4,016
Views
120
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin

Evaluation de l’algorithme MODIS d’estimation de l’évapotranspiration globale utilisant des mesures de covariance de la turbulence et la modélisation hydrologique dans le bassin du Rio Grande

, , , , , , & show all
Pages 1658-1676 | Received 15 Sep 2013, Accepted 15 Feb 2013, Published online: 17 Oct 2013

REFERENCES

  • ANA (Agência Nacional de Águas), 2010. HidroWeb—Sistema de Informações Hidrológicas [online]. Available from http://hidroweb.ana.gov.br/ [Accessed 18 March 2010].
  • Aragao, L.E.O.C., et al., 2005a. Spatial validation of the collection 4 MODIS LAI product in eastern Amazonia. IEEE Transactions on Geoscience and Remote Sensing, 43 (11), 2526–2534, doi:10.1109/TGRS.2005.856632.
  • Aragao, L.E.O.C., et al., 2005b. Landscape pattern and spatial variability of leaf area index in Eastern Amazonia. Forest Ecology and Management, 211 (3), 240–256, doi:10.1016/j.foreco.2005.02.062.
  • Asner, G., 2001. Cloud cover in Landsat observations of Brazilian Amazon. International Journal of Remote Sensing, 22 (18), 3855–3862.
  • Bastiaanssen, W.G.M., et al., 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213 (1–4), 198–212, doi:10.1016/S0022-1694(98)00253-4.
  • Batalha, M.A., 1997. Análise da vegetação da ARIE Cerrado Pé de Gigante (Santa Rita do Passa Quatro, SP). Master Dissertation in Ecology, Universidade de São Paulo.
  • Belward, A.S., Estes, J.E., and Kline, K.D. (1999). The IGBP-DIS global 1 km land-cover data set DISCover: a project overview. Photogrammetric Engineering & Remote Sensing, 65 (9), 1013–1020.
  • Beven, K., 2001. How far can we go in distributed hydrological modeling? Hydrology and Earth System Sciences, 5 (1), 1–12, doi:10.5194/hess-5-1-2001.
  • Bhattacharya, B.K., et al., 2010. Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. Journal of Hydrology, 387 (2), 65–80, doi:10.1016/j.jhydrol.2010.03.030.
  • Bitencourt, M.D., et al., 2007. Cerrado vegetation study using optical and radar remote sensing: two Brazilian case studies. Canadian Journal of Remote Sensing, 33 (6), 468–480.
  • Bloom, S., et al., 2005. Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system — version 4. Technical Report Series on Global Modeling and Data Assimilation, no. 104606 [online]. Available from: http://gmao.gsfc.nasa.gov/systems/geos4/bloom.pdf [Accessed 18 March 2011].
  • Bravo, J.M., et al., 2009. Incorporating forecasts of rainfall in two hydrologic models used for medium-range stream flow forecasting. Journal of Hydrologic Engineering, 14 (5), 435–445, doi:10.1061/(ASCE)HE.1943-5584.0000014.
  • Cabral, O.M.R., et al., 2003. Fluxos turbulentos de calor sensível, vapour d’água e CO2 sobre plantação de cana-de-açúcar (Saccharum sp) em Sertãozinho. Revista Brasileira de Meteorologia, 18 (1), 61–70 ( in Portuguese).
  • Churkina, G., Running, S.W., and Schloss, A.L., 1999. Comparing global models of terrestrial net primary productivity (NPP): the importance of water availability. Global Change Biology, 5 (1), 46–55, doi:10.1046/j.1365-2486.1999.00006.x.
  • Cleugh, H.A., et al., 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106 (3), 285–304, doi:10.1016/j.rse.2006.07.007.
  • Collischonn, W., et al., 2005. Forecasting river Uruguay flow using rainfall forecasts from a regional weather-prediction model. Journal of Hydrology (Amsterdam), 305 (1–4), 87–98, doi:10.1016/j.jhydrol.2004.08.028.
  • Collischonn, W., et al., 2006. Large basin simulation experience in South America. In: M. Sivapalan et al., eds. Predictions in ungauged basins: promises and progress. Wallingford, UK: IAHS Press, IAHS Publ. 303, 360–370.
