1,046
Views
11
CrossRef citations to date
0
Altmetric
Articles

Characterizing the climatic water balance dynamics and different runoff components in a poorly gauged tropical forested catchment, Nicaragua

&
Pages 2465-2480 | Received 19 Dec 2013, Accepted 21 Aug 2014, Published online: 15 Jul 2016

References

  • Allen, R.G., et al., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300, 6541.
  • Beck, H.E., et al., 2013. The impact of forest regeneration on streamflow in 12 mesoscale humid tropical catchments. Hydrology and Earth System Science, 17 (7), 2613–2635. doi:10.5194/hess-17-2613-2013
  • Blume, T., Zehe, E., and Bronstert, A., 2007. Rainfall—runoff response, event-based runoff coefficients and hydrograph separation. Hydrological Sciences Journal, 52 (5), 843–862. doi:10.1623/hysj.52.5.843
  • Blume, T., Zehe, E., and Bronstert, A., 2008a. Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes II: qualitative and quantitative use of tracers at three spatial scales. Hydrological Processes, 22 (18), 3676–3688. doi:10.1002/hyp.6970
  • Blume, T., et al., 2008b. Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes I: a multi‐method experimental study. Hydrological Processes, 22 (18), 3661–3675. doi:10.1002/hyp.6971
  • Bogaard, T., et al., 2012. Hydrological behaviour of unstable clay‐shales slopes: the value of cross‐disciplinary and multitechnological research at different scales. Hydrological Processes, 26 (14), 2067–2070. doi:10.1002/hyp.9454
  • Bohté, R., et al., 2010. Hydrograph separation and scale dependency of natural tracers in a semi-arid catchment. Hydrology and Earth System Sciences Discussions, 7 (1), 1343–1372. doi:10.5194/hessd-7-1343-2010.
  • Bonell, M., 1993. Progress in the understanding of runoff generation dynamics in forests. Journal of Hydrology, 150 (2–4), 217–275. doi:10.1016/0022-1694(93)90112-M
  • Bonell, M., 1998. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. JAWRA Journal of the American Water Resources Association, 34 (4), 765–785. doi:10.1111/j.1752-1688.1998.tb01514.x
  • Bonell, M. and Bruijnzeel, L.A., 2004. Forests, water and people in the humid tropics: past, present and future hydrological research for integrated land and water management. Cambridge: Cambridge University Press.
  • Brooks, J.R., et al., 2010. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geosci, 3 (2), 100–104. doi:10.1038/ngeo722
  • Bruijnzeel, L., 2001. Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research, 1 (1), 1.
  • Buchanan, T. and Somers, W.. 1969. Discharge measurements at gaging stations. Techniques of water-resources investigations of the USGS. Washington, DC, 1–4.
  • Burns, D., 2002. Stormflow-hydrograph separation based on isotopes: the thrill is gone ? What’s next?. Hydrological Processes, 16 (7), 1515–1517. doi:10.1002/hyp.5008
  • Burt, T., et al., 1983. The natural history of Slapton Ley Nature Reserve XV: hydrological processes in the Slapton Wood catchment. Field Studies, 5 (5), 731–732.
  • Caballero, L.A.. 2012. Hydrology, hydrochemistry and implications for water supply of a cloud forest in Central América. (PhD). Cornell University.
  • Caballero, L.A., et al., 2013. Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model. Journal of Hydrology and Hydromechanics, 61 (1), 9. doi:10.2478/jhh-2013-0003
  • Calderon, H., Weeda, R., and Uhlenbrook, S., 2014. Hydrological and geomorphological controls on the water balance components of a mangrove forest during the dry season in the Pacific Coast of Nicaragua. Wetlands, 34 (4), 685–697. doi:10.1007/s13157-014-0534-1
  • Calvo, J.C., 1986. An evaluation of Thornthwaite’s water balance technique in predicting stream runoff in Costa Rica. Hydrological Sciences Journal, 31 (1), 51–60. doi:10.1080/02626668609491027
  • Capell, R., et al., 2011. Using hydrochemical tracers to conceptualise hydrological function in a larger scale catchment draining contrasting geologic provinces. Journal of Hydrology, 408 (1–2), 164–177. doi:10.1016/j.jhydrol.2011.07.034
  • Cavelier, J., et al., 1997. Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology, 193 (1–4), 83–96. doi:10.1016/S0022-1694(96)03151-4
  • Cey, E.E., et al., 1998. Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. Journal of Hydrology, 210 (1–4), 21–37. doi:10.1016/S0022-1694(98)00172-3
  • Chaves, J., et al., 2008. Land management impacts on runoff sources in small Amazon watersheds. Hydrological Processes, 22 (12), 1766–1775. doi:10.1002/hyp.6803
  • CIRA. 2008. Disponibilidad actual y futura de los recursos hídricos en la franja costera del municipio de San Juan del Sur (Actual and future water resources availability in the coastal area of the municipality of San Juan del Sur. Managua: Centro para la Investigación en Recursos Acuáticos de Nicaragua.
