2,506
Views
25
CrossRef citations to date
0
Altmetric
Special issue: Modelling Temporally-variable Catchments

Impact of bushfire and climate variability on streamflow from forested catchments in southeast Australia

Impact des feux de brousse et de la variabilité climatique sur les débits des bassins versants boisés du Sud-Est Australien

, , , &
Pages 1340-1360 | Received 13 Nov 2013, Accepted 24 Apr 2014, Published online: 22 May 2015

REFERENCES

  • Andréassian, V., et al., 2006. Introduction and synethsis: Why should hydrologists work on a large number of basin data sets? In: V. Andréassian et al., eds., Large sample basin experiments for hydrological model parameterization: Results of the Model Parameter Experiment (MOPEX), Paris. Wallingford: International Association of Hydrological Sciences, IAHS publication no. 307, 1–5.
  • Benavides-Solorio, J. and MacDonald, L.H., 2001. Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrological Processes, 15, 2931–2952. doi:10.1002/hyp.383
  • Benyon, R.B. and Lane, P.N.J., 2013. Ground and satellite-based assessments of wet eucalypt forest survival and regeneration for predicting long-term hydrological responses to a large wildfire For. Forest Ecology and Management, 294, 197–207. doi:10.1016/j.foreco.2012.04.003
  • Beven, K., 1989. Changing ideas in hydrology – the case of physically-based models. Journal of Hydrology, 105, 157–172. doi:10.1016/0022-1694(89)90101-7
  • Bosch, J.M. and Hewlett, J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23. doi:10.1016/0022-1694(82)90117-2
  • Brown, J.A.H., 1972. Hydrologic effects of a bushfire in a catchment in south-eastern New South Wales. Journal of Hydrology, 15, 77–96. doi:10.1016/0022-1694(72)90077-7
  • Buckley, T.N., et al., 2012. Differences in water use between mature and post-fire regrowth stands of subalpine Eucalyptus delegatensis R. Baker. Forest Ecology and Management, 270, 1–10. doi:10.1016/j.foreco.2012.01.008
  • Campbell, R.E., et al., 1977. Wildfire effects on a Ponderosa Pine ecosystem: An Arizona case study. USDA Forest Service Research Paper RM-191, USDA for. Serv. Rocky Mountains Forest and Range Experiment Station, Fort Collins, Colorado.
  • Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256–263. doi:10.1016/j.catena.2008.03.010
  • Chau, K.W., 2006. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology, 329, 363–367. doi:10.1016/j.jhydrol.2006.02.025
  • Cheng, C.T., Ou, C.P., and Chau, K.W., 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. Journal of Hydrology, 268 (1–4), 72–86. doi:10.1016/S0022-1694(02)00122-1
  • Chiew, F.H.S., 2006. Estimation of rainfall elasticity of streamflow in Australia. Hydrological Sciences Journal, 51, 613–625. doi:10.1623/hysj.51.4.613
  • Christensen, P.E., Recher, H.F., and Hoare, J., 1981. Responses of open forests (dry sclerophyll forests) to fire regimes. In: A.M. Gill, R.H. Groves and I.R. Noble. Fire and the Australian Biota. Canberra: Australian Academy of Science, 367–393.
  • Cornish, P.M., 1993. The effects of logging and forest regeneration on water yields in a moist eucalypt forest in New South Wales, Australia. Journal of Hydrology, 150, 301–322. doi:10.1016/0022-1694(93)90114-O
  • Cornish, P.M. and Vertessy, R.A., 2001. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest. Journal of Hydrology, 242, 43–63. doi:10.1016/S0022-1694(00)00384-X
  • Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resources Research, 48, W05552. doi:10.1029/2011WR011721
  • Dam, J.C., 1999. Impacts of climate change and variability on hydrological regimes. Cambridge: Cambridge University Press.
  • Davis, S.H., Vertessy, R.A., and Silberstein, R.P., 1999. The sensitivity of a catchment model to soil hydraulic properties obtained by using different measurement techniques. Hydrological Processes, 13, 677–688. doi:10.1002/(SICI)1099-1085(19990415)13:5<677::AID-HYP772>3.0.CO;2-N
  • DeBano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231–232, 195–206. doi:10.1016/S0022-1694(00)00194-3
  • Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51, 33–65.
