
  • Minsker , B.S. and Shoemaker , C.A. 1996 . Differentiating a finite element biodegradation simulation model for optimal control . Water Resources Research , 32 ( 1 ) : 187 – 192 .
  • Minsker , B.S. and Shoemaker , C.A. 1998 . Dynamic optimal control of in-situ bioremediation of Ground Water . Journal of Water Resources Planning and Management, ASCE , 124 ( 3 ) : 149 – 161 .
  • Papadopoulou , M.P. , Nikolos , I.K. and Karatzas , G.P. 2010 . Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion . Water Science and Technology , 62 ( 7 ) : 1479 – 1490 .
  • Papadopoulou , M.P. , Pinder , G.F. and Karatzas , G.P. 2003 . Enhancement of the outer approximation method for the solution of concentration-constrained optimal-design groundwater-remediation problems . Water Resources Research , 39 ( 7 ) : 1185
  • Papadopoulou , M.P. , Pinder , G.F. and Karatzas , G.P. 2007 . Flexible time-varying optimization methodology for the solution of groundwater management problems . European Journal of Operational Research , 180 ( 2 ) : 770 – 785 .
  • Price , V.K. , Storn , R.M. and Lampinen , J.A. 2005 . Differential evolution: a practical approach to global optimization , Berlin : Springer .
  • Qin , X.S. , Huang , G.H. and Chakma , A. 2007 . A stepwise-inference-based optimization system for supporting remediation of petroleum-contaminated sites . Water Air and Soil Pollution , 185 ( 1–4 ) : 349 – 368 .
  • Qin , X.S. , Huang , G.H. and He , L. 2009 . Simulation and optimization technologies for petroleum waste management and remediation process control . Journal of Environmental Management , 90 ( 1 ) : 54 – 76 .
  • Qin , X.S. 2008 . Simulation-based optimization of dual-phase vacuum extraction to remove nonaqueous phase liquids in subsurface . Water Resources Research , 44 ( W04422, doi:10.1029/2006WR005496 )
  • Reitsma , S. and Kueper , B.H. 1994 . Laboratory measurement of capillary-pressure saturation relationships in a rock fracture . Water Resources Research , 30 ( 4 ) : 865 – 878 .
  • Ritzel , B.J. , Eheart , J.W. and Ranjithan , S. 1994 . Using genetic algorithms to solve a multiple-objective groundwater pollution containment-problem . Water Resources Research , 30 ( 5 ) : 1589 – 1603 .
  • Rizzo , D.M. and Dougherty , D.E. 1996 . Design optimization for multiple management period groundwater remediation . Water Resources Research , 32 ( 8 ) : 2549 – 2561 .
  • Rogers , L.L. , Dowla , F.U. and Johnson , V.M. 1995 . Optimal field-scale groundwater remediation using neural networks and the genetic algorithm . Environmental Science and Technology , 29 ( 5 ) : 1145 – 1155 .
  • Sawyer , C.S. and Kamakoti , M. 1998 . Optimal flow rates and well locations for soil vapor extraction design . Journal of Contaminant Hydrology , 32 ( 1–2 ) : 63 – 76 .
  • Schaerlaekens , J. 2006 . A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations . Journal of Contaminant Hydrology , 86 ( 3–4 ) : 176 – 194 .
  • Shi , Y. and Eberhart , R. 1998 . A modified particle swarm optimizer. In . IEEE World congress on computational intelligence , : 4--9 May, Anchorage, AK, ISBN: 0-7803-4869-9, 69 – 73 .
  • Storn , R. and Price , K. 1997 . Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces . Journal of Global Optimization , 11 ( 4 ) : 341 – 359 .
  • Tian , N. 2011 . An improved quantum-behaved particle swarm optimization with perturbation operator and its application in estimating groundwater contaminant source . Inverse Problems in Science and Engineering , 19 ( 2 ) : 181 – 202 .
  • Trichakis , I.C. , Nikolos , I.K. and Karatzas , G.P. 2009 . Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response . Hydrological Processes , 23 ( 20 ) : 2956 – 2969 .
  • Yen , H.K. and Chang , N.B. 2003 . Bioslurping model for assessing light hydrocarbon recovery in contaminated unconfined aquifer. II: optimization analysis . Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management , 7 ( 2 ) : 131 – 138 .
  • Yoon , J.H. and Shoemaker , C.A. 1999 . Comparison of optimization methods for ground-water bioremediation . Journal of Water Resources Planning and Management, ASCE , 125 ( 1 ) : 54 – 63 .
  • Yoon , J.H. and Shoemaker , C.A. 2001 . Improved real-coded GA for groundwater bioremediation . Journal of Computing in Civil Engineering , 15 ( 3 ) : 224 – 231 .
  • Zhang , Y.Q. , Pinder , G.F. and Herrera , G.S. 2005 . Least cost design of groundwater quality monitoring networks . Water Resources Research , 41 ( 8 ) : W08412 doi: 10.1029/2005WR003936.
  • Zyvoloski , G.A. 1999 . User's manual for the FEHM application . Los Alamos, NM: Los Alamos National Laboratory. ,
  • Zyvoloski , G.A. , Robinson , B.A. and Viswanathan , H.S. 2008 . Generalized dual porosity: a numerical method for representing spatially variable sub-grid scale processes . Advances in Water Resources , 31 ( 3 ) : 535 – 544 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.