  • Clesceri, L.S., Greenberg, A.E., and Eaton, A.D., 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed.Washington DC: APHA American Public Health Association.
  • de Araújo, J.C. and González Piedra, J.I., 2009. Comparative hydrology: analysis of a semiarid and a humid tropical watershed. Hydrological Processes, 23 (8), 1169–1178. doi:10.1002/hyp.7232
  • Didszun, J. and Uhlenbrook, S., 2008. Scaling of dominant runoff generation processes: Nested catchments approach using multiple tracers. Water Resources Research, 44 (2), W02410. doi:10.1029/2006WR005242
  • Dingman, S.L., 2002. Physical hydrology. 2nd ed. New Jersey: Prentice Hall.
  • Elming, S-A., Layer, P., and Ubieta, K., 2001. A palaeomagnetic study and age determinations of Tertiary rocks in Nicaragua, Central America. Geophysical Journal International, 147 (2), 294–309. doi:10.1046/j.0956-540x.2001.01526.x
  • Elsenbeer, H., 2001. Hydrologic flowpaths in tropical rainforest soilscapes? A review. Hydrological Processes, 15 (10), 1751–1759. doi:10.1002/hyp.237
  • Elsenbeer, H. and Vertessy, R.A., 2000. Stormflow generation and flowpath characteristics in an Amazonian rainforest catchment. Hydrological Processes, 14 (14), 2367–2381. doi:10.1002/1099-1085(20001015)14:14.<2367::AID-HYP107>3.0.CO;2-H
  • Elsenbeer, H., Lack, A., and Cassel, K., 1995a. Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, Western Amazonia. Water Resources Research, 31 (12), 3051–3058. doi:10.1029/95WR02537
  • Elsenbeer, H., Lorieri, D., and Bonell, M., 1995b. Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment. Water Resources Research, 31 (9), 2267–2278. doi:10.1029/95WR01651
  • Genereux, D., 2004. Comparison of naturally-occurring chloride and oxygen-18 as tracers of interbasin groundwater transfer in lowland rainforest, Costa Rica. Journal of Hydrology, 295 (1–4), 17–27. doi:10.1016/j.jhydrol.2004.02.020
  • Genereux, D.P. and Hooper, R.P., 1998. Chapter 10 – Oxygen and hydrogen isotopes in rainfall-runoff studies A2 – Kendall, Carol. In: Mcdonnell, J.J., ed. Isotope tracers in catchment hydrology. Amsterdam: Elsevier, 319–346. doi:10.1016/B978-0-444-81546-0.50017-3
  • Germer, S., et al., 2009. Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. Journal of Hydrology, 364 (3–4), 349–363. doi:10.1016/j.jhydrol.2008.11.013
  • Germer, S., et al., 2010. Influence of land-use change on near-surface hydrological processes: undisturbed forest to pasture. Journal of Hydrology, 380 (3–4), 473–480. doi:10.1016/j.jhydrol.2009.11.022
  • Goller, R., et al., 2005. Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach. Journal of Hydrology, 308 (1–4), 67–80. doi:10.1016/j.jhydrol.2004.10.022
  • Guerrero, J.-L., et al., 2012. Temporal variability in stage–discharge relationships. Journal of Hydrology, 446–447 (0), 90–102. doi:10.1016/j.jhydrol.2012.04.031
  • Häggström, M., et al., 1990. Application of the HBV model for flood forecasting in six Central American rivers. Sweden: SMHI Norrköping.