  • Ebel, B.A., Moody, J.A., and Martin, D.A., 2012. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resources Research, 48, W03529. doi:10.1029/2011WR011470
  • Eberhart, R.C. and Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Sixth international symposium on micro machine and human science, Nagoya Municipal Industrial Research Institute, Nagoya, October 4–6, 39–43.
  • Feikema, P.M., Sherwin, C.B., and Lane, P.N.J., 2013. Influence of climate, fire severity and forest mortality on predictions of long term streamflow: potential effect of the 2009 wildfire on Melbourne’s water supply catchments. Journal of Hydrology, 488, 1–16. doi:10.1016/j.jhydrol.2013.02.001
  • Gharun, M., Turnbull, T.T., and Adams, M.A., 2013. Stand water use status in relation to fire in a mixed species eucalypt forest. Forest Ecology and Management, 304, 162–170. doi:10.1016/j.foreco.2013.05.002
  • Gill, A.M., 1995. Stems and fires. Plant Stems. Physiology and Functional Morphology. B. Gartner. San Diego, CA: Academic Press, 323–342.
  • Gill, M.K., et al., 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42, W07417. doi:10.1029/2005WR004528
  • Haydon, S.R., Benyon, R.G., and Lewis, R., 1997. Variation in sapwood area and throughfall with forest age in mountain ash (Eucalyptus regnans F. Muell.). Journal of Hydrology, 187, 351–366. doi:10.1016/S0022-1694(96)03016-8
  • Helvey, J.D., 1980. Effects of a north central Washington wildfire on runoff and sediment production. Journal of the American Water Resources Association, 16, 627–634. doi:10.1111/j.1752-1688.1980.tb02441.x
  • Inbar, M., Tamir, M., and Wittenberg, L., 1998. Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology, 24, 17–33. doi:10.1016/S0169-555X(97)00098-6
  • Jayawardena, A.W. and Zhou, M.C., 2000. A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang model. Journal of Hydrology, 227 (1–4), 93–113. doi:10.1016/S0022-1694(99)00173-0
  • Jeffrey, S.J., et al., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling & Software, 16 (4), 309–330. doi:10.1016/S1364-8152(01)00008-1
  • Johansen, M.P., Hakonson, T.E., and Breshears, D.D., 2001. Post – fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands. Hydrological Processes, 15, 2953–2965. doi:10.1002/hyp.384
  • Kiem, A.S. and Franks, S.W., 2001. On the identification of ENSO-induced rainfall and runoff variability: a comparison of methods and indices. Hydrological Sciences Journal, 46, 715–727. doi:10.1080/02626660109492866
  • Kuczera, G.A., 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. Journal of Hydrology, 94, 215–236. doi:10.1016/0022-1694(87)90054-0
  • Lane, P.N.J., Croke, J.C., and Dignan, P., 2004. Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modelling. Hydrological Processes, 18, 879–892. doi:10.1002/hyp.1316
  • Lane, P.N.J., et al., 2005. The response of flow duration curves to afforestation. Journal of Hydrology, 310, 253–265. doi:10.1016/j.jhydrol.2005.01.006
  • Lane, P.N.J., et al., 2010. Modelling the long term water yield impact of wildfire and other forest disturbance in Eucalypt forests. Environmental Modelling & Software, 25, 467–478. doi:10.1016/j.envsoft.2009.11.001
  • Lane, P.N.J., et al., 2012. Fire effects on forest hydrology: lessons from a multi-scale catchment experiment in SE Australia. In: A.A. Webb et al., eds. Revisiting experimental catchment studies in forest hydrology. Wallingford: International Association of Hydrological Sciences, IAHS publication no. 353, 137–143.
