744
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Parametric study of a physically-based, plot-scale hillslope hydrological model through virtual experiments

Etude paramétrique d’un modèle hydrologique de versant à base physique à l’échelle de la parcelle par des expériences virtuelles

&
Pages 448-467 | Received 20 Sep 2012, Accepted 29 Jan 2014, Published online: 30 Jan 2015

REFERENCES

  • Adams, R., et al., 2005. Using a rainfall simulator and a physically based hydrological model to investigate runoff processes in a hillslope. Hydrological Processes, 19 (11), 2209–2223. doi:10.1002/hyp.5670.
  • Anderson, A.E., et al., 2009. Dye staining and excavation of a lateral preferential flow network. Hydrology and Earth System Sciences, 13 (6), 935–944. doi:10.5194/hess-13-935-2009.
  • Anderson, A.E., et al., 2010. Piezometric response in zones of a watershed with lateral preferential flow as a first-order control on subsurface flow. Hydrological Processes, 24 (16), 2237–2247. doi:10.1002/hyp.7662.
  • Bahremand, A. and De Smedt, F., 2008. Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia. Water Resources Management, 22 (3), 393–408. doi:10.1007/s11269-007-9168-x.
  • Beven, K., 1981. Kinematic subsurface stormflow. Water Resources Research, 17 (5), 1419–1424. doi:10.1029/WR017i005p01419.
  • Beven, K., 1985. Distributed models. In: M.G. Anderson and T.P. Burt, eds. Hydrological forecasting. Chichester: Wiley, 405–435.
  • Beven, K., 1997. TOPMODEL: a critique. Hydrological Processes, 11 (9), 1069–1085. doi:10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O.
  • Beven, K.J. and Clarke, R.T., 1986. On the variation of infiltration into a homogeneous soil matrix containing a population of macropores. Water Resources Research, 22 (3), 383–388. doi:10.1029/WR022i003p00383.
  • Beven, K. and Freer, J., 2001. A dynamic TOPMODEL. Hydrological Processes, 15 (10), 1993–2011. doi:10.1002/hyp.252.
  • Beven, K. and Germann, P., 2013. Macropores and water flow in soils revisited. Water Resources Research, 49 (6), 3071–3092. doi:10.1002/wrcr.20156.
  • Blöschl, G. and Sivapalan, M., 1995. Scale issues in hydrological modelling: A review. Hydrological Processes, 9 (3–4), 251–290. doi:10.1002/hyp.3360090305.
  • Bootlink, H.W.G., Bouma, J., and Droogers, P., 1998. Use of fractals to describe soil structure. In: S.H. Magdi and M. Liwang, eds. Physical non equilibrium in soils: modeling and application. Chelsea, MI: Ann Arbor Press, 157–198.
  • Bronstert, A. and Plate, E.J., 1997. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments. Journal of Hydrology, 198 (1–4), 177–195. doi:10.1016/S0022-1694(96)03306-9.
  • Burt, T. and Butcher, D., 1986. Stimulation from simulation? A teaching model of hillslope hydrology for use on microcomputers. Journal of Geography in Higher Education, 10 (1), 23–39. doi:10.1080/03098268608708953.
  • Buttle, J.M. and McDonald, D.J., 2002. Coupled vertical and lateral preferential flow on a forested slope. Water Resources Research, 38 (5), 18-1–18-16. doi:10.1029/2001WR000773.
  • Chappell, N.A., 2010. Soil pipe distribution and hydrological functioning within the humid tropics: a synthesis. Hydrological Processes, 24 (12), 1567–1581. doi:10.1002/hyp.7579.
  • Chaudhry, M.H., 1993. Open channel flow. Englewood Cliffs, NJ: Prentice-Hall.
  • Chow, V.T., 1959. Open-channel hydraulics. New York: McGraw-Hill.
  • Coenders-Gerrits, A.M.J., et al., 2013. The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale. Hydrology and Earth System Sciences, 17 (5), 1749–1763. doi:10.5194/hess-17-1749-2013.
  • Davies, J. and Beven, K., 2012. Comparison of a multiple interacting pathways model with a classical kinematic wave subsurface flow solution. Hydrological Sciences Journal, 57 (2), 203–216. doi:10.1080/02626667.2011.645476.
  • Dikau, R., 1989. The application of a digital relief model to landform analysis in geomorphology. In: J. Raper, ed. Three dimensional applications in geographical information systems. London: Taylor and Francis, 51–77.
