1,619
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of suspended sediment concentration in the Saint John River using rating curves and a machine learning approach

, , &
Pages 1847-1860 | Received 29 Aug 2014, Accepted 07 Apr 2015, Published online: 04 May 2016

References

  • Asselman, N.E.M., 1999. Suspended sediment dynamics in a large drainage basin: the River Rhine. Hydrological Processes, 13, 1437–1450. doi:10.1002/(SICI)1099-1085(199907)13:10<1437::AID-HYP821>3.0.CO;2-J
  • Asselman, N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234, 228–248. doi:10.1016/S0022-1694(00)00253-5
  • Bača, P., 2008. Hysteresis effect in suspended sediment concentration in the Rybárik basin, Slovakia/Effet d’hystérèse dans la concentration des sédiments en suspension dans le bassin versant de Rybárik (Slovaquie). Hydrological Sciences Journal, 53 (1), 224–235. doi:10.1623/hysj.53.1.224
  • Beltaos, S. and Burrell, B.C. 2000. Suspended sediment concentrations in the Saint John River during ice breakup. In: Canadian society for civil engineering, annual conference abstracts. London, ON: Canadian Society for Civil Engineering, 75–82.
  • Benoy, G., Luiker, E., and Culp, J. 2012. Quantifying watershed-based influences on the Gulf of Maine ecosystem: the Saint John River basin. In: American Fisheries Society Symposium. Vol. 79. Bethesda, MD: American Fisheries Society.
  • Bhattacharya, B., Price, R.K., and Solomatine, D.P., 2007. Machine learning approach to modeling sediment transport. Journal of Hydraulic Engineering, 133, 440–450. doi:10.1061/(ASCE)0733-9429(2007)133:4(440)
  • Bhattacharya, B. and Solomatine, D.P., 2006. Special issue: machine learning in sedimentation modelling. Neural Networks, 19, 208–214. doi:10.1016/j.neunet.2006.01.007
  • Church, M., 2006. Bed material transport and the morphology of alluvial river channels. Annual Review of Earth and Planetary Sciences, 34, 325–354. doi:10.1146/annurev.earth.33.092203.122721
  • Cigizoglu, H.K., 2004. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources, 27, 185–195. doi:10.1016/j.advwatres.2003.10.003
  • Cunjak, R. and Newbury, R., 2005. Atlantic coast rivers of Canada. In: A. Benke and R Cushing, eds. Rivers of North America. Burlington, MA: Elsevier, 939–982.
  • Davies Colley, R.J. and Smith, D.G., 2001. Turbidity suspended sediment, and water clarity: a review. Journal of the American Water Resources Association, 37, 1085–1101. doi:10.1111/j.1752-1688.2001.tb03624.x
  • Edwards, T.K. and Glysson, G.D., 1999. Field methods for measurement of fluvial sediment: U.S. geological survey techniques of water-resources investigations. Book 3, Chapter C2. Reston, VA: U.S. Geological Survey, 89 p.
  • Frank, E., et al., 1997. Using model trees for classification. Kluwer Academic Publishers, 32 (1), 63–76. doi:10.1023/A:1007421302149
  • Gao, P., 2008. Understanding watershed suspended sediment transport. Progress in Physical Geography, 32 (3), 243–263. doi:10.1177/0309133308094849
  • Higgins, H. 2010. Estimation des concentrations de sédiments en suspension dans le fleuve Saint Jean (Nouveau-Brunswick) et établissement de liens avec les données climatiques locales [online]. Master’s thesis. Available from: www1.ete.inrs.ca/pub/theses/T000564.pdf
  • Higgins, H, et al., 2011. Suspended sediment dynamics in a tributary of the Saint John River, New Brunswick. Canadian Journal of Civil Engineering, 38, 221–232. doi:10.1139/L10-129
  • Horowitz, A.J., 2003. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrological Processes, 17, 3387–3409. doi:10.1002/(ISSN)1099-1085
  • Jekabsons, G. 2003. M5PrimeLab – M5ʹ regression tree and model tree toolbox for Matlab/Octave, Technical report ver. 1.0.1, Faculty of Computer Science and Information. Technical University.
  • Kidd, S.D., Curry, R.A., and Kelly, R.Munkittrick. 2011. State of the Saint John River [online]. Fredericton, NB: Canadian Rivers Institute. Available from: http://www.unb.ca/research/institutes/cri/_resources/pdfs/criday2011/cri_sjr_soe_final.pdf [ Accessed 19 July 2014].
  • Kisi, O., 2012. Modeling discharge-suspended sediment relationship using least square support vector machine. Journal of Hydrology, 456-457, 110–120. doi:10.1016/j.jhydrol.2012.06.019
