693
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

On the importance of training methods and ensemble aggregation for runoff prediction by means of artificial neural networks

, , &
Pages 1903-1925 | Received 02 Sep 2014, Accepted 22 Jul 2015, Published online: 09 May 2016

References

  • Abaza, M., et al., 2013. A comparison of the Canadian global and regional meteorological ensemble prediction systems for short-term hydrological forecasting. Monthly Weather Review, 141 (10), 3462–3476. doi:10.1175/MWR-D-12-00206.1
  • Abbott, M.B., et al., 1986. An introduction to the European hydrological system – Système Hydrologique Europèen, SHE. 1 History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87, 61–77. doi:10.1016/0022-1694(86)90115-0
  • Abrahart, R.J., et al., 2012a. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river fore-casting. Progress in Physical Geography, 36 (4), 480–513. doi:10.1177/0309133312444943
  • Abrahart, R.J., Mount, N.J., and Shamseldin, A.Y., 2012b. Neuroemulation: definition and key benefits for water resources research. Hydrological Sciences Journal, 57 (3), 407–423. doi:10.1080/02626667.2012.658401
  • Adamowski, J. and Chan, H.F., 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407 (1–4), 28–40. doi:10.1016/j.jhydrol.2011.06.013
  • Adamowski, J. and Karapataki, C., 2010. Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering, 15, 729–743. doi:10.1061/(ASCE)HE.1943-5584.0000245
  • Amari, S., et al., 1997. Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks, 8 (5), 985–996. doi:10.1109/72.623200
  • Bergström, S., 1976. Development and application of a conceptual runoff model for Scandinavian catchments. SMHI Report RHO 7, Norrköping, 134 pp.
  • Boucher, M.A., Laliberte, J.P., and Anctil, F., 2010. An experiment on the evolution of an ensemble of neural networks for streamflow forecasting. Hydrology and Earth System Sciences, 14, 603–612. doi:10.5194/hess-14-603-2010
  • Boucher, M.-A., Perreault, L., and Anctil, F., 2009. Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. Journal of Hydroinformatics, 11 (3–4), 297–307. doi:10.2166/hydro.2009.037
  • Boussaid, I., Lepagnot, J., and Siarry, P., 2013. A survey on optimization metaheuristics. Information Sciences, 237, 82–117. doi:10.1016/j.ins.2013.02.041
  • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2), 123–140. doi:10.1007/BF00058655
  • Brochero, D., Anctil, F., and Gagné, C., 2011a. Simplifying a hydrological ensemble prediction system with a backward greedy selection of members - part 1: Optimization criteria. Hydrology and Earth System Sciences, 15, 3307–3325. doi:10.5194/hess-15-3307-2011
  • Brochero, D., Anctil, F., and Gagné, C., 2011b. Simplifying a hydrological ensemble prediction system with a backward greedy selection of members - part 2: generalization in time and space. Hydrology and Earth System Sciences, 15, 3327–3341. doi:10.5194/hess-15-3327-2011
  • Bullinaria, J.A. and AlYahya, K., 2014. Artificial bee colony training of neural networks: comparison with back-propagation. Memetic Computing, 6 (3), 171–182. doi:10.1007/s12293-014-0137-7
  • Cai, Z.H., et al., 2011. A clustering-based differential evolution for global optimization. Applied Soft Computing, 11 (1), 1363–1379. doi:10.1016/j.asoc.2010.04.008
  • Caponio, A., Neri, F., and Tirronen, V., 2009. Super-fit control adaptation in memetic differential evolution frameworks. Soft Computing, 13 (8–9), 811–831. doi:10.1007/s00500-008-0357-1
  • Carcano, E.C., et al., 2008. Jordan recurrent neural network versus IHACRES in modelling daily streamflows. Journal of Hydrology, 362, 291–307. doi:10.1016/j.jhydrol.2008.08.026
  • Chau, K.W., 2006. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology, 329 (3–4), 363–367. doi:10.1016/j.jhydrol.2006.02.025
  • Chu, W., Gao, X., and Sorooshian, S., 2011. A new evolutionary search strategy for global optimization of high-dimensional problems. Information Sciences, 181 (22), 4909–4927. doi:10.1016/j.ins.2011.06.024
  • Cloke, H.L. and Pappenberger, F., 2009. Ensemble flood forecasting: A review. Journal of Hydrology, 375, 613–626. doi:10.1016/j.jhydrol.2009.06.005
  • Das, S., et al., 2009. Differential evolution using a neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation, 13 (3), 526–553. doi:10.1109/TEVC.2008.2009457
  • De Voss, N.J. and Rientjes, T.H.M., 2007. Multi-objective performance comparison of an artificial neural network and conceptual rainfall–runoff model. Hydrological Sciences Journal, 52 (3), 397–413. doi:10.1623/hysj.52.3.397
  • Derrac, J., et al., 2014. Analyzing convergence performance of evolutionary algorithms: A statistical approach. Information Sciences, 289, 41–58. doi:10.1016/j.ins.2014.06.009
  • DeWeber, J.T. and Wagner, T., 2014. A regional neural network ensemble for predicting mean daily river water temperature. Journal of Hydrology, 517, 187–200. doi:10.1016/j.jhydrol.2014.05.035
  • Elshorbagy, A., et al., 2010. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology. Hydrology and Earth System Sciences, 14 (10), 1931–1941. doi:10.5194/hess-14-1931-2010
  • Epitropakis, M.G., Plagianakos, V.P., and Vrahatis, M.N., 2012. Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Information Sciences, 216, 50–92. doi:10.1016/j.ins.2012.05.017
  • Gamperle, R., Muller, S.D., and Koumoutsakos, P., 2002. A parameter study for differential evolution. In: A. Grmela and N.E. Mastorakis, eds. Advances in intelligent systems, fuzzy systems, evolutionary computation. Interlaken: WSEAS Press.
