2,006
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Modelling long-term water yield effects of forest management in a Norway spruce forest

Modélisation des effets de la gestion forestière sur le rendement en eau à long terme d’une forêt d’épicéa de Norvège

, , , , , & show all
Pages 174-191 | Received 28 Feb 2013, Accepted 29 Jan 2014, Published online: 12 Dec 2014

REFERENCES

  • Anderson, E.A., 1973. National Weather Service river forecast system—snow accumulation and ablation model, NOAA Technical Memorandum, NWS HYDRO–17.
  • Andréassian, V., 2004. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291 (1–2), 1–27. doi:10.1016/j.jhydrol.2003.12.015.
  • Arora, V., 2002. Modeling vegetation as a dynamic component in soil–vegetation–atmosphere transfer schemes and hydrological models. Reviews of Geophysics, 40 (2), 1006. doi:10.1029/2001RG000103.
  • Banwart, S., et al., 2011. Soil processes and functions in critical zone observatories: hypotheses and experimental design. Vadose Zone Journal, 10 (3), 974–987. doi:10.2136/vzj2010.0136.
  • Banwart, S., et al., 2012. Soil processes and functions across an International Network of Critical Zone Observatories: introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344 (11–12), 758–772. doi:10.1016/j.crte.2012.10.007.
  • Benčoková, A., Krám, P., and Hruška, J., 2011. Future climate and changes in flow patterns in Czech headwater catchments. Climate Research, 49 (1), 1–15. doi:10.3354/cr01011.
  • Bhatt, G., 2012. A distributed hydrologic modeling system: framework for discovery and management of water resources. Thesis (PhD). Pennsylvania State University.
  • Bhatt, G., et al., 2014. A tightly coupled GIS and distributed hydrologic modeling framework. Environmental Modelling & Software, 62, 70–84.
  • Bosch, J.M. and Hewlett, J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55 (1–4), 3–23. doi:10.1016/0022-1694(82)90117-2.
  • Brown, A.E., et al., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310 (1–4), 28–61. doi:10.1016/j.jhydrol.2004.12.010.
  • Buzek, F., Hruška, J., and Krám, P., 1995. Three-component model of runoff generation, Lysina catchment, Czech Republic. Water, Air, & Soil Pollution, 79 (1–4), 391–408. doi:10.1007/BF01100449.
  • Černý, M., Pařez, J., and Malík, Z., 1996. Growth and yield tables of main tree species of the Czech Republic. Jílové u Prahy: Institute for Forest Ecosystem Research.
  • Cohen, S.D. and Hindmarsh, A.C., Dubois, P.F., 1996. CVODE, a stiff/nonstiff ODE solver in C. Computers in Physics, 10 (2), 138–143. doi:10.1063/1.4822377.
  • Dooge, J.C.I., 1988. Hydrology in perspective. Hydrological Sciences Journal, 33 (1), 61–85. doi:10.1080/02626668809491223.
  • Eisenbies, M.H., et al., 2007. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians—A review. Forest Ecology and Management, 242 (2–3), 77–98. doi:10.1016/j.foreco.2007.01.051.
  • Ellenberg, H., 1996. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Eugen Ulmer Verlag.
  • Hock, R., 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology, 282 (1–4), 104–115. doi:10.1016/S0022-1694(03)00257-9.
  • Holmberg, M., et al., 2013. Relationship between critical load exceedances and empirical impact indicators at Integrated Monitoring sites across Europe. Ecological Indicators, 24, 256–265. doi:10.1016/j.ecolind.2012.06.013.
  • Hornbeck, J.W., et al., 1993. Long-term impacts of forest treatments on water yield: a summary for northeastern USA. Journal of Hydrology, 150 (2–4), 323–344. doi:10.1016/0022-1694(93)90115-P.
  • Hruška, J. and Krám, P., 2003. Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7 (4), 525–539. doi:10.5194/hess-7-525-2003.
  • Hruška, J., et al., 2009. Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science & Technology, 43 (12), 4320–4326. doi:10.1021/es803645w.
  • John, D. and Hibbert, A.R., 1961. Increases in water yield after several types of forest cutting. Hydrological Sciences Journal, 6 (3), 5–17.
  • Jonas, T., Marty, C., and Magnusson, J., 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. Journal of Hydrology, 378 (1–2), 161–167. doi:10.1016/j.jhydrol.2009.09.021.
  • Kostner, B., Falge, E., and Tenhunen, J.D., 2002. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiology, 22 (8), 567–574. doi:10.1093/treephys/22.8.567.