  • Lane, P.N.J., Sheridan, G.J., and Noske, P.J., 2006. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia. Journal of Hydrology, 331, 495–510. doi:10.1016/j.jhydrol.2006.05.035
  • Langford, K.J., 1976. Change in yield of water following a bushfire in a forest of eucalyptus regnans. Journal of Hydrology, 29, 87–114. doi:10.1016/0022-1694(76)90007-X
  • Lavee, H., et al., 1995. Effect of surface roughness on runoff and erosion in a Mediterranean ecosystem: the role of fire. Geomorphology, 11 (3), 227–234. doi:10.1016/0169-555X(94)00059-Z
  • Lerat, J., et al., 2012. Do internal flow measurements improve the calibration of rainfall–runoff models? Water Resources Research, 48, W02511. doi:10.1029/2010WR010179
  • Li, L.J., et al., 2007. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrological Processes, 21, 3485–3491. doi:10.1002/hyp.6485
  • Li, Z., et al., 2009. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377 (1–2), 35–42. doi:10.1016/j.jhydrol.2009.08.007
  • Li, H.Y., et al., 2012. Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches. Journal of Hydrology, 420–421, 403–418. doi:10.1016/j.jhydrol.2011.12.033
  • Mannik, R.D., et al., 2009. Estimating the change in streamflow resulting from the 2003 and 2006/07 bushfires in south eastern Australia. In: Proceedings of the 32nd hydrology and sater resources symposium. Newcastle, 30 November–3 December, 1666–1677.
  • Martin, D.A. and Moody, J.A., 2001. Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Processes, 15 (15), 2893–2903. doi:10.1002/hyp.380
  • Mataix-Solera, J., et al., 2002. Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment. International Journal of Wildland Fire, 11, 107–114. doi:10.1071/WF02020
  • Mataix-Solera, J., et al., 2011. Fire effects on soil aggregation: a review. Earth-Science Reviews, 109, 44–60. doi:10.1016/j.earscirev.2011.08.002
  • Merz, R., Parajka, J., and Blöschl, G., 2011. Time stability of catchment model parameters: implications for climate impact analyses. Water Resources Research, 47, W02531. doi:10.1029/2010WR009505
  • Moody, J.A. and Martin, D.A., 2001. Post-fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA. Hydrological Processes, 15, 2981–2993. doi:10.1002/hyp.386
  • Moody, J.A., Kinner, D.A., and Úbeda, X., 2009. Linking hydraulic properties of fire affected soils to infiltration and water repellency. Journal of Hydrology, 379, 291–303. doi:10.1016/j.jhydrol.2009.10.015
  • Morton, F.I., 1983. Operational estimates of areal evapo-transpiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66 (1–4), 1–76. doi:10.1016/0022-1694(83)90177-4
  • Nangia, V., Mulla, D.J., and Gowda, P.H., 2010. Precipitation changes impact stream discharge, nitrate–nitrogen load more than agricultural management changes. Journal of Environmental Quality, 39, 2063–2071. doi:10.2134/jeq2010.0105
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nolan, R.H., et al., 2014. Changes in evapotranspiration following wildfire in resprouting eucalypt forests. Ecohydrology, 7, 1363–1377. doi:10.1002/eco.1463
  • Nyman, P., et al., 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south east Australia. Geomorphology, 125, 383–401. doi:10.1016/j.geomorph.2010.10.016
  • Nyman, P., Sheridan, G.J., and Lane, P.N.J., 2010. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, south-east Australia. Hydrological Processes, 24, 2871–2887. doi:10.1002/hyp.7701
  • Onda, Y., Dietrich, W.E., and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72, 13–20. doi:10.1016/j.catena.2007.02.003
  • Perrin, C., Michel, C., and Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279, 275–289. doi:10.1016/S0022-1694(03)00225-7
  • Post, D.A. and Jakeman, A.J., 1996. Relationships between catchment attributes and hydrological response characteristics in small Australian mountain ash catchments. Hydrological Processes, 10, 877–892. doi:10.1002/(SICI)1099-1085(199606)10:6<877::AID-HYP377>3.0.CO;2-T
