818
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Bivariate index-flood model: case study in Québec, Canada

Analyse fréquentielle bivariée basée sur l’indice de crue—cas d’étude au Québec, Canada

, , , &
Pages 247-268 | Received 18 Sep 2012, Accepted 14 Nov 2013, Published online: 07 Jan 2015

REFERENCES

  • Akaike, H., 1973. Information measures and model selection. Information Measures and Model Selection, 50, 277–290.
  • Alila, Y., 1999. A hierarchical approach for the regionalization of precipitation annual maxima in Canada. Journal of Geophysical Research D: Atmospheres, 104 (D24), 31645–31655. doi:10.1029/1999JD900764.
  • Alila, Y., 2000. Regional rainfall depth-duration-frequency equations for Canada. Water Resources Research, 36 (7), 1767–1778. doi:10.1029/2000WR900046.
  • Ashkar, F., 1980. Partial duration series models for flood analysis. Montreal, QC: Ecole Polytech of Montreal.
  • Ben Aissia, M.A., et al., 2012. Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong reservoir, Province of Québec, Canada. Hydrological Processes, 26 (1), 130–142. doi:10.1002/hyp.8117.
  • Besag, J., 1975. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society. Series D (The Statistician), 24 (3), 179–195.
  • Brath, A., et al., 2001. Estimating the index flood using indirect methods. Hydrological Sciences Journal, 46 (3), 399–418. doi:10.1080/02626660109492835
  • Burn, D.H., 1990. Evaluation of regional flood frequency analysis with a region of influence approach. Water Resources Research, 26 (10), 2257–2265. doi:10.1029/WR026i010p02257.
  • Charpentier, A., Fermanian, J.-D., and Scaillet, O., 2007. The estimation of copulas: theory and practice. New York, NY: Risk Books.
  • Chebana, F., et al., 2009. Multivariate homogeneity testing in a northern case study in the province of Quebec, Canada. Hydrological Processes, 23 (12), 1690–1700. doi:10.1002/hyp.7304.
  • Chebana, F. and Ouarda, T.B.M.J., 2007. Multivariate L-moment homogeneity test. Water Resources Research, 43 (8). doi:10.1029/2006WR005639.
  • Chebana, F. and Ouarda, T.B.M.J., 2009. Index flood-based multivariate regional frequency analysis. Water Resources Research, 45 (10). doi:10.1029/2008WR007490.
  • Chebana, F. and Ouarda, T.B.M.J., 2011. Multivariate quantiles in hydrological frequency analysis. Environmetrics, 22 (1), 63–78. doi:10.1002/env.1027.
  • Chernick, M.R., 2012. The jackknife: a resampling method with connections to the bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics, 4 (2), 224–226. doi:10.1002/wics.202.
  • Cunnane, C. and Nash, J.E., 1971. Bayesian estimation of frequency of hydrological events. In: Mathematical models in hydrology, vol. 1. Proceedings of Warsaw symposium, July 1971. Wallingford, UK: International Association of Hydrological Sciences, IAHS Publ. 100, 47–55.
  • Dalrymple, T., 1960. Flood-frequency analyses. Washington, DC: United States Government Printing Office.
  • De Michele, C., et al., 2005. Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10 (1), 50–57. doi:10.1061/(ASCE)1084-0699(2005)10:1(50).
  • De Michele, C. and Salvadori, G., 2002. On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. Journal of Hydrology, 262 (1–4), 245–258. doi:10.1016/S0022-1694(02)00025-2.
  • Demarta, S. and McNeil, A.J., 2005. The t copula and related copulas. International Statistical Review, 73 (1), 111–129. doi:10.1111/j.1751-5823.2005.tb00254.x.
  • Durrans, S.R. and Tomic, S., 1996. Regionalization of low-flow frequency estimates: an Alabama case study. Journal of the American Water Resources Association, 32 (1), 23–37. doi:10.1111/j.1752-1688.1996.tb03431.x.
  • Genest, C., Ghoudi, K., and Rivest, L.-P., 1995. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82 (3), 543–552. doi:10.1093/biomet/82.3.543.
  • Genest, C., Rémillard, B., and Beaudoin, D., 2009. Goodness-of-fit tests for copulas: a review and a power study. Insurance: Mathematics and Economics, 44 (2), 199–213.
  • Genest, C. and Rivest, L.-P., 1993. Statistical inference procedures for bivariate archimedean copulas. Journal of the American Statistical Association, 88 (423), 1034–1043. doi:10.1080/01621459.1993.10476372.
  • GREHYS, 1996a. Presentation and review of some methods for regional flood frequency analysis. Journal of Hydrology, 186 (1–4), 63–84. doi:10.1016/S0022-1694(96)03042-9.
  • GREHYS, 1996b. Inter-comparison of regional flood frequency procedures for Canadian rivers. Journal of Hydrology, 186 (1–4), 85–103. doi:10.1016/S0022-1694(96)03043-0.
  • Grimaldi, S. and Serinaldi, F., 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29 (8), 1155–1167. doi:10.1016/j.advwatres.2005.09.005.
  • Hamza, A., et al., 2001. Développement de modèles de queues et d’invariance d’échelle pour l’estimation régionale des débits d’étiage. Canadian Journal of Civil Engineering, 28 (2), 291–304. doi:10.1139/l00-121.
  • Hosking, J.R.M. and Wallis, J.R., 1993. Some statistics useful in regional frequency analysis. Water Resources Research, 29 (2), 271–281. doi:10.1029/92WR01980.