  • Krám, P., et al., 1995. Biogeochemistry of aluminum in a forest catchment in the Czech Republic impacted by atmospheric inputs of strong acids. Water, Air and Soil Pollution, 85 (3), 1831–1836. doi:10.1007/BF00477246.
  • Krám, P., et al., 1997. The biogeochemistry of basic cations in two forest catchments with contrasting lithology in the Czech Republic. Biogeochemistry, 37 (2), 173–202. doi:10.1023/A:1005742418304.
  • Krám, P., et al., 1999. Application of the forest–soil–water model (PnET-BGC/CHESS) to the Lysina catchment, Czech Republic. Ecological Modelling, 120 (1), 9–30. doi:10.1016/S0304-3800(99)00064-2.
  • Kumar, M., 2009. Toward a hydrologic modeling system, Thesis (PhD). Pennsylvania State University.
  • Kumar, M., Bhatt, G., and Duffy, C., 2009. An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models. International Journal of Geographical Information Science, 23, 1569–1596. doi:10.1080/13658810802344143.
  • Murakami, S., et al., 2000. Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment. Journal of Hydrology, 227 (1–4), 114–127. doi:10.1016/S0022-1694(99)00175-4.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • Navrátil, T., et al., 2007. Acidification and recovery of soil at a heavily impacted forest catchment (Lysina, Czech Republic)—SAFE modeling and field results. Ecological Modelling, 205 (3–4), 464–474. doi:10.1016/j.ecolmodel.2007.03.008.
  • Oulehle, F., et al., 2008. Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11 (3), 410–425. doi:10.1007/s10021-008-9130-7.
  • Pokorný, R., Tomášková, I., and Havránková, K., 2008. Temporal variation and efficiency of leaf area index in young mountain Norway spruce stand. European Journal of Forest Research, 127 (5), 359–367. doi:10.1007/s10342-008-0212-z.
  • Qu, Y. and Duffy, C.J., 2007. A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resources Research, 43, W08419. doi:10.1029/2006WR005752.
  • Robinson, M., et al., 2003. Studies of the impact of forests on peak flows and baseflows: a European perspective. Forest Ecology and Management, 186 (1–3), 85–97. doi:10.1016/S0378-1127(03)00238-X.
  • Spinnler, D., Egli, P., and Körner, C., 2002. Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees-Structure and Function, 16 (6), 423–436. doi:10.1007/s00468-002-0179-1.
  • Stednick, J.D., 1996. Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology, 176 (1–4), 79–95. doi:10.1016/0022-1694(95)02780-7.
  • Swanson, F.J. and Dyrness, C.T., 1975. Impact of clear-cutting and road construction on soil erosion by landslides in the western Cascade Range, Oregon. Geology (Geological Society of America), 3 (7), 393–396.
  • Thanapakpawin, P., et al., 2007. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. Journal of Hydrology, 334 (1–2), 215–230. doi:10.1016/j.jhydrol.2006.10.012.
  • Vanclay, J.K., 2009. Managing water use from forest plantations. Forest Ecology and Management, 257 (2), 385–389. doi:10.1016/j.foreco.2008.09.003.
  • Van Dijk, A.I.J.M. and Keenan, R.J., 2007. Planted forests and water in perspective. Forest Ecology and Management, 251 (1–2), 1–9. doi:10.1016/j.foreco.2007.06.010.
  • Wattenbach, M., et al., 2005. A simplified approach to implement forest eco-hydrological properties in regional hydrological modelling. Ecological Modelling, 187 (1), 40–59. doi:10.1016/j.ecolmodel.2005.01.026.
  • Wattenbach, M., et al., 2007. Hydrological impact assessment of afforestation and change in tree-species composition—a regional case study for the Federal State of Brandenburg (Germany). Journal of Hydrology, 346 (1–2), 1–17. doi:10.1016/j.jhydrol.2007.08.005.
  • Wijesekara, G.N., et al., 2012. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. Journal of Hydrology, 412–413, 220–232. doi:10.1016/j.jhydrol.2011.04.018.
  • Wösten, J.H.M., Pachepsky, Y.A., and Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251 (3–4), 123–150. doi:10.1016/S0022-1694(01)00464-4.
  • Yu, X., et al., 2013. Parameterization for distributed watershed modeling using national data and evolutionary algorithm. Computers & Geosciences, 58, 80–90. doi:10.1016/j.cageo.2013.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.