  • Collischonn, W., et al., 2007a. The MGB-IPH model for large scale rainfall runoff modeling. Hydrological Sciences Journal, 52 (5), 878–895, doi:10.1623/hysj.52.5.878.
  • Collischonn, W., et al., 2007b. Previsão de afluência a reservatórios hidrelétricos. Porto Alegre: Universidade Federal do Rio Grande do Sul.
  • Courault, D., Seguin, B., and Olioso, A., 2005. Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation and Drainage Systems, 19 (3–4), 223–249, doi:10.1007/s10795-005-5186-0.
  • CRH (Coordenadoria de Recursos Hídricos do Estado de São Paulo), 2010. Sistema integrado de gerenciamento de recursos hídricos do estado de São Paulo [online]. Available from http://www.sigrh.sp.gov.br/ [Accessed 18 March 2010].
  • Eiten, G., 1972. The cerrado vegetation of Brazil. Botanical Review, 38 (2), 201–341.
  • Eugster, R. and Cattin, R., 2007. Evapotranspiration and energy flux differences between a forest and a grassland site in the subalpine zone in the Bernese Oberland. Erde, 138 (3), 237–256.
  • Ferretti, D., et al., 2003. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant and Soil, 254 (2), 291–303, doi:10.1023/A:1025511618571.
  • Fisher, J.B., Tu, K., and Baldocchi, D.D., 2008. Global estimates of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at FLUXNET sites. Remote Sensing of Environment, 112 (3), 901–919, doi:10.1016/j.rse.2007.06.025.
  • Friedl, M., 2010. Validation of the consistent-year V003 MODIS land cover product [online]. University of Boston. Available from http://landval.gsfc.nasa.gov/pdf/MOD12_supporting_materials.PDF [Accessed 18 March 2010].
  • Friedl, M.A., 1996. Relationships among remotely sensed data, surface energy balance, and area-averaged fluxes over partially vegetated land surfaces. Journal of Applied Meteorology, 35 (11), 2091–2103, doi:10.1175/1520-0450(1996)035<2091:RARSDS>2.0.CO;2.
  • Friedl, M.A., et al., 2002. Global land cover from MODIS: algorithms and early results. Remote Sensing of Environment, 83 (1–2), 135–148, doi:10.1016/S0034-4257(02)00078-0.
  • Furley, A., 1999. The nature and diversity of neotropical savannah vegetation with particular reference to the Brazilian cerrados. Global Ecology and Biogeography, 8, 223–241.
  • Gash, J.H.C., 1987. An analytical framework for extrapolating evaporation measurements by remote sensing surface temperature. International Journal of Remote Sensing, 8 (8), 1245–1249, doi:10.1080/01431168708954769.
  • Getirana, A.C., et al., 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrological Processes, 24 (22), 3219–3236, doi:10.1002/hy7747.
  • Global Land Cover Facility, 2010. NASA’s landsat imagery [online]. Available from http://www.landcover.org [Accessed 18 March 2010].
  • GMAO (Global Modelling and Assimilation Office), 2004. File specification for GEOSDAS gridded output version 5.3 report [online]. NASA Goddard Space Flight Center. Available from http://gmao.gsfc.nasa.gov/operations/GMAO-1001v5.3.pdf [Accessed 18 March 2010].
  • Gowda, H., et al., 2009. ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26 (3), 223–237, doi:10.1007/s00271-007-0088-6.
  • Heinsch, F.A., et al., 2003. User’s guide: GPP and NPP (MOD17A2/A3) products—NASA MODIS Land Algorithm [online]. Available from http://www.ntsg.umt.edu/modis/MOD17UsersGuide.pdf [Accessed 18 March 2010].
  • Hutyra, L., et al., 2007. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research, 112, G03008, 16, doi:10.1029/2006JG000365.
  • INPE (Instituto Nacional de Pesquisas Espaciais), 2010. Plataformas de coleta de dados [online]. Available online at http://satelite.cptec.inpe.br/PCD/ [Accessed 18 March 2010].
  • Jang, K., et al., 2010. Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation. Remote Sensing of Environment, 114 (3), 657–673, doi:10.1016/j.rse.2009.11.010.