  • Doherty, J., 2001. PEST-ASP User’s manual. Brisbane, Australia: Watermark Numerical Computing.
  • Doherty, J. and Johnston, J.M., 2003. Methodologies for calibration and predictive analysis of a watershed model. JAWRA Journal of the American Water Resources Association, 39 (2), 251–265. doi:10.1111/j.1752-1688.2003.tb04381.x.
  • Doherty, J. and Skahill, B.E., 2006. An advanced regularization methodology for use in watershed model calibration. Journal of Hydrology, 327 (3–4), 564–577. doi:10.1016/j.jhydrol.2005.11.058.
  • Dunne, T. and Black, R.D., 1970. An experimental investigation of runoff production in permeable soils. Water Resources Research, 6 (2), 478–490. doi:10.1029/WR006i002p00478.
  • Dusek, J., et al., 2012. Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff. Advances in Water Resources, 44, 113–125. doi:10.1016/j.advwatres.2012.05.006.
  • Faeh, A.O., Scherrer, S., and Naef, F., 1997. A combined field and numerical approach to investigate flow processes in natural macroporous soils under extreme precipitation. Hydrology and Earth System Sciences, 1 (4), 787–800. doi:10.5194/hess-1-787-1997.
  • Fan, Y. and Bras, R.L., 1998. Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resources Research, 34 (4), 921–927. doi:10.1029/97WR03516.
  • Fortin, J., et al., 2001. Distributed watershed model compatible with remote sensing and GIS data. I: description of model. Journal of Hydrologic Engineering, 6 (2), 91–99. doi:10.1061/(ASCE)1084-0699(2001)6:2(91).
  • Freer, J., et al., 2002. The role of bedrock topography on subsurface storm flow. Water Resources Research, 38 (12), 5-1–5-16. doi:10.1029/2001WR000872.
  • Freeze, R.A., 1972a. Role of subsurface flow in generating surface runoff: 1. Base flow contributions to channel flow. Water Resources Research, 8 (3), 609–623. doi:10.1029/WR008i003p00609.
  • Freeze, R.A., 1972b. Role of subsurface flow in generating surface runoff: 2. Upstream source areas. Water Resources Research, 8 (5), 1272–1283. doi:10.1029/WR008i005p01272.
  • Gerke, H.H. and van Genuchten, M.T., 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29 (2), 305–319. doi:10.1029/92WR02339.
  • Germann, P.F. and Beven, K., 1985. Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resources Research, 21 (7), 990–996. doi:10.1029/WR021i007p00990.
  • Germann, P.F., Pierce, R.S., and Beven, K., 1986. Kinematic wave approximation to the initiation of subsurface stormflow in a sloping forest soil. Advances in Water Resources, 9 (2), 70–76. doi:10.1016/0309-1708(86)90012-6.
  • Gomi, T., et al., 2008. Characteristics of overland flow generation on steep forested hillslopes of central Japan. Journal of Hydrology, 361 (3–4), 275–290. doi:10.1016/j.jhydrol.2008.07.045.
  • Govindaraju, R.S., Kavvas, M.L., and Tayfur, G., 1992. A simplified model for two dimensional overland flows. Advances in Water Resources, 15 (2), 133–141. doi:10.1016/0309-1708(92)90040-9.
  • Hook, R., 1998. Landscape structure and function – fundamental causes of land and water degradation. In: J. Williams, R. Hook, and H. Gascoigne, eds. Farming action catchment reaction. Victoria, Australia: CSIRO.
  • Hopp, L., McDonnell, J.J., and Condon, P., 2011. Lateral subsurface flow in a soil cover over waste rock in a humid temperate environment. Vadose Zone Journal, 10 (1), 332–344. doi:10.2136/vzj2010.0094.
  • Jackson, C.R., 1992. Hillslope infiltration and lateral downslope unsaturated flow. Water Resources Research, 28 (9), 2533–2539. doi:10.1029/92WR00664.
  • Jain, M.K., Kothyari, U.C., and Ranga Raju, K.G.R., 2005. GIS based distributed model for soil erosion and rate of sediment outflow from catchments. Journal of Hydraulic Engineering, 131 (9), 755–769. doi:10.1061/(ASCE)0733-9429(2005)131:9(755).
  • Jarvis, N. and Larsbo, M., 2003. MACRO 5.0. A model of water flow and solute transport in macroporous soil. Technical description. Sweden: Swedish University of Agricultural Sciences, Department of Soil Science, Division of Environmental Physics.