  • Harmon, R.S., et al., 2009. Geochemistry of four tropical montane watersheds, Central Panama. Applied Geochemistry, 24 (4), 624–640. doi:10.1016/j.apgeochem.2008.12.014
  • Hoeg, S., Uhlenbrook, S., and Leibundgut, C., 2000. Hydrograph separation in a mountainous catchment ? combining hydrochemical and isotopic tracers. Hydrological Processes, 14 (7), 1199–1216. doi:10.1002/(SICI)1099-1085(200005)14:7<1199::AID-HYP35>3.0.CO;2-K
  • Holder, C.D., 2004. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 190 (2–3), 373–384. doi:10.1016/j.foreco.2003.11.004
  • Holdridge, L.R., 1967. Life zone ecology. Rev. ed. Costa Rica: Tropical Science Center.
  • Hölscher, D., et al., 2003. Nutrient fluxes in stemflow and throughfall in three successional stages of an upper montane rain forest in Costa Rica. Journal of Tropical Ecology, 19 (05), 557–565. doi:10.1017/S0266467403003614
  • Hölscher, D., et al., 2004. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology, 292 (1–4), 308–322. doi:10.1016/j.jhydrol.2004.01.015
  • Hooper, R.P., Christophersen, N., and Peters, N.E., 1990. Modelling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment, Georgia, USA. Journal of Hydrology, 116 (1–4), 321–343. doi:10.1016/0022-1694(90)90131-G
  • House, W.A. and Warwick, M.S., 1998. Hysteresis of the solute concentration/discharge relationship in rivers during storms. Water Research, 32 (8), 2279–2290. doi:10.1016/S0043-1354(97)00473-9
  • Hrachowitz, M., et al., 2011. On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area. Hydrology and Earth System Sciences, 15 (6), 2007–2024. doi:10.5194/hess-15-2007-2011
  • Hugenschmidt, C., et al., 2010. Hydrochemical analysis of stream water in a tropical, mountainous headwater catchment in northern Thailand. Hydrology and Earth System Sciences Discussions, 7 (2), 2187–2220. doi:10.5194/hessd-7-2187-2010
  • Hugenschmidt, C., et al., 2014. A three-component hydrograph separation based on geochemical tracers in a tropical mountainous headwater catchment in northern Thailand. Hydrology and Earth System Sciences, 18 (2), 525–537. doi:10.5194/hess-18-525-2014
  • Klaus, J. and McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: review and evaluation. Journal of Hydrology, 505 (0), 47–64. doi:10.1016/j.jhydrol.2013.09.006
  • Krasny, J. and Hecht, G., 1998. Estudios hidrogeológicos e hidroquímicos de la Región del Pacífico de Nicaragua (Hydrogeologic and hydrochemical studies of the Pacific Region of Nicaragua). Managua: INETER.
  • Ley General de Aguas Nacionales. Ley No. 620 (General Law of National Waters. Law No. 620) 2007. Managua.
  • Lyon, S.W., Desilets, S.L.E., and Troch, P.A., 2009. A tale of two isotopes: differences in hydrograph separation for a runoff event when using δD versus δ18O. Hydrological Processes, 23 (14), 2095–2101. doi:10.1002/hyp.7326
  • Magaña, V., Amador, J.A., and Medina, S., 1999. The midsummer drought over Mexico and Central America. Journal of Climate, 12 (6), 1577–1588. doi:10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
  • McDonnell, J.J., 1990. A rationale for old water discharge through macropores in a steep, humid catchment. Water Resources Research, 26 (11), 2821–2832. doi:10.1029/WR026i011p02821
  • Mendoza, J.A., Dahlin, T., and Barmen, G., 2006. Hydrogeological and hydrochemical features of an area polluted by heavy metals in central Nicaragua. Hydrogeology Journal, 14 (6), 1052–1059. doi:10.1007/s10040-006-0098-0
  • Mortatti, J., et al., 1997. Hydrograph separation of the amazon river using 18O as an isotopic tracer. Scientia Agricola, 54, 167–173. doi:10.1590/S0103-90161997000200009
  • Mul, M.L., et al., 2008. Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 33 (1–2), 151–156. doi:10.1016/j.pce.2007.04.015
  • Muñoz-Villers, L.E. and McDonnell, J.J., 2013. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrology and Earth System Sciences, 17 (9), 3543–3560. doi:10.5194/hess-17-3543-2013
  • Munyaneza, O., Wenninger, J., and Uhlenbrook, S., 2012. Identification of runoff generation processes using hydrometric and tracer methods in a meso-scale catchment in Rwanda. Hydrology and Earth System Sciences, 16 (7), 1991–2004. doi:10.5194/hess-16-1991-2012
  • Niedzialek, J.M. and Ogden, F.L., 2012. First-order catchment mass balance during the wet season in the Panama Canal Watershed. Journal of Hydrology, 462–463 (0), 77–86. doi:10.1016/j.jhydrol.2010.07.044
  • Paulhus, J.L. and Kohler, M.A., 1952. Interpolation of missing precipitation records. Monthly Weather Review, 80, 129–133.