  • Gaur, S., et al., 2013. Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resources Management, 27 (3), 927–941. doi:10.1007/s11269-012-0226-7
  • Ghosh, S., et al., 2012. A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Information Sciences, 182 (1), 199–219. doi:10.1016/j.ins.2011.08.014
  • Gong, W.Y., et al., 2011. Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Information Sciences, 181 (24), 5364–5386. doi:10.1016/j.ins.2011.07.049
  • Granitto, P.M., Verdes, P.F., and Ceccatto, H.A., 2005. Neural network ensembles: evaluation of aggregation algorithms. Artificial Intelligence, 163, 139–162. doi:10.1016/j.artint.2004.09.006
  • Hagan, M.T. and Menhaj, M.B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5 (6), 989–993. doi:10.1109/72.329697
  • Han, F. and Zhu, J.-S., 2013. Improved particle swarm optimization combined with backpropagation for feedforward neural networks. International Journal of Intelligent Systems, 28 (3), 271–288. doi:10.1002/int.21569
  • Hansen, L.K. and Salamon, P., 1990. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (10), 993–1001. doi:10.1109/34.58871
  • Hansen, N. and Ostermeier, A., 1996. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proc. IEEE Int. Conf. Evol. Comput. Japan: Nagoya, pp. 312–317.
  • Hassan, S., Khosravi, A., and Jaafar, J., 2015. Examining performance of aggregation algorithms for neural network-based electricity demand forecasting. International Journal of Electrical Power and Energy Systems, 64, 1098–1105. doi:10.1016/j.ijepes.2014.08.025
  • Haykin, S., 1999. Neural networks, a comprehensive foundation. New York, NY: Macmillan College.
  • Hornik, K., Stinchocombe, M., and White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366. doi:10.1016/0893-6080(89)90020-8
  • Hsu, K.-L., Gupta, H.V., and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall–runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955
  • Ilonen, J., Kamarainen, J.-K., and Lampinen, J., 2003. Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters, 17 (1), 93–105. doi:10.1023/A:1022995128597
  • Isik, S., et al., 2013. Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. Journal of Hydrology, 485, 103–112. doi:10.1016/j.jhydrol.2012.08.032
  • Islam, S.M., et al., 2012. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42 (2), 482–500. doi:10.1109/TSMCB.2011.2167966
  • Jain, A. and Srinivasulu, S., 2004. Development of effective and efficient rainfall–runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research, 40, 4. doi:10.1029/2003WR002355
  • Jia, D.L., Zheng, G.X., and Khan, M.K., 2011. An effective memetic differential evolution algorithm based on chaotic local search. Information Sciences, 181 (15), 3175–3187. doi:10.1016/j.ins.2011.03.018
  • Jothiprakash, V. and Magar, R.B., 2012. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. Journal of Hydrology, 450–451, 293–307. doi:10.1016/j.jhydrol.2012.04.045
  • Kim, S. and Kim, H.S., 2008. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 351 (3–4), 299–317. doi:10.1016/j.jhydrol.2007.12.014
  • Kisi, O., 2011. River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology, 389 (1–2), 227–235. doi:10.1016/j.jhydrol.2010.06.003
  • Kisi, O., Ozkan, C., and Akay, B., 2012. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. Journal of Hydrology, 428, 93–103.
  • Kononova, A.V., et al., 2015. Structural bias in population-based algorithms. Information Sciences, 298, 468–490. doi:10.1016/j.ins.2014.11.035
  • Krzysztofowicz, R., 2001. The case for probabilistic forecasting in hydrology. Journal of Hydrology, 249, 2–9. doi:10.1016/S0022-1694(01)00420-6
  • Liang, J.J., et al., 2006. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10 (3), 281–295. doi:10.1109/TEVC.2005.857610
  • Maier, H.R. and Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15 (1), 101–124. doi:10.1016/S1364-8152(99)00007-9
  • Maier, H.R., et al., 2010. Methods used for the development of neural networks for the predic-tion of water resource variables in river systems: current status and future directions. Environmental Modelling & Software, 25, 891–909. doi:10.1016/j.envsoft.2010.02.003
  • Mandischer, M., 2002. A comparison of evolution strategies and backpropagation for neural network training. Neurocomputing, 42 (1–4), 87–117. doi:10.1016/S0925-2312(01)00596-3
  • Mendes-Moreira, J., et al., 2012. Ensemble approaches for regression: A survey. ACM Computing Surveys, 45 (1), Art. No. 10, 1–40. doi:10.1145/2379776.2379786
  • Mernik, M., et al., 2015. On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Information Sciences, 291, 115–127. doi:10.1016/j.ins.2014.08.040
  • Minns, A.W. and Hall, M.J., 1996. Artificial neural networks as rainfall–runoff models. Hydrological Sciences Journal, 41 (3), 399–417. doi:10.1080/02626669609491511
  • Napolitano, G., et al., 2010. A conceptual and neural network model for real-time flood forecasting of the Tiber River in Rome. Physics and Chemistry of the Earth, Parts A/B/C, 35 (3–5), 187–194. doi:10.1016/j.pce.2009.12.004
  • Neitsch, S.L., et al., 2005. Soil and water assessment tool user’s manual version 2000. Temple, TX: GSWRL-BRC.
  • Nelder, A. and Mead, R., 1965. A simplex-method for function minimization. The Computer Journal, 7 (4), 308–313. doi:10.1093/comjnl/7.4.308
  • Noman, N. and Iba, H., 2008. Accelerating differential evolution using an adaptive local search. IEEE Transactions on Evolutionary Computation, 12 (1), 107–125. doi:10.1109/TEVC.2007.895272
  • Osuch, M., Romanowicz, R., and Booij, M., 2015. The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics. Hydrological Sciences Journal, 60, 7–8. doi:10.1080/02626667.2014.967694
  • Pan, Q.-K., et al., 2011. A differential evolution algorithm with self-adapting strategy and control parameters. Computers & Operations Research, 38, 394–408. doi:10.1016/j.cor.2010.06.007
  • Piotrowski, A.P., 2013. Adaptive memetic differential evolution with global and local neighborhood-based mutation operators. Information Sciences, 241, 164–194. doi:10.1016/j.ins.2013.03.060
  • Piotrowski, A.P., 2014. Differential evolution algorithms applied to neural network training suffer from stagnation. Applied Soft Computing, 21, 382–406. doi:10.1016/j.asoc.2014.03.039
  • Piotrowski, A.P., 2015. Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions. Information Sciences, 297, 191–201. doi:10.1016/j.ins.2014.11.023
  • Piotrowski, A.P. and Napiorkowski, J.J., 2010. Grouping differential evolution algorithm for multi-dimensional optimization problems. Control and Cybernetics, 39 (2), 527–550.
  • Piotrowski, A.P. and Napiorkowski, J.J., 2011. Optimizing neural networks for river flow forecasting – evolutionary computation methods versus the Levenberg-Marquardt approach. Journal of Hydrology, 407 (1–4), 12–27. doi:10.1016/j.jhydrol.2011.06.019
  • Piotrowski, A.P. and Napiorkowski, J.J., 2012. Product-units neural networks for catchment runoff forecasting. Advances in Water Resources, 49, 97–113. doi:10.1016/j.advwatres.2012.05.016
  • Piotrowski, A.P. and Napiorkowski, J.J., 2013. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. Journal of Hydrology, 476, 97–111. doi:10.1016/j.jhydrol.2012.10.019
  • Piotrowski, A.P., Napiorkowski, J.J., and Kiczko, A., 2012a. Differential evolution algorithm with separated groups for multi-dimensional optimization problems. European Journal of Operational Research, 216, 33–46. doi:10.1016/j.ejor.2011.07.038
  • Piotrowski, A.P., Napiorkowski, J.J., and Kiczko, A. 2012b. Corrigendum to: ‘‘differential evolution algorithm with separated groups for multi-dimensional optimization problems’’. [Eur. J. Oper. Res. 216 (2012) 33–46]. European Journal of Operational Research, 219, 488. doi:10.1016/j.ejor.2011.12.043
  • Piotrowski, A.P., et al., 2014. Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river. Computers & Geosciences, 64, 136–151. doi:10.1016/j.cageo.2013.12.013
  • Potter, N.J. and Chiew, F.H.S., 2011. An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-darling basin using rainfall–runoff models. Water Resources Research, 47, W00G10. doi:10.1029/2010WR010333
  • Prechlet, L., 1998. Automatic early stopping using cross-validation: quantifying the criteria. Neural Networks, 11 (4), 761–777. doi:10.1016/S0893-6080(98)00010-0
  • Qin, A.K., Huang, V.L., and Suganthan, P.N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 13 (2), 398–417. doi:10.1109/TEVC.2008.927706
  • Rathinasamy, M., Adamowski, J., and Khosa, R., 2013. