10,266
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods

Revue de l’hydrogramme unitaire synthétique: des HU empiriques aux méthodes géomorphologiques avancées

, &
Pages 239-261 | Received 21 Jun 2012, Accepted 21 Jun 2013, Published online: 24 Feb 2014

REFERENCES

  • Agirre, U., et al., 2005. Application of a unit hydrograph based on sub watershed division and comparison with Nash’s instantaneous unit hydrograph. Catena, 64, 321–332. doi:10.1016/j.catena.2005.08.013.
  • Allam, M.N., 1990. Geomorphologic rainfall‐runoff model: incorporating Philip’s infiltration expression. Journal of Water Resources Planning and Management, 116 (2), 262–281. doi:10.1061/(ASCE)0733-9496(1990)116:2(262).
  • Allam, M.N. and Balkhair, K.S., 1987. Case study evaluation of geomorphologic instantaneous unit hydrograph. Water Resources Management, 1, 267–291. doi:10.1007/BF00421880.
  • Al-Wagdany, A.S. and Rao, A.R., 1997. Estimation of velocity parameter of geomorphologic instantaneous unit hydrograph. Water Resources Management, 11, 1–16. doi:10.1023/A:1007923906214.
  • Aron, G. and White, E.L., 1982. Fitting a gamma distribution over a synthetic unit hydrograph. Water Resources Bulletin, 18 (1), 95–98. doi:10.1111/j.1752-1688.1982.tb04533.x.
  • Band, L.E., 1986. Topographic partition of watersheds with digital elevation models. Water Resources Research, 22 (1), 15–24. doi:10.1029/WR022i001p00015.
  • Band, L.E., 1989. A terrain-based watershed information system. Hydrological Processes, 3, 151–162. doi:10.1002/hyp.3360030205.
  • Bedient, P.B. and Huber, W.C., 2002. Hydrology and floodplain analysis. Englewood Cliffs, NJ: Prentice-Hall.
  • Bernard, M., 1935. An approach to determinate stream flow. Transactions of the American Society of Civil Engineers, 100, 347–362.
  • Bérod, D.D., et al., 1995. A Geomorphologic Non-linear Cascade (GNC) model for estimation of floods from small alpine watersheds. Journal of Hydrology, 166, 147–170. doi:10.1016/0022-1694(94)02591-X.
  • Beven, K.J., Wood, E.F., and Sivapalan, M., 1988. On hydrological heterogeneity—catchment morphology and catchment response. Journal of Hydrology, 100, 353–375. doi:10.1016/0022-1694(88)90192-8.
  • Bhadra, A., et al., 2008. Development of a geomorphological instantaneous unit hydrograph model for scantily gauged watersheds. Environmental Modelling and Software, 23, 1013–1025. doi:10.1016/j.envsoft.2007.08.008.
  • Bhaskar, N.R., Parida, B.P., and Nayak, A.K., 1997. Flood estimation for ungauged catchments using the GIUH. Journal of Water Resources Planning and Management, 123 (4), 228–238. doi:10.1061/(ASCE)0733-9496(1997)123:4(228).
  • Bhunya, P.K., et al., 2005. Hybrid model for derivation of synthetic unit hydrograph. Journal of Hydrologic Engineering, 10 (6), 458–467. doi:10.1061/(ASCE)1084-0699(2005)10:6(458).
  • Bhunya, P.K., et al., 2007. Suitability of gamma, chi-square, Weibull and beta distributions as synthetic unit hydrographs. Journal of Hydrology, 334, 28–38. doi:10.1016/j.jhydrol.2006.09.022.
  • Bhunya, P.K., et al., 2008. Comparison between Weibull and gamma distributions to derive synthetic unit hydrograph using Horton ratios. Water Resources Research, 44, W0442. doi:10.1029/2007WR006031.
  • Bhunya, P.K., et al., 2010. A Simple conceptual model of sediment yield. Water Resources Management, 24 (8), 1697–1716. doi:10.1007/s11269-009-9520-4.