  • Rawls, W., et al., 1996. Hydrology handbook. Vol. 28. New York: American Society of Civil Engineering.
  • Rhodes, A.L., Guswa, A.J., and Newell, S.E., 2006. Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica. Water Resources Research, 42 (11), W11402. doi:10.1029/2005WR004535
  • Roa-García, M. and Weiler, M., 2010. Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling. Hydrology and Earth System Sciences, 14 (8), 1537–1549. doi:10.5194/hess-14-1537-2010
  • Salemi, L.F., et al., 2013. Land-use change in the Atlantic rainforest region: consequences for the hydrology of small catchments. Journal of Hydrology, 499 (0), 100–109. doi:10.1016/j.jhydrol.2013.06.049
  • Schellekens, J., et al., 2004. Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico. Hydrological Processes, 18 (3), 505–530. doi:10.1002/hyp.1335
  • Sivapalan, M., et al., 2003. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48 (6), 857–880. doi:10.1623/hysj.48.6.857.51421
  • Sklash, M.G. and Farvolden, R.N., 1979. The role of groundwater in storm runoff. Journal of Hydrology, 43 (1–4), 45–65. doi:10.1016/0022-1694(79)90164-1
  • Swain, F., 1966. Bottom sediments of lake Nicaragua and lake Managua, Western Nicaragua. Journal of Sedimentary Research, 36 (2), 522–540.
  • Uhlenbrook, S., 2006. Catchment hydrology—a science in which all processes are preferential. Hydrological Processes, 20 (16), 3581–3585. doi:10.1002/hyp.6564
  • Uhlenbrook, S. and Hoeg, S., 2003. Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three- and five-component hydrograph separations in a mountainous catchment. Hydrological Processes, 17 (2), 431–453. doi:10.1002/hyp.1134
  • Uhlenbrook, S. and Leibundgut, C., 2002. Process-oriented catchment modelling and multiple-response validation. Hydrological Processes, 16 (2), 423–440. doi:10.1002/hyp.330
  • Uhlenbrook, S., et al., 2002. Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resources Research, 38 (6), 31-1–31-14. doi:10.1029/2001WR000938
  • UNA, 2003. Actualización del estado del recurso suelo y capacidad de uso de la tierra del municipio de San Juan del Sur. Managua: Universidad Nacional Agraria.
  • Weiler, M., et al., 2006. Subsurface Stormflow. In: Anderson, M.G., ed. Encyclopedia of hydrological sciences. New York: John Wiley & Sons.
  • Wels, C., Cornett, R.J., and Lazerte, B.D., 1991. Hydrograph separation: a comparison of geochemical and isotopic tracers. Journal of Hydrology, 122 (1–4), 253–274. doi:10.1016/0022-1694(91)90181-G
  • Wenjie, L., et al., 2011. Runoff generation in small catchments under a native rain forest and a rubber plantation in Xishuangbanna, southwestern China. Water and Environment Journal, 25 (1), 138–147. doi:10.1111/j.1747-6593.2009.00211.x
  • Wenninger, J., et al., 2004. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrological Processes, 18 (17), 3305–3322. doi:10.1002/hyp.5686
  • Westerberg, I., et al., 2010. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics. Theoretical and Applied Climatology, 101 (3–4), 381–396. doi:10.1007/s00704-009-0222-x
  • Westerberg, I., et al., 2011. Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River, Honduras. Hydrological Processes, 25 (4), 603–613. doi:10.1002/hyp.7848
  • Zimmermann, A., Zimmermann, B., and Elsenbeer, H., 2009. Rainfall redistribution in a tropical forest: spatial and temporal patterns. Water Resources Research, 45 (11), W11413. doi:10.1029/2008WR007470

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.