  • Prosser, I.P. and Williams, L., 1998. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrological Processes, 12, 251–265. doi:10.1002/(SICI)1099-1085(199802)12:2<251::AID-HYP574>3.0.CO;2-4
  • Purdie, R.W. and Slatyer, R.O., 1976. Vegetation succession after fire in sclerophyll woodland communities in south-eastern Australia. Austral Ecology, 1 (4), 223–236. doi:10.1111/j.1442-9993.1976.tb01111.x
  • Refsgaard, J.C. and Henriksen, H.J., 2004. Modelling guidelines—terminology and guiding principles. Advances in Water Resources, 27, 71–82. doi:10.1016/j.advwatres.2003.08.006
  • Ren-Jun, Z., 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135 (1–4), 371–381. doi:10.1016/0022-1694(92)90096-E
  • Robichaud, P.R., 2000. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. Journal of Hydrology, 231–232, 220–229. doi:10.1016/S0022-1694(00)00196-7
  • Scott, D.F., 1993. The hydrological effects of fire in South African mountain catchments. Journal of Hydrology, 150, 409–432. doi:10.1016/0022-1694(93)90119-T
  • Scott, D.F., 1997. The contrasting effects of wildfire and clearfelling on the hydrology of a small catchment. Hydrological Processes, 11, 543–555. doi:10.1002/(SICI)1099-1085(199705)11:6<543::AID-HYP474>3.0.CO;2-J
  • Scott, D.F., Versfeld, D.B., and Lesch, W., 1998. Erosion and sediment yield in relation to afforestation and fire in the mountains of the Western Cape Province, South Africa. South African Geographical Journal, 80, 52–59. doi:10.1080/03736245.1998.9713644
  • Shakesby, R.A. and Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307. doi:10.1016/j.earscirev.2005.10.006
  • Shakesby, R.A., et al., 1993. Wildfire impacts on soil erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of Wildland Fire, 3 (2), 95–110. doi:10.1071/WF9930095
  • Sheridan, G.J., Lane, P.N.J., and Noske, P.J., 2007. Quantification of hillslope runoff and erosion processes before and after wildfire in a wet Eucalyptus forest. Journal of Hydrology, 343, 12–28. doi:10.1016/j.jhydrol.2007.06.005
  • Smith, H.G., et al., 2011. Wildfire and salvage harvesting effects on runoff generation and sediment exports from radiata pine and eucalypt forest catchments, south-eastern Australia. Forest Ecology and Management, 261 (3), 570–581. doi:10.1016/j.foreco.2010.11.009
  • Soulis, K.X., Dercas, N., and Valiantzas, J.D., 2012. Wildfires impact on hydrological response – the case of Lykorrema experimental watershed. Global NEST Journal, 14 (3), 303–310.
  • Stone, R. and Auliciems, A., 1992. SOI phase relationships with rainfall in eastern Australia. International Journal of Climatology, 12, 625–636. doi:10.1002/joc.3370120608
  • Tan, K.S., Flower, D.J.M., and Flower, D.M., 2011. An event runoff coefficient approach for assessing changes in short-term catchment runoff following bushfires. In: Proceedings of the 33rd hydrology and water resources symposium, Brisbane, 26 June–1 July, 1522–1529.
  • Tomer, M.D. and Schilling, K.E., 2009. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. Journal of Hydrology, 376 (1–2), 24–33. doi:10.1016/j.jhydrol.2009.07.029
  • Tuteja, N.K., et al., 2007. Partitioning the effects of pine plantations and climate variability on runoff from a large catchment in southeastern Australia. Water Resources Research, 43, W08415. doi:10.1029/2006WR005016
  • Van Dijk, A.I.J.M., 2010. The Australian Water Resources Assessment System. Technical Report 3. Landscape Model (version 0.5) Technical Description. CSIRO, Canberra.
  • Vaze, J., et al., 2004. Modelling the effects of landuse change on water and salt delivery from a catchment affected by dryland salinity in south-east Australia. Hydrological Processes, 18, 1613–1637. doi:10.1002/hyp.1409
  • Vaze, J., et al., 2009. Development and implementation of a generic pasture growth model (CLASS PGM). Environmental Modelling and Software, 24 (1), 107–114. doi:10.1016/j.envsoft.2008.06.003
  • Vaze, J., et al., 2010a. Rainfall–runoff modelling across southeast Australia: datasets, models and results. Australian Journal of Water Resources, 14 (2), 101–116.