  • Bhunya, P.K., Mishra, S.K., and Berndtsson, R., 2003. Simplified two parameter gamma distribution for derivation of synthetic unit hydrograph. Journal of Hydrologic Engineering, 8 (4), 226–230. doi:10.1061/(ASCE)1084-0699(2003)8:4(226).
  • Bhunya, P.K., Singh, P.K., and Mishra, S.K., 2009. Fréchet and chi-square parametric expressions combined with Horton ratios to derive a synthetic unit hydrograph. Hydrological Sciences Journal, 54 (2), 274–286. doi:10.1623/hysj.54.2.274.
  • Botter, G. and Rinaldo, A., 2003. Scale effect on geomorphologic and kinematic dispersion. Water Resources Research, 39 (10), 1286. doi:10.1029/2003WR002154.
  • Boufadel, M.C., 1998. Unit hydrographs derived from the Nash model. Journal of American Water Resources Association, 34 (1), 167–177. doi:10.1111/j.1752-1688.1998.tb05969.x.
  • Bouraoui, F. and Dillaha, T.A., 1996. ANSWERS-2000: runoff and sediment transport model. Journal of Environmental Engineering, 122 (6), 493–502. doi:10.1061/(ASCE)0733-9372(1996)122:6(493).
  • Boyd, M.J., 1979. A storage-routing model relating drainage basin hydrology and geomorphology. Hydrological Sciences Bulletin, 24, 43–69.
  • Boyd, M.J., Pilgrim, D.H., and Cordery, I., 1979. A storage routing model based on catchment geomorphology. Journal of Hydrology, 42 (3–4), 209–330.
  • Bras, R.L. and Rodriguez-Iturbe, I., 1989. A review of the search for a quantitative link between hydrologic response and fluvial geomorphology. In: M.L. Kavvas, ed. New directions for surface water modelling. IAHS Publications 181. Wallingford: IAHS Press, 149–163.
  • Chorowicz, J., et al., 1992. A combined algorithm for automated drainage network extraction. Water Resources Research, 28 (5), 1293–1302. doi:10.1029/91WR03098.
  • Chow, V.T., 1964. Handbook of applied hydrology. New York: McGraw-Hill Book.
  • Chutha, P. and Dooge, J.C.I., 1990. The shape parameters of the geomorphologic unit hydrograph. Journal of Hydrology, 117 (1–4), 81–97. doi:10.1016/0022-1694(90)90087-E.
  • Clark, C.O., 1945. Storage and unit hydrograph. Transactions of the American Society of Civil Engineers, 110, 1419–1446.
  • Collins, W.T., 1939. Runoff distribution graphs from precipitation occurring in more than one time unit. Civil Engineering, 9 (9), 559–561.
  • Costa-Cabral, M.C. and Burges, S.J., 1994. Digital Elevation Model Networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30, 1681–1692. doi:10.1029/93WR03512.
  • Croley II., T.E., 1980. Gamma synthetic hydrographs. Journal of Hydrology, 47, 41–52. doi:10.1016/0022-1694(80)90046-3.
  • Cudennec, C., et al., 2004. A geomorphological explanation of the unit hydrograph concept. Hydrological Processes, 18, 603–621. doi:10.1002/hyp.1368.
  • D’Odorico, P. and Rigon, R., 2003. Hillslope and channel contributions to the hydrologic response. Water Resources Research, 39 (5), 1113. doi:10.1029/2002WR001708.
  • Das, G., 2009. Hydrology and soil conservation engineering. New Delhi: PHI Learning Private Limited.
  • DeVantier, B.A. and Feldman, A.D., 1993. Review of GIS Applications in hydrologic modeling. Journal of Water Resources Planning and Management, 119 (2), 246–261. doi:10.1061/(ASCE)0733-9496(1993)119:2(246).
  • Diskin, M.H., 1964. A basic study of the linearity of the rainfall–runoff process in watersheds. Thesis (PhD). University of Illinois, Urbana.
  • Diskin, M.H., Ince, M., and Kwabena, O.N., 1978. Parallel cascades model for urban watersheds. Journal of Hydraulics Division, Proceedings ASCE, 104 (2), 261–276.