  • Jencso, K.G., et al., 2009. Hydrologic connectivity between landscapes and streams: transferring reach- and plot-scale understanding to the catchment scale. Water Resources Research, 45 (4), W04428. doi:10.1029/2008WR007225.
  • Kim, H.J., Sidle, R.C., and Moore, R.D., 2005. Shallow lateral flow from a forested hillslope: influence of antecedent wetness. Catena, 60 (3), 293–306. doi:10.1016/j.catena.2004.12.005.
  • Krzeminska, D.M., et al., 2012. A conceptual model of the hydrological influence of fissures on landslide activity. Hydrology and Earth System Sciences, 16 (6), 1561–1576. doi:10.5194/hess-16-1561-2012.
  • Lin, H. and Zhou, X., 2008. Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. European Journal of Soil Science, 59 (1), 34–49. doi:10.1111/j.1365-2389.2007.00988.x.
  • Lin, Y. and Cunningham, G.A. III, 1995. A new approach to fuzzy-neural system modeling. IEEE Transactions on Fuzzy Systems, 3 (2), 190–198. doi:10.1109/91.388173.
  • Liu, Q.Q. and Singh, V.P., 2004. Effect of microtopography, slope length and gradient, and vegetative cover on overland flow through simulation. Journal of Hydrologic Engineering, 9 (5), 375–382. doi:10.1061/(ASCE)1084-0699(2004)9:5(375).
  • McCord, J.T. and Stephens, D.B., 1987. Lateral moisture flow beneath a sandy hillslope without an apparent impeding layer. Hydrological Processes, 1 (3), 225–238. doi:10.1002/hyp.3360010302.
  • Mishra, S.K., et al., 2008. A physically based hydrological model for paddy agriculture dominated hilly watersheds in tropical region. Journal of Hydrology, 357 (3–4), 389–404. doi:10.1016/j.jhydrol.2008.05.019.
  • Mosley, M.P., 1979. Streamflow generation in a forested watershed, New Zealand. Water Resources Research, 15 (4), 795–806. doi:10.1029/WR015i004p00795.
  • Niyogi, P., Chakraborty, S.K., and Laha, M.K., 2005. Introduction to computational fluid dynamics. Delhi: Pearson Education (Singapore), Indian Branch.
  • Rezzoug, A., et al., 2005. Field measurement of soil moisture dynamics and numerical simulation using the kinematic wave approximation. Advances in Water Resources, 28 (9), 917–926. doi:10.1016/j.advwatres.2005.02.010.
  • Ritsema, C.J., Oostindie, K., and Stolte, J., 1996. Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model. Hydrological Processes, 10 (8), 1091–1105. doi:10.1002/(SICI)1099-1085(199608)10:8<1091::AID-HYP414>3.0.CO;2-J.
  • Ruan, H. and Illangasekare, T.H., 1998. A model to couple overland flow and infiltration into macroporous vadose zone. Journal of Hydrology, 210 (1–4), 116–127. doi:10.1016/S0022-1694(98)00179-6.
  • Sarkar, R., 2011. Hydrological response of a preferential infiltration dominated natural hillslope in Brahmaputra river basin. Thesis (PhD). Indian Institute of Technology Guwahati, India.
  • Sarkar, R. and Dutta, S., 2009. An experimental and modelling investigation of macropore dominated subsurface stormflow in vegetated hillslopes of northeast India. In: K.K. Yilmaz, I. Yucel, H.V. Gupta, T. Wagener, D. Yang, H. Savenije, C. Neale, H. Kunstmann, and J. Pomeroy, eds. New approaches to hydrological prediction in data-sparse regions. IAHS Publication 333.Wallingford: IAHS Press, 145–152.
  • Sarkar, R. and Dutta, S., 2012. Field investigation and modeling of rapid subsurface stormflow through preferential pathways in a vegetated hillslope of northeast India. Journal of Hydrologic Engineering, 17 (2), 333–341. doi:10.1061/(ASCE)HE.1943-5584.0000431.
  • Sarkar, R., Dutta, S., and Panigrahy, S., 2008. Characterizing overland flow on a preferential infiltration dominated hillslope: case study. Journal of Hydrologic Engineering, 13 (7), 563–569. doi:10.1061/(ASCE)1084-0699(2008)13:7(563).
  • Scanlon, T.M., et al., 2000. Shallow subsurface storm flow in a forested headwater catchment: observations and modeling using a modified TOPMODEL. Water Resources Research, 36 (9), 2575–2586. doi:10.1029/2000WR900125.