  • Janowiak, J.E., et al., 1998. A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. Journal of Climate, 11 (11), 2960–2979, doi:10.1175/1520-0442(1998)011<2960:ACOTNN>2.0.CO;2.
  • Jin, Y., et al., 2003. Consistency of MODIS surface BRDF/Albedo retrievals: 1. Algorithm performance. Journal of Geophysical Research, 108 (D5), 4158–4165, doi:10.1029/2002JD002803.
  • Juárez, R.I.N., 2004. Variabilidade climática regional e controle da vegetação no sudeste: Um estudo de observações sobre cerrado e cana-de-açúcar e modelagem numérica da atmosfera. PhD in Atmospheric Sciences. São Paulo: Universidade de São Paulo.
  • Kouwen, N., et al., 1993. Grouped response units for distributed hydrologic modeling. Journal of Water Resources Planning and Management, 119 (3), 289–305, doi:10.1061/(asce)0733-9496(1993)119:3(289).
  • Kustas, W. and Norman, J.M., 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 41 (4), 495–516, doi:10.1080/02626669609491522.
  • Loarie, S.R., et al., 2011. Direct impacts on local climate of sugarcane expansion in Brazil. Nature Climate Change, 1 (2), 105–109, doi:10.1038/nclimate1067.
  • Lucht, W., Schaaf, C.B., and Strahler, A.H., 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38 (2), 977–998, doi:10.1109/36.841980.
  • Mallick, K., et al., 2009. Latent heat flux estimation in clear sky days over Indian agroecosystems using noontime satellite remote sensing data. Agricultural and Forest Meteorology, 149 (10), 1646–1665, doi:10.1016/j.agrformet.2009.05.006.
  • McVicar, T.R. and Jupp, D.L.B., 1998. The current and potential operational uses of remote sensing to aid decisions on Drought Exceptional Circumstances in Australia: a review. Agricultural Systems, 57 (3), 399–468, doi:10.1016/S0308-521X(98)00026–2.
  • Ministério das Minas e Energia, 1982. Projeto RADAM Brasil [online]. Ministério das Minas e Energia. Available from http://www.projeto.radam.com.br/ [Accessed 18 March 2010].
  • Monteith, J.L., 1965. Evaporation and environment. In: B.D. Fogg, ed. The state and movement of water in living organisms. Symposium of the Society of Experimental Biology XIX. Cambridge: Cambridge University Press, 205–234, doi:10.1002/iroh.19670520242.
  • Moran, M.S., Inoue, Y., and Barnes, E.M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61 (3), 319–346, doi:10.1016/S0034-4257(97)00045-X.
  • Mu, Q., et al., 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111 (4), 519–536, doi:10.1016/j.rse.2007.04.015.
  • Mu, Q., Zhao, M., and Running, S.W., 2011. Improvements and evaluations of the MODIS global evapotranspiration algorithm. Remote Sensing of Environment, 115 (8), 1781–1800, doi:10.1016/j.rse.2011.02.019.
  • Mu, Q., et al., 2013. A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94 (1), doi:10.1175/BAMS-D-11-00213.1.
  • Myneni, R.B., et al., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702, doi:10.1038/386698A0.
  • Myneni, R.B., et al., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83, 214–231, doi:10.1016/S0034-4257(02)00074-3.
  • Myneni, R.B., et al., 2007. Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of the United States of America, 104 (12), 4820–4823, doi:10.1073/pnas.0611338104.
  • Nemani, R., et al., 2002. Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29 (10), 1468, doi:10.1029/2002GL014867.
  • Nishida, K., et al., 2003. An operational remote sensing algorithm for land surface evaporation. Journal of Geophysical Research, 108 (D9), 4270–4283, doi:10.1029/2002jd002062.
  • Nóbrega, M.T., et al., 2011. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15 (2), 585–595, 2011, doi:10.5194/hess-15-585-2011.
  • Oren, R., et al., 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environment, 22 (12), 1515–1526, doi:10.1046/j.1365-3040.1999.00513.x.
  • Paiva, R.C.D., et al., 2011. Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data. Geophysical Research Letters, 38, L04406, doi:10.1029/2010GL045277.