  • Kisi, O., Yuksel, I., and Dogan, E., 2008. Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques/Modélisation de la charge journalière en matières en suspension dans des rivières turques à l’aide de plusieurs techniques empiriques. Hydrological Sciences Journal, 53, 1270–1285. doi:10.1623/hysj.53.6.1270
  • Klein, M., 1984. Anti-clockwise hysteresis in suspended sediment concentration during individual storms. Catena, 11, 251–257.
  • Knighton, A.D., 1998. Fluvial forms and processes: a new perspective. London, UK: Arnold, 383 p.
  • Lewis, J., 1996. Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resources Research, 32, 2299–2310. doi:10.1029/96WR00991
  • Marttila, H and Kløve, B., 2010. Dynamics of erosion and suspended sediment transport from drained peatland forestry. Journal of Hydrology, 388, 414–425. doi:10.1016/j.jhydrol.2010.05.026
  • Meade, R.H., Yuzyk, T.R., and Day, T.J., 1990. Movement and storage of sediment in rivers of the United States and Canada. In: M.G. Wolman and H.C. Riggs, eds. The geology of North America, surface water hydrology. Vol. 1. Boulder, CO: Geological Society of America, 255–280.
  • Mount, N.J. and Abrahart, R., 2012. Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction. Hydrological Processes, 25, 3144–3157. doi:10.1002/hyp.8033
  • Onderka, M., et al., 2012. Dynamics of storm-driven suspended sediments in a headwater catchment described by multivariable modeling. Journal of Soils and Sediments, 12, 620–635. doi:10.1007/s11368-012-0480-6
  • Pavey, B., et al., 2007. Exploratory study of suspended sediment concentrations downstream of harvested peat bogs. Environmental Monitoring and Assessment, 135, 369–382. doi:10.1007/s10661-007-9656-8
  • Quinlan, J.R., 1992. Learning with continuous classes. In: N. Adams and L. Sterling, eds. Proceedings of the fifth Australian joint conference on artificial intelligence, Hobart, Tasmania. Singapore: World Scientific, 343–348.
  • Ritter, D.F., Kochel, R.C., and Miller, J.R., 2006. Process geomorphology. 4th ed. Long Grove, IL: Waveland Press, 560 pp.
  • Robert, A., 2003. River processes: an introduction to fluvial dynamics. Don Mills, ON: Oxford University Press, 232 pp.
  • Schoellhamer, D.H. and Wright, S.A., 2003. Continuous monitoring of suspended sediment discharge in rivers by use of optical backscatterance sensors. In: J. Bogen, T. Fergus, and D.E. Walling, eds. Erosion and sediment transport measurement: technological and methodological advances. Vol. 283. Wallingford: International Association for Hydrological Science Publication, 28–36.
  • Shiri, J. and Kişi, Ö., 2012. Estimation of daily suspended sediment load by using wavelet conjunction models. Journal of Hydrologic Engineering, 17, 986–1000. doi:10.1061/(ASCE)HE.1943-5584.0000535
  • Smith, H. and Dragovich, D., 2009. Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia. Hydrological Processes, 23 (17), 2415–2426. doi:10.1002/hyp.7357
  • St-Hilaire, A., et al., 2006. Suspended sediment concentrations downstream of a harvested peat bog: analysis and preliminary modelling of exceedances using logistic regression. Canadian Water Resources Journal, 31, 139–156. doi:10.4296/cwrj3103139
  • Walling, D.E., 1977. Limitations of the rating curve technique for estimating suspended sediment loads, with particular reference to British rivers. Erosion and solid matter transport in inland waters. In: Proceedings of the Paris symposium. Vol. 122. Wallingford: IAHS Publication, 34–48, July 1977.
  • Walling, D.E. and Moorehead, P.W., 1989. The particle size characteristics of fluvial suspended sediment: an overview. Hydrobiologia, 176–177, 125–149. doi:10.1007/BF00026549
  • Wang, Y. and Witten, I.H., 1997. Induction of model trees for predicting continuous classes. In: M. Van Someren and G. Widmer, eds. Proceedings of the poster papers of the European conference on machine learning. Prague: University of Economics, Faculty of Informatics and Statistics, 128–137.
  • Witten, I.H. and Frank, E., 2005. Data mining: practical machine learning tools and techniques. 2nd ed. San Francisco: Elsevier, 558 pp.
  • Wood, P.J. and Armitage, P.D., 1997. Biological effects of fine sediment in the lotic environment. Environmental Management, 21, 203–217. doi:10.1007/s002679900019
  • Xing, Z., et al., 2011. A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall. Canadian Journal of Soil Science, 91, 279–290. doi:10.4141/CJSS10099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.