  • Scherrer, S., et al., 2007. Formation of runoff at the hillslope scale during intense precipitation. Hydrology and Earth System Sciences, 11 (2), 907–922. doi:10.5194/hess-11-907-2007.
  • Sharma, R.D., Sarkar, R., and Dutta, S., 2013. Run-off generation from fields with different land use and land covers under extreme storm events. Current Science, 104 (8), 1046–1053.
  • Shougrakpam, S., Sarkar, R., and Dutta, S., 2010. An experimental investigation to characterise soil macroporosity under different land use and land covers of northeast India. Journal of Earth System Science, 119 (5), 655–674. doi:10.1007/s12040-010-0042-5.
  • Singh, V.P., Sharma, N., and Ojha, C.S.P., 2004. The Brahmaputra basin water resources. Dordrecht, The Netherlands: Kluwer.
  • Sloan, P.G. and Moore, I.D., 1984. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research, 20 (12), 1815–1822. doi:10.1029/WR020i012p01815.
  • Smith, M.W., Bracken, L.J., and Cox, N.J., 2010. Toward a dynamic representation of hydrological connectivity at the hillslope scale in semiarid areas. Water Resources Research, 46 (12), W12540. doi:10.1029/2009WR008496.
  • Smith, R.E. and Hebbert, R.H.B., 1983. Mathematical simulation of interdependent surface and subsurface hydrologic processes. Water Resources Research, 19 (4), 987–1001. doi:10.1029/WR019i004p00987.
  • Stomph, T.J., et al., 2002. Scale effects of Hortonian overland flow and rainfall–runoff dynamics: laboratory validation of a process-based model. Earth Surface Processes and Landforms, 27 (8), 847–855. doi:10.1002/esp.356.
  • Ticehurst, J.L., Cresswell, H.P., and Jakeman, A.J., 2003. Using a physically based model to conduct a sensitivity analysis of subsurface lateral flow in south-east Australia. Environmental Modelling & Software, 18 (8–9), 729–740. doi:10.1016/S1364-8152(03)00075-6.
  • Troch, P., van Loon, E., and Hilberts, A., 2002. Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Advances in Water Resources, 25 (6), 637–649. doi:10.1016/S0309-1708(02)00017-9.
  • Tsutsumi, D., Sidle, R.C., and Kosugi, K., 2005. Development of a simple lateral preferential flow model with steady state application in hillslope soils. Water Resources Research, 41 (12), W12420. doi:10.1029/2004WR003877.
  • Uchida, T., Meerveld, I.T., and McDonnell, J.J., 2005. The role of lateral pipe flow in hillslope runoff response: An intercomparison of non-linear hillslope response. Journal of Hydrology, 311 (1–4), 117–133. doi:10.1016/j.jhydrol.2005.01.012.
  • Wallach, R. and Zaslavsky, D., 1991. Lateral flow in a layered profile of an infinite uniform slope. Water Resources Research, 27 (8), 1809–1818. doi:10.1029/91WR00879.
  • Wang, G.T., et al., 2002. Modelling overland flow based on Saint-Venant equations for a discretized hillslope system. Hydrological Processes, 16 (12), 2409–2421. doi:10.1002/hyp.1010.
  • Weiler, M. and McDonnell, J., 2004. Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. Journal of Hydrology, 285 (1–4), 3–18. doi:10.1016/S0022-1694(03)00271-3.
  • Weiler, M. and McDonnell, J.J., 2007. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resources Research, 43 (3), W03403. doi:10.1029/2006WR004867.
  • Weiler, M., Naef, F., and Leibundgut, C., 1998. Study of runoff generation on hillslopes using tracer experiments and a physically-based numerical hillslope model. In: K. Kovar, U. Tappeiner, N.E. Peters, and R.G. Craig, eds. Hydrology, water resources and ecology in headwaters. IAHS Publication 248. Wallingford: IAHS Press, 353–362.
  • Weyman, D.R., 1973. Measurements of the downslope flow of water in a soil. Journal of Hydrology, 20 (3), 267–288. doi:10.1016/0022-1694(73)90065-6.
  • Wienhöfer, J. and Zehe, E., 2012. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths. In: EGU General Assembly Conference Abstracts, 14, 12650.
  • Zhang, G.P., et al., 2006. Modelling subsurface storm flow with the Representative Elementary Watershed (REW) approach: application to the Alzette River Basin. Hydrology and Earth System Sciences, 10 (6), 937–955. doi:10.5194/hess-10-937-2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.