  • Hosking, J.R.M. and Wallis, J.R., 1997. Regional frequency analysis: an approach based on L-moments. Cambridge: Cambridge University Press.
  • Kim, J.-M., et al., 2008. A copula method for modeling directional dependence of genes. BMC Bioinformatics, 9 (1), 225. doi:10.1186/1471-2105-9-225.
  • Kim, G., Silvapulle, M.J., and Silvapulle, P., 2007. Comparison of semiparametric and parametric methods for estimating copulas. Computational Statistics and Data Analysis, 51 (6), 2836–2850. doi:10.1016/j.csda.2006.10.009.
  • Kojadinovic, I. and Yan, J., 2011. A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Statistics and Computing, 21 (1), 17–30.
  • Lee, T., Modarres, R., and Ouarda, T.B.M.J., 2013. Data based analysis of bivariate copula tail dependence for drought duration and severity. Hydrological Processes, 27 (10), 1454–1463.
  • Martins, E.S. and Stedinger, J.R., 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36 (3), 737–744. doi:10.1029/1999WR900330.
  • Meng, X.L. and Rubin, D.B., 1993. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika, 80 (2), 267–278. doi:10.1093/biomet/80.2.267.
  • Nelsen, R.B., 2006. An introduction to copulas. New York: Springer.
  • Nezhad, M.K., et al., 2010. Regional flood frequency analysis using residual kriging in physiographical space. Hydrological Processes, 24 (15), 2045–2055.
  • Nguyen, V.-T.-V. and Pandey, G. (1996). A new approach to regional estimation of floods in Quebec. In: Proceedings of the 49th annual conference of the CWRA. Collection Environnement de l’Université de Montréal: Quebec City, 587–596.
  • NIST (2013). e-Handbook of Statistical Methods. Available from: http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm [Accessed September 2013].
  • Ouarda, T.B.M.J., et al., 2000. Regional flood peak and volume estimation in northern Canadian basin. Journal of Cold Regions Engineering, 14 (4), 176–191. doi:10.1061/(ASCE)0887-381X(2000)14:4(176).
  • Ouarda, T.B.M.J., et al., 2001. Regional flood frequency estimation with canonical correlation analysis. Journal of Hydrology, 254 (1–4), 157–173. doi:10.1016/S0022-1694(01)00488-7.
  • Ouarda, T.B.M.J., et al., 2006. Data-based comparison of seasonality-based regional flood frequency methods. Journal of Hydrology, 330 (1–2), 329–339. doi:10.1016/j.jhydrol.2006.03.023.
  • Ouarda, T.B.M.J., et al., 2008. Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study. Journal of Hydrology, 348 (1–2), 40–58. doi:10.1016/j.jhydrol.2007.09.031.
  • Pilon, P.J., 1990. The Weibull distrubution applied to regional low-flow frequency analysis. In: A. Beran et al., eds., Regionalization in hydrology. (Proceedings of the Ljubljana symposium) Wallingford, UK: International Association of Hydrological Sciences, IAHS Publ. 191, 227–237.
  • Rencher, A.C., 2003. Methods of multivariate analysis. New York: John Wiley & Sons. doi:10.1002/0471271357.
  • Salvadori, G., et al., 2007. Extremes in nature: an approach using copula. Berlin: Springer, p. 292.
  • Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics, 6 (2), 461–464. doi:10.1214/aos/1176344136.
  • Scott, D.W., 1992. Multivariate density estimation: theory, practice, and visualization. New York: Wiley.
  • Shiau, J.T., 2003. Return period of bivariate distributed extreme hydrological events. Stochastic Environmental Research and Risk Assessment (SERRA), 17 (1–2), 42–57. doi:10.1007/s00477-003-0125-9.
  • Shih, J.H. and Louis, T.A., 1995. Inferences on the association parameter in copula models for bivariate survival data. Biometrics, 51 (4), 1384–1399. doi:10.2307/2533269.
  • Singh, V.P., 1987. Regional flood frequency analysis. Dordrecht: D. Reidel.
  • Sklar, A., 1959. Fonction de répartition à n dimensions et leurs margins. Institut Statistique de l’Université de Paris, 8, 229–231.
  • Stedinger, J.R. and Tasker, G.D., 1986. Regional hydrologic analysis, 2, model-error estimators, estimation of sigma and log-Pearson type 3 distributions. Water Resources Research, 22 (10), 1487–1499. doi:10.1029/WR022i010p01487.
  • Vandenberghe, S., Verhoest, N.E.C., and De Baets, B., 2010. Fitting bivariate copulas to the dependence structure between storm characteristics: a detailed analysis based on 105 year 10 min rainfall. Water Resources Research, 46 (1), W01512. doi:10.1029/2009WR007857.
  • Volpi, E. and Fiori, A., 2012. Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57 (8), 1506–1515. doi:10.1080/02626667.2012.726357.
  • Wiltshire, S.E., 1987. “Statistical techniques for regional flood-frequency analysis. [electronic resource].”
  • Yue, S., 2001. A bivariate extreme value distribution applied to flood frequency analysis. Nordic Hydrology, 32 (1), 49–64.
  • Yue, S., et al., 1999. The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226 (1–2), 88–100. doi:10.1016/S0022-1694(99)00168-7.
  • Zhang, L. and Singh, V.P., 2006. Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11 (2), 150–164. doi:10.1061/(ASCE)1084-0699(2006)11:2(150).
  • Zhang, L. and Singh, V.P., 2007. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 12 (4), 431–439. doi:10.1061/(ASCE)1084-0699(2007)12:4(431).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.