  • Dooge, J.C.I., 1959. A general theory of the unit hydrograph. Journal of Geophysical Research, 64 (2), 241–256. doi:10.1029/JZ064i002p00241.
  • Dooge, J.C.I., 1973. The linear theory of hydrologic systems. Technical Bulletin, US Dept. Agric., no. 1468. Washington, DC: US Government Printing Office.
  • Duchesne, J., Cudennec, C., and Corbierre, V., 1997. Relevance of the hu model to predict the discharge of a catchment. Water Science & Technology, 36 (5), 169–175. doi:10.1016/S0273-1223(97)00471-X.
  • Eagleson, P.S., Mejia, R., and March, F., 1966. Computation of optimum realizable unit hydrographs. Water Resources Research, 2, 755–764. doi:10.1029/WR002i004p00755.
  • Fairfield, J. and Leymarie, P., 1991. Drainage networks from grid digital elevation models. Water Resources Research, 30 (6), 1681–1692.
  • Fleurant, C., Kartiwa, B., and Roland, B., 2006. Analytical model for a geomorphological instantaneous unit hydrograph. Hydrological Processes, 20, 3879–3895. doi:10.1002/hyp.6162.
  • Franchini, M. and O’Connell, P.E., 1996. An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. Journal of Hydrology, 175 (1–4), 407–428. doi:10.1016/S0022-1694(96)80018-7.
  • Freeman, T.G., 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17 (3), 413–422. doi:10.1016/0098-3004(91)90048-I.
  • Gandolfi, C. and Bischetti, G.B., 1997. Influence of the drainage network identification method on geomorphological properties and hydrological response. Hydrological Processes, 11, 353–375. doi:10.1002/(SICI)1099-1085(19970330)11:4<353::AID-HYP436>3.0.CO;2-L.
  • Gravelius, H., 1914. Flusshunde. [Compendium of hydrology, vol. 1: Rivers.]. Berlin: Göschen. (German).
  • Gray, D.M., 1961. Synthetic unit hydrographs for small drainage areas. Journal of Hydraulics Division, ASCE, 87 (4), 33–54.
  • Grimaldi, S., et al., 2010. Flow time estimation with spatially variable hillslope velocity in ungauged basins. Advances in Water Resources, 33 (10), 1216–1223. doi:10.1016/j.advwatres.2010.06.003.
  • Grimaldi, S., Petroselli, A., and Nardi, F., 2012. A parsimonious geomorphological unit hydrograph for rainfall–runoff modelling in small ungauged basins. Hydrological Sciences Journal, 57 (1), 73–83. doi:10.1080/02626667.2011.636045.
  • Gupta, V. and Waymire, E., 1983. On the formulation of an analytical approach to hydrologic response and similarity at the basin scale. Journal of Hydrology, 65, 95–123. doi:10.1016/0022-1694(83)90212-3.
  • Gupta, V.J., Waymire, E., and Rodriguez-Iturbe, I., 1986. On scales, gravity and network structure in basin runoff. In: V.K. Gupta, I. Rodriguez-Iturbe, and E.F. Wood, eds. Scale problems in hydrology. Dordrecht: Reidel, 159–184.
  • Gupta, V.K. and Mesa, O., 1988. Runoff generation and hydrologic response via channel network geomorphology—recent progress and open problems. Journal of Hydrology, 102, 3–28. doi:10.1016/0022-1694(88)90089-3.
  • Gupta, V.K., Waymire, E., and Wang, C.T., 1980. A representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research, 16 (5), 855–862. doi:10.1029/WR016i005p00855.
  • Gyasi-Agyei, Y., Willgoose, G.R., and De Troch, F.D., 1995. Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology. Hydrological Processes, 9, 363–382. doi:10.1002/hyp.3360090310.
  • Haan, C.T. and Barfield, B.J., 1978. Hydrology and sedimentology of surface mined lands. Kentucky: University of Kentucky, Office of Continuing Education and Extension, College of Engineering.
  • Haan, C.T., Barfield, B.J., and Hayes, J.C., 1994. Design hydrology and sedimentology for small catchments. San Diego, CA: Academic.
