1,696
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Effects of initial soil water content and saturated hydraulic conductivity variability on small watershed runoff simulation using LISEM

Effets de la variabilité de la teneur en eau initiale du sol et de la conductivité hydraulique à saturation sur la simulation du ruissellement en petit bassin versant en utilisant LISEM

, , , &
Pages 1137-1154 | Received 26 Apr 2013, Accepted 28 Feb 2014, Published online: 06 May 2015

REFERENCES

  • Atkinson, P.M. and Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences, 26 (4), 361–371. doi:10.1016/S0098-3004(99)00117-X
  • Bronstert, A. and Bárdossy, A., 1999. The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale. Hydrology and Earth System Sciences, 3 (4), 505–516. doi:10.5194/hess-3-505-1999
  • Castillo, V.M., Gómez-Plaza, A., and Martínez-Mena, M., 2003. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. Journal of Hydrology, 284 (1–4), 114–130. doi:10.1016/S0022-1694(03)00264-6
  • Cosh, M.H., Stedinger, J.R., and Brutsaert, W., 2004. Variability of surface soil moisture at the watershed scale. Water Resources Research, 40 (12). doi:10.1029/2004WR003487
  • Cremers, N.H.D.T., et al., 1996. Spatial and temporal variability of soil surface roughness and the application in hydrological and soil erosion modelling. Hydrological Processes, 10 (8), 1035–1047. doi:10.1002/(SICI)1099-1085(199608)10:8<1035::AID-HYP409>3.0.CO;2-#
  • De Lannoy, G.J.M., et al., 2006. Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). Journal of Hydrology, 331 (3–4), 719–730. doi:10.1016/j.jhydrol.2006.06.016
  • De Roo, A.P.J., Offermans, R.J.E., and Cremers, N.H.D.T., 1996. Lisem: a single-event, physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application. Hydrological Processes, 10 (8), 1119–1126. doi:10.1002/(SICI)1099-1085(199608)10:8<1119::AID-HYP416>3.0.CO;2-V
  • Fiori, A. and Russo, D., 2007. Numerical analyses of subsurface flow in a steep hillslope under rainfall: the role of the spatial heterogeneity of the formation hydraulic properties. Water Resources Research, 43 (7). doi:10.1029/2006WR005365
  • Goovaerts, P., 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89 (1–2), 1–45. doi:10.1016/S0016-7061(98)00078-0
  • Grayson, R.B., et al., 1997. Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resources Research, 33 (12), 2897–2908. doi:10.1029/97WR02174
  • Haneberg, W.C., 2006. Effects of digital elevation model errors on spatially distributed seismic slope stability calculations: an example from Seattle, Washington. Environmental & Engineering Geoscience, 12 (3), 247–260. doi:10.2113/gseegeosci.12.3.247
  • Harman, C. and Sivapalan, M., 2009. Effects of hydraulic conductivity variability on hillslope-scale shallow subsurface flow response and storage-discharge relations. Water Resources Research, 45 (1). doi:10.1029/2008WR007228
  • Herbst, M. and Diekkrüger, B., 2002. The influence of the spatial structure of soil properties on water balance modeling in a microscale catchment. Physics and Chemistry of the Earth, Parts A/B/C, 27 (9–10), 701–710. doi:10.1016/S1474-7065(02)00054-2
  • Hessel, R., et al., 2003. Calibration of the LISEM model for a small Loess Plateau catchment. Catena, 54 (1–2), 235–254. doi:10.1016/S0341-8162(03)00067-5
  • Hessel, R., 2005. Effects of grid cell size and time step length on simulation results of the Limburg soil erosion model (LISEM). Hydrological Processes, 19 (15), 3037–3049. doi:10.1002/hyp.5815
  • Holmes, K.W., Chadwick, O.A., and Kyriakidis, P.C., 2000. Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. Journal of Hydrology, 233 (1–4), 154–173. doi:10.1016/S0022-1694(00)00229-8
  • Hu, W., et al., 2008. Spatial variability of soil hydraulic properties on a steep slope in the loess Plateau of China. Scientia Agricola, 65 (3), 268–276.
  • Hu, W., et al., 2009. Temporal changes of soil hydraulic properties under different land uses. Geoderma, 149 (3–4), 355–366. doi:10.1016/j.geoderma.2008.12.016
  • Hu, W., et al., 2010. Watershed scale temporal stability of soil water content. Geoderma, 158 (3–4), 181–198. doi:10.1016/j.geoderma.2010.04.030
  • Hu, W., et al., 2011. Spatio-temporal variability behavior of land surface soil water content in shrub- and grass-land. Geoderma, 162 (3–4), 260–272. doi:10.1016/j.geoderma.2011.02.008
  • Hu, W., et al., 2013. Effects of measurement method, scale, and landscape features on variability of saturated hydraulic conductivity. Journal of Hydrologic Engineering, 18 (4), 378–386. doi:10.1061/(ASCE)HE.1943-5584.0000630
  • Hu, W., Shao, M.A., and Si, B.C., 2012. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. European Journal of Soil Science, 63 (6), 820–830. doi:10.1111/j.1365-2389.2012.01479.x
  • Jetten, V., 2002. LISEM user manual, version 2.x. Draft version January 2002. The Netherlands: Utrecht Centre for Environment and Landscape Dynamics, Utrecht University, 48.
  • Jetten, V. and De Roo, A.P.J., 2001. Spatial analysis of erosion conservation measures with LISEM. In: R. Harmon and W.W. Doe, eds. Landscape Erosion and Evolution Modeling. New York: Kluwer Academic/Plenum, 429–445.
  • Klute, A. and Dirksen, C., 1986. Hydraulic conductivity of saturated soils. In: A. Klute, ed. Methods of Soil Analysis. Madison, WI: ASA and SSSA, 694–700.
  • Li, R., Stevens, A., and Simons, D.B., 1976. Solutions to the Green-Ampt infiltration equation. Journal of the Irrigation and Drainage Division, 102 (2), 239–248.
  • Linden, D.R., Van Doren Jr., D.M., and Allmaras, R.R., 1988. A model of the effects of tillage-induced soil surface roughness on erosion. In: Tillage and traffic in crop production. Proceeding of the 11th international conference of the International Soil and Tillage Research Organization, 11–15 July, Edinburgh. Haren: ISTRO, 373–378.
  • Merz, B. and Bárdossy, A., 1998. Effects of spatial variability on the rainfall runoff process in a small loess catchment. Journal of Hydrology, 212-213 (1), 304–317. doi:10.1016/S0022-1694(98)00213-3
  • Merz, B. and Plate, E.J., 1997. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resources Research, 33 (12), 2909–2922. doi:10.1029/97WR02204
  • Morgan, R.P.C., et al., 1998. The European soil erosion model and user guide version 3.6. Silsoe: Silsoe College, Cranfeld University.
  • Pani, E.A. and Haragan, D.R., 1981. A comparison of Texas and Illinois temporal rainfall distributions. Fourth conference on hydrometeorology. Boston, MA: American Meteorological Society, 76–80.
  • Pebesma, E.J. and Wesseling, C.G., 1998. Gstat: A program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24, 17–31. doi:10.1016/S0098-3004(97)00082-4
  • Penna, D., et al., 2009. Hillslope scale soil moisture variability in a steep alpine terrain. Journal of Hydrology, 364 (3–4), 311–327. doi:10.1016/j.jhydrol.2008.11.009
  • Romshoo, S.A., 2004. Geostatistical analysis of soil moisture measurements and remotely sensed data at different spatial scales. Environmental Geology, 45 (3), 339–349. doi:10.1007/s00254-003-0891-1
  • Saleh, A., 1993. Soil roughness measurement: chain method. Journal of Soil Water Conservation, 48 (6), 527–529.
  • Soil Survey Staff, 2010. Soil Taxonomy. 11th ed. Washington, DC: USDA National Resources Conservation Services.
  • SPSS for Windows, Rel. 11.0.1. 2001. Chicago: SPSS.
  • Stolte, J., et al., 2003. Modelling water flow and sediment processes in a small gully system on the Loess Plateau in China. Catena, 54 (1–2), 117–130. doi:10.1016/S0341-8162(03)00060-2
  • Tang, K.L., et al., 1993. The environment background and administration way of wind–water erosion crisscross region and Shenmu experimental area in the Loess Plateau. Memoir of NISWC, Academia Sinica and Ministry of Water Conservation, 18, 2–15. (in Chinese with English abstract).
  • Taskinen, A., Sirviö, H., and Bruen, M., 2008a. Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stochastic Environmental Research and Risk Assessment, 22 (1), 67–82. doi:10.1007/s00477-006-0099-5
  • Taskinen, A., Sirviö, H., and Bruen, M., 2008b. Statistical analysis of the effects on overland flow of spatial variability in soil hydraulic conductivity. Hydrological Sciences Journal, 53 (2), 387–400. doi:10.1623/hysj.53.2.387
  • Wilson, G.V., Jardine, P.M., and Alfonsi, J.M., 1989. Spatial variability of saturated hydraulic conductivity of the subsoil of two forested watersheds. Soil Science Society of America Journal, 53 (3), 679–685. doi:10.2136/sssaj1989.03615995005300030005x
  • Woolhiser, D.A., Smith, R.E., and Giraldez, J.V., 1996. Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow. Water Resources Research, 32 (3), 671–678. doi:10.1029/95WR03108
  • Yang, T., et al., 2012. DEM-based numerical modelling of runoff and soil erosion processes in the hilly-gully loess regions. Stochastic Environmental Research and Risk Assessment, 26 (4), 581–597. doi:10.1007/s00477-011-0515-3
  • Zhang, H.X., 1983. The characteristics of hard rain and its distribution over the Loess Plateau. Acta Geographica Sinica, 38 (4), 416–425. (in Chinese with English abstract).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.