  • Vaze, J., et al., 2010b. Climate non-stationarity—validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394, 447–457. doi:10.1016/j.jhydrol.2010.09.018
  • Vaze, J., et al., 2011a. Impact of climate change on water availability in the Macquarie-Castlereagh River basin in Australia. Hydrological Processes, 25 (16), 2597–2612. doi:10.1002/hyp.8030
  • Vaze, J., et al., 2011b. Conceptual rainfall–runoff model performance with different spatial rainfall inputs. Journal of Hydrometeorology, 12 (5), 1100–1112. doi:10.1175/2011JHM1340.1
  • Vaze, J., et al., 2012. Guidelines for rainfall–runoff modeling: towards best practice model application. Bruce: eWater Cooperative Research Centre.
  • Vaze, J., et al., 2013a. The Australian Water Resource Assessment System (AWRA). In: 20th MODSIM congress [online], 1–6 December, Adelaide. Available from: http://mssanz.org.au/modsim13 [Accessed 30 March 2014].
  • Vaze, J., et al., 2013b. Regional calibration against multiple data sources to predict streamflow. In: E. Boegh et al., eds., Climate and land surface changes in hydrology. Proceedings of H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013. Wallingford: International Association of Hydrological Sciences, IAHS publication no. 359, 165–170.
  • Vaze, J. and Teng, J., 2011. Future climate and runoff projections across New South Wales, Australia: results and practical applications. Hydrological Processes, 25 (1), 18–35. doi:10.1002/hyp.7812
  • Verdon-Kidd, D.C. and Kiem, A.S., 2009. Nature and causes of protracted droughts in southeast Australia: comparison between the Federation, WWII, and Big Dry droughts. Geophysical Research Letters, 36, L22707. doi:10.1029/2009GL041067
  • Vertessy, R.A., et al., 1993. Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model. Journal of Hydrology, 150 (2), 665–700.
  • Vertessy, R.A., et al., 1995. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15, 559–567. doi:10.1093/treephys/15.9.559
  • Vertessy, R.A., et al., 1996. Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration. Tree Physiology, 16, 221–232. doi:10.1093/treephys/16.1-2.221
  • Vertessy, R.A., Watson, F.G.R., and O′Sullivan, S.K., 2001. Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecology and Management, 143, 13–26. doi:10.1016/S0378-1127(00)00501-6
  • Viney, N.R., et al., 2009. The usefulness of bias constraints in model calibration for regionalisation to ungauged catchments. In: 18th World IMACS/MODSIM congress, Cairns, 13–17 July, 3421–3427.
  • Vivian, L.M., et al., 2008. Influence of fire severity on the regeneration, recruitment and distribution of eucalypts in the Cotter River Catchment, Australian Capital Territory. Austral Ecology, 33 (1), 55–67. doi:10.1111/j.1442-9993.2007.01790.x
  • Watson, F.G.R., Vertessy, R.A., and Grayson, R.B., 1999a. Large-scale modelling of forest hydrological processes and their long-term effect on water yield. Hydrological Processes, 13, 689–700. doi:10.1002/(SICI)1099-1085(19990415)13:5<689::AID-HYP773>3.0.CO;2-D
  • Watson, F.G.R., et al., 1999b. The hydrologic impact of forestry on the Maroondah catchments. Cooperative Research Centre for Catchment Hydrology Technical Report 99/1.
  • White, W.D. and Wells, S.G., 1979. Forest-fire devegetation and drainage basin adjustments in mountainous terrain. In: D.D. Rhodes and G.P. Williams, eds. Adjustments of the fluvial system, proceedings of the tenth annual geomorphology symposium, Binghamton, NY, 21–22 September. Dubuque, IA: Kendall/Hunt, 199–223.
  • Woods, S.W. and Balfour, V.N., 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash covered soils. Journal of Hydrology, 393, 274–286. doi:10.1016/j.jhydrol.2010.08.025
  • Zhang, Y.Q. and Chiew, F.H.S., 2009. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resources Research, 45, W07412. doi:10.1029/2008WR007504
  • Zhao, R.J., et al., 1980. The Xinanjiang model. In: Hydrological forecasting: Oxford symposium 1980. Wallingford,: International Association of Hydrological Sciences, IAHS publication no. 129, 351–356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.