  • Haktanir, T. and Sezen, N., 1990. Suitability of two-parameter gamma and three-parameter beta distributions as synthetic unit hydrographs in Anatolia. Hydrological Sciences Journal, 35 (2), 167–184. doi:10.1080/02626669009492416.
  • Hall, M.J., Zaki, A.F., and Shahin, M.M.A., 2001. Regional analysis using the geomorphoclimatic instantaneous unit hydrograph. Hydrology and Earth System Sciences, 5 (1), 93–102. doi:10.5194/hess-5-93-2001.
  • Harley, B.M., 1967. Linear routing in uniform open channels. Master Thesis. National University of Ireland, Galway.
  • Hedman, E.R., 1970. Mean annual runoff as related to channel geometry of selected streams on California. Arlington, VA: USGS-WSP. 1999-E, 17.
  • Hoffmeister, G. and Weisman, R.N., 1977. Accuracy of synthetic hydrographs derived from representative basins [La précision des hydrogrammes synthétiques dérivés des bassins représentatifs]. Hydrological Sciences Journal, 22 (2), 297–312. doi:10.1080/02626667709491719.
  • Horton, R.E., 1932. Drainage basin characteristics. Transactions American Geophysical Union, 13, 350–361. doi:10.1029/TR013i001p00350.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56, 275–370. doi:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
  • Jain, S.K., Singh, R.D., and Seth, S.M., 2000. Design flood estimation using GIS supported GIUH approach. Water Resources Management, 14, 369–376. doi:10.1023/A:1011147623014.
  • Jain, V. and Sinha, R., 2003. Derivation of unit hydrograph from GIUH: analysis for a Himalayan river. Water Resources Management, 17, 355–376. doi:10.1023/A:1025884903120.
  • Jeng, R.I. and Coon, G.C., 2003. True form of instantaneous unit hydrograph of linear reservoirs. Journal of Irrigation and Drainage Engineering, 129 (1), 11–17. doi:10.1061/(ASCE)0733-9437(2003)129:1(11).
  • Jeng, R.L., 2006. NRCS (SCS) synthetic curvilinear dimensionless unit hydrograph. Journal of Irrigation and Drainage Engineering, 132 (6), 627–631. doi:10.1061/(ASCE)0733-9437(2006)132:6(627).
  • Jenson, S.K., 1985. Automated derivation of hydrologic basin characteristics from digital elevation model data. In: Proceedings of the digital representations of spatial knowledge (Auto-Carto 7), 11–14 March, Washington, DC. Falls Church, VA: American Society for Photogrammetry and American Congress on Surveying and Mapping, 301–310.
  • Jenson, S.K. and Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54 (11), 1593–1600.
  • Jin, C.-X., 1992. A deterministic gamma type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research, 28 (2), 479–486. doi:10.1029/91WR02577.
  • Kirchner, J., Feng, X., and Neal, C., 2001. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations. Journal of Hydrology, 254, 82–101. doi:10.1016/S0022-1694(01)00487-5.
  • Kirkby, M.J., 1976. Tests of the random network model, and its application to basin hydrology. Earth Surface Processes and Landforms, 1, 197–212.
  • Kirshen, D. and Bras, R., 1983. The linear channel and its effect on the geomorphologic IUH. Journal of Hydrology, 65, 175–208. doi:10.1016/0022-1694(83)90216-0.
  • Koutsoyiannis, D. and Xanthopoulos, T., 1989. On the parametric approach to unit hydrograph identification. Water Resources Management, 3, 107–128. doi:10.1007/BF00872467.
  • Kull, D.W. and Feldman, A.D., 1998. Evolution of Clark’s unit graph method to spatially distributed runoff. Journal of Hydrologic Engineering, 3 (1), 9–19. doi:10.1061/(ASCE)1084-0699(1998)3:1(9).
  • Kumar, R., et al., 2007. Runoff estimation for an ungauged catchment using geomorphological instantaneous unit hydrograph (GIUH) models. Hydrological Processes, 21, 1829–1840. doi:10.1002/hyp.6318.
  • Kumar, S. and Rastogi, R.A., 1987. A conceptual catchment model for estimating suspended sediment flow. Journal of Hydrology, 95, 155–163. doi:10.1016/0022-1694(87)90122-3.
  • Lee, K.T., 1998. Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study. Water Resources Association, 34 (2), 375–384. doi:10.1111/j.1752-1688.1998.tb04142.x.
  • Lee, K.T. and Chang, C.H., 2005. Incorporating subsurface-flow mechanism into geomorphology-based IUH modeling. Journal of Hydrology, 311 (1–4), 91–105.
  • López, J.J., et al., 2005. Analysis of a unit hydrograph model based on watershed geomorphology represented as a cascade of reservoirs. Agricultural Water Management, 77, 128–143. doi:10.1016/j.agwat.2004.09.025.
  • Maidment, D., 2002. ArcHydro—GIS for water resources. Redlands, CA: ESRI Press, 220.
  • Maidment, D.R., et al., 1996. Unit hydrograph derived from a spatially distributed velocity field. Hydrological Processes, 10, 831–844. doi:10.1002/(SICI)1099-1085(199606)10:6<831::AID-HYP374>3.0.CO;2-N.
  • Mark, D.M., 1984. Automated detection of drainage networks from digital elevation models. Cartographica, 21 (2–3), 168–178.
  • Mays, L.W. and Taur, C.K., 1982. Unit hydrographs via non-linear programing. Water Resources Research, 18 (4), 744–752. doi:10.1029/WR018i004p00744.
  • McCuen, R.H., 1989. Hydrologic analysis and design. Englewood Cliffs, NJ: Prentice-Hall.
  • Mesa, O. and Mifflin, E., 1986. On the relative role of hillslope and network geometry in hydrologie response. In: V.K. Gupta, I. Rodriguez-Iturbe, and E.F. Wood, eds. Scaling problems in hydrology, Chapter 1. Dordrecht: Reidel, 1–17.
  • Miller, V.C., 1953. A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Project NR 389042, Tech. Rept. 3, Columbia University, Department of Geology, ONR, Geography Branch, New York.
  • Molnár, D.K. and Julien, P.Y., 2000. Grid-size effects on surface runoff modeling. Journal of Hydrologic Engineering, 5, 8–16. doi:10.1061/(ASCE)1084-0699(2000)5:1(8).
  • Moore, I.D., 1996. Hydrologic modeling and GIS. In: F.M. Goodchild, et al., eds. GIS and environment modelling. Collins: GIS World, 143–148.
  • Moore, I.D., Grayson, R.B., and Landson, A.R., 1991. Digital terrain modelling in hydrology. Hydrological Processes, 5, 1–42. doi:10.1002/hyp.3360050102.
  • Morris, D.G. and Heerdegen, R.G., 1988. Automatically drained catchment boundaries and channel networks and their hydrological applications. Geomophology, 1, 131–141. doi:10.1016/0169-555X(88)90011-6.
  • Murphey, J.B., Wallace, D.E., and Lane, L.J., 1977. Geomorphic parameters predict hydrograph characteristics in the southwest. Water Resources Bulletin, 13 (1), 25–37. doi:10.1111/j.1752-1688.1977.tb01987.x.
  • Nadarajah, S., 2007. Probability models for unit hydrograph derivation. Journal of Hydrology, 344, 185–189. doi:10.1016/j.jhydrol.2007.07.004.
  • Naden, P., 1992. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrological Sciences Journal, 37 (1), 53–71. doi:10.1080/02626669209492561.
  • Nardi, F., et al., 2008. Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue [Propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de modèles numériques de terrain: la question des zones planes]. Hydrological Sciences Journal, 53 (6), 1176–1193. doi:10.1623/hysj.53.6.1176.
  • Nardi, F., Vivoni, E.R., and Grimaldi, S., 2006. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research, 42, W09409. doi:10.1029/2005WR004155.
  • Nash, J.E., 1957. The form of the instantaneous unit hydrograph. Hydrological Sciences Bulletin, 3, 114–121.