  • Paz, A.R. and Collischonn, W., 2007. River reach length and slope estimates for large-scale hydrological models based on a relatively high-resolution digital elevation model. Journal of Hydrology, 343, 127–139, doi:10.1016/j.jhydrol.2007.06.006.
  • Pinto, O.B., Jr. et al., 2010. Leaf area index of a tropical semi-deciduous forest of the southern Amazon Basin. International Journal of Biometeorology, 20, 7128, doi:10.1007/s00484-010-0317-1.
  • Rango, A. and Shalaby, A.I., 1998. Operational applications of remote sensing in hydrology: success, prospects and problems. Hydrological Sciences Journal, 43 (6), 947–968, doi:10.1080/02626669809492189.
  • Roberson, M.J., et al., 1999. Physiology and productivity of sugarcane with early and mid-season water deficit. Field Crops Research, 64 (3), 211–217, doi:10.1016/S0378-4290(99)00042-8.
  • Rocha, H.R., et al., 2002. Measurements of CO2 exchange over a woodland savannah (Cerrado sensu stricto) in southeast Brasil. Biota Neotropica, 2 (1), 1–11.
  • Rocha, H.R., et al., 2004. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecological Applications, 14 (4), S22–S32, doi:10.1890/02-6001.
  • Running, S.W., et al., 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54 (6), 547–560, doi:10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.
  • Salomon, J., et al., 2006. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the AQUA and TERRA platforms. IEEE Transactions on Geoscience and Remote Sensing, 44 (6), 1555–1565, doi:10.1109/TGRS.2006.871564.
  • Schaaf, C.B., et al., 2002. First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sensing of Environment, 83 (1–2), 135–148, doi:10.1016/S0034-4257(02)00091-3.
  • Shuttleworth, W.J., 1989. Micrometeorology of temperature and tropical forest. Philosophical Transactions of the Royal Society of London, Series Biological Science, 324 (1223), 299–334. Available from http://www.jstor.org/stable/2990185 [Accessed 18 March 2010].
  • Shuttleworth, W.J., 1993. Evaporation. In: D.R. Maidment, ed. Handbook of hydrology. New York: McGraw-Hill.
  • Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85–99, doi:10.5194/hess-6-85-2002.
  • Tasumi, M., et al., 2005. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrigation and Drainage Systems, 19 (3–4), 355–376, doi:10.1007/s10795-005-8138-9.
  • Tucci, C.E.M., et al., 2008. Short and long-term flow forecasting in the Rio Grande watershed (Brazil). Atmospheric Science Letters, 9 (2), 53–56, doi:10.1002/asl.165.
  • Turner, D., et al., 2003. Across-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 9 (3), 383–395, doi:10.1046/j.1365-2486.2003.00573.x.
  • Ubarana, N., 1996. Observations and modeling of rainfall interception at two experimental sites in Amazonia. In: J.H.C. Gash, et al., eds. Amazonian deforestation and climate. Chichester: John Wiley & Sons.
  • Venturini, V., Islam, S., and Rodriguez, L., 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112, 132–141, doi:10.1016/j.rse.2007.04.014.
  • Vinukollu, R.K., et al., 2011. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches. Remote Sensing of Environment, 115 (3), 801–823, doi:10.1016/j.rse.2010.11.006.
  • Vourlitis, G.L., et al., 2002. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resources Research, 38, 1094, 11, doi:10.1029/2000WR000122.
  • Wang, Y., et al., 2004. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91 (1), 114–127, doi:10.1016/j.rse.2004.02.007.
  • Wasseige, C., Bastin, D., and Defourny, P., 2003. Seasonal variation of tropical forest LAI based on field measurements in Central African Republic. Agricultural and Forest Meteorology, 119 (3–4), 181–194, doi:10.1016/S0168-1923(03)00138-2.
  • Watanabe, K., et al., 2004. Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand. Agricultural Water Management, 67 (2), 133–143, doi:10.1016/j.agwat.2004.02.004.
  • Wigmosta, M.S., Vail, L.W., and Lettenmaier, D., 1994. A distributed hydrology–vegetation model for complex terrain. Water Resources Research, 30 (6), 1665–1679, doi:10.1029/94wr00436.
  • Zhao, M., et al., 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95, 164–176, doi:10.1016/j.rse.2004.12.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.