  • Nash, J.E., 1959. Synthetic determination of unit hydrograph parameters. Journal of Geophysical Research, 64 (1), 111–115.
  • Nasri, S., et al., 2004. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia. Journal of Hydrology, 287 (1–4), 197–213.
  • Nourani, V., Singh, V.P., and Delafrouz, H., 2009. Three geomorphological rainfall–runoff models based on the linear reservoir concept. Catena, 76 (3), 206–214. doi:10.1016/j.catena.2008.11.008.
  • O’Callaghan, J.F. and Mark, D.M., 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image processing, 28, 323–344. doi:10.1016/S0734-189X(84)80011-0.
  • Olivera, F. and Maidment, D.R., 1999. GIS tools for HMS modeling support. Proceedings of the 19th ESRI users conference, July 26–30, San Diego, CA.
  • Orlandini, S., et al., 2003. Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models. Water Resources Research, 39 (6), 1144. doi:10.1029/2002WR001639.
  • Peña, A., Ayuso, J.L., and Giráldez, J.V., 1999. Incorporating topologic properties into the geomorphologic instantaneous unit hydrograph. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24 (1–2), 55–58.
  • Petroselli, A., 2012. LIDAR data and hydrological applications at the basin scale. GIS Science and Remote Sensing, 49 (1), 139–162. doi:10.2747/1548-1603.49.1.139.
  • Peucker, T.K. and Douglas, D.H., 1975. Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing, 4, 375–387. doi:10.1016/0146-664X(75)90005-2.
  • Pilgrim, D.H., 1977. Isochrones of travel time and distribution of flood storage from a tracer study on a small watershed. Water Resources Research, 13, 587–595. doi:10.1029/WR013i003p00587.
  • Pristachova, G., 1990. Quantitative geomorphology, stream networks and instantaneous unit hydrograph. In: L. Molnar ed. Hydrology of mountainous areas. IAHS Publication. 190. Wallingford: IAHS Press, 369–375.
  • Quinn, P., et al., 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5, 59–79. doi:10.1002/hyp.3360050106.
  • Rinaldo, A., Marani, A., and Rigon, R., 1991. Geomorphological dispersion. Water Resources Research, 27 (4), 513–525. doi:10.1029/90WR02501.
  • Rinaldo, A. and Rodriguez-Iturbe, I., 1996. Geomorphological theory of the hydrological response. Hydrological Processes, 10, 803–829. doi:10.1002/(SICI)1099-1085(199606)10:6<803::AID-HYP373>3.0.CO;2-N.
  • Rinaldo, A., et al., 1995. Can one gauge the shape of a basin? Water Resources Research, 31 (4), 1119–1127. doi:10.1029/94WR03290.
  • Rodríguez-Iturbe, I., Devoto, G., and Valdés, J.B., 1979. Discharge response analysis and hydrologic similarity: the interrelation between the geomorphologic IUH and the storm characteristics. Water Resources Research, 15 (6), 1435–1444. doi:10.1029/WR015i006p01435.
  • Rodríguez-Iturbe, I., González-Sanabria, M., and Bras, R.L., 1982a. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resources Research, 18 (4), 877–886. doi:10.1029/WR018i004p00877.
  • Rodríguez-Iturbe, I., GonzBlez-Sanabira, M., and Caamaño, G., 1982b. On the climatic dependence of the IUH: a rainfall-runoff analysis of the Nash model and the geomorpho-climatic theory. Water Resources Research, 18 (4), 887–903. doi:10.1029/WR018i004p00887.
  • Rodríguez-Iturbe, I. and Rinaldo, A., 1997. Fractal river basins; chance and self-organization. Cambridge University Press.
  • Rodríguez-Iturbe, I. and Valdés, J., 1979. The geomorphologic structure of hydrologic response. Water Resources Research, 15 (6), 1409–1420. doi:10.1029/WR015i006p01409.
  • Rosso, R., 1984. Nash model relation to Horton order ratios. Water Resources Research, 20, 914–920. doi:10.1029/WR020i007p00914.
  • Sahoo, B., et al., 2006. Flood estimation by GIUH based Clark and Nash models. Journal of Hydrologic Engineering, 11 (6), 515–525. doi:10.1061/(ASCE)1084-0699(2006)11:6(515).
  • Sarkar, S. and Rai, R.K., 2011. Flood inundation modeling using Nakagami-m distribution based GIUH for a partially gauged catchment. Water Resources Management, 25 (14), 3805–3835. doi:10.1007/s11269-011-9890-2.
  • Sarkar, S., Goel, N., and Mathur, B., 2010. Performance investigation of Nakagami-m distribution to derive flood hydrograph by genetic algorithm optimization approach. Journal of Hydrologic Engineering, 15 (8), 658–666. doi:10.1061/(ASCE)HE.1943-5584.0000220.
  • Schumm, S.A., 1956. The evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597–646. doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
  • SCS (Soil Conservation Service), 1957. Use of storm and watershed characteristics in synthetic hydrograph analysis and application. Washington, DC: US Department of Agriculture, Soil Conservation Service.
  • Shamseldin, A.Y. and Nash, J.E., 1998. The geomorphological unit hydrograph—a critical review. Hydrology and Earth System Sciences, 2 (1), 1–8. doi:10.5194/hess-2-1-1998.
  • Sharma, K.D., Dhir, R.P., and Murthy, J.S.R., 1992. Modelling suspended sediment flow in arid upland basins. Hydrological Sciences Journal, 37 (5), 481–490. doi:10.1080/02626669209492613.
  • Sharma, K.D. and Murthy, J.S.R., 1996. A conceptual sediment transport model for arid regions. Journal of Arid Environments, 33, 281–290. doi:10.1006/jare.1996.0065.
  • Sherman, L.K., 1932. Stream flow from rainfall by the unit hydrograph method. Engineering News Record, 108, 501–505.
  • Singh, K.P., 1964. Non-linear instantaneous unit-hydrograph theory. Journal of the Hydraulics Division, ASCE, 90 (HY2), 313–347.
  • Singh, P.K., et al., 2007. An extended hybrid model for synthetic unit hydrograph derivation. Journal of Hydrology, 336, 347–360. doi:10.1016/j.jhydrol.2007.01.006.
  • Singh, P.K., et al., 2008. A sediment graph model based on SCS-CN method. Journal of Hydrology, 349, 244–255. doi:10.1016/j.jhydrol.2007.11.004.
  • Singh, S.K., 2000. Transmuting synthetic unit hydrographs into gamma distribution. Journal of Hydrologic Engineering, 5 (4), 380–385. doi:10.1061/(ASCE)1084-0699(2000)5:4(380).
  • Singh, V.P., 1988. Hydrologic systems: rainfall–runoff modeling. Englewood Cliffs, NJ: Prentice-Hall.
  • Singh, V.P. and Chowdhury, P., 1985. On fitting gamma distribution to synthetic runoff hydrographs. Nordic Hydrology, 16, 177–192.
  • Singh, V.P., Corradini, C., and Melone, F., 1985. A comparison of some methods of deriving the instantaneous unit hydrograph. Nordic Hydrology, 16, 1–10.
  • Singh, V.P., 1987. On application of the Weibull distribution in hydrology. Water Resources Management, 1, 33–43. doi:10.1007/BF00421796.
  • Sivapalan, M., et al., 2003. IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48 (6), 857–880.
  • Snell, J.D. and Sivapalan, M., 1994. On geomorphological dispersion in natural catchments and the geomorphological unit hydrograph. Water Resources Research, 30 (7), 2311–2323. doi:10.1029/94WR00537.
  • Snyder, F.F., 1938. Synthetic unit-graphs. Transactions American Geophysical Union, 19, 447–454. doi:10.1029/TR019i001p00447.
  • Snyder, W.M., 1955. Hydrograph analysis by the method of least squares. Proceedings American Society of Civil Engineers, 81, 1–24.
  • Sorman, A.U., 1995. Estimation of peak discharge using GIUH model in Saudi Arabia. Journal of Water Resources Planning & Management, 121 (4), 287–293. doi:10.1061/(ASCE)0733-9496(1995)121:4(287).
  • Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38 (6), 913–920. doi:10.1029/TR038i006p00913.
  • Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33, 309–319. doi:10.1029/96WR03137.
  • Tarboton, D.G. and Ames, D.P., 2001. Advances in the mapping of flow networks from digital elevation data. World water and environmental resources congress, Orlando, FL, 20–24, ASCE.
  • Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I., 1991. On the extraction of channel networks from digital elevation data. Hydrological Processes, 5, 81–100. doi:10.1002/hyp.3360050107.
  • Taylor, A.B. and Schwarz, H.E., 1952. Unit hydrograph lag and peak flow related to basin characteristics. Transactions, American Geophysical Union, 33, 235–246. doi:10.1029/TR033i002p00235.
  • Todini, E., 1988. Rainfall–runoff modeling-past, present and future. Journal of Hydrology, 100, 341–352. doi:10.1016/0022-1694(88)90191-6.
  • Tribe, A., 1991. Automated recognition of valley heads from digital elevation models. Earth Surface Processes and Landforms, 16, 33–49. doi:10.1002/esp.3290160105.
  • Tribe, A., 1992. Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method. Journal of Hydrology, 139, 263–293. doi:10.1016/0022-1694(92)90206-B.
  • Troutman, B.M. and Karlinger, M.R., 1985. Unit hydrograph approximations assuming linear flow through topologically random channel networks. Water Resources Research, 21, 743–754. doi:10.1029/WR021i005p00743.
  • Tsihrintzis, V.A., Hamid, R., and Fuentes, H.R., 1996. Use of Geographic Information Systems (GIS) in water resources: a review. Water Resources Management, 10 (4), 251–277. doi:10.1007/BF00508896.
  • U.S. Army Corps of Engineers (USACE), 1940. Engineering construction–flood control. Fort Belvoir, VA: Engineering School, USACE.
  • Usul, N. and Tezcan, B., 1995. Determining synthetic unit hydrographs and parameters for four Turkish basins. Journal of Soil and Water Conservation, 50 (2), 170–173.
  • Valdés, J.B., Fiallo, Y., and Rodríguez-Iturbe, I., 1979. A rainfall-runoff analysis of the geomorphologic IUH. Water Resources Research, 15 (6), 1421–1434. doi:10.1029/WR015i006p01421.
  • Van der Tak, L. and Bras, R., 1990. Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph. Water Resources Research, 26, 2393–2400. doi:10.1029/WR026i010p02393.
  • Walker, J.P. and Willgoose, G.R., 1999. On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35 (7), 2259–2268. doi:10.1029/1999WR900034.
  • Wilson, J.P., Lam, C.S., and Deng, Y., 2007. Comparison of the performance of flow routing algorithms used in GIS-based hydrologic analysis. Hydrological Processes, 21, 1026–1044. doi:10.1002/hyp.6277.
  • Wilson, J.P. and Gallant, J.C., 2000. Digital terrain analysis. In: J.P. Wilson and J.C. Gallant, eds. Terrain analysis: principles and applications. New York: John Wiley and Sons, 1–27.
  • Wilson, J.P., Repetto, R.L., and Snyder, R.D., 2000. Effect of data source, grid resolution, and flow-routing method on computed topographic attributes. In: J.P. Wilson and J.C. Gallant, eds. Terrain analysis: principles and applications. New York: John Wiley and Sons, 133–161.
  • Wolock, D.M. and McCabe, G.J., 1995. Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resources Research, 31, 1315–1324. doi:10.1029/95WR00471.
  • Yang, Z. and Han, D., 2006. Derivation of unit hydrograph using a transfer function approach. Water Resources Research, 42, W01501. doi:10.1029/2005WR004227.
  • Yen, B.C. and Lee, K.T., 1997. Unit hydrograph derivation for ungauged watersheds by stream order laws. Journal of Hydrologic Engineering, 2 (1), 1–9. doi:10.1061/(ASCE)1084-0699(1997)2:1(1).
  • Zhang, B. and Govindaraju, R.S., 2003. Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. Journal of Hydrology, 273, 18–34. doi:10.1016/S0022-1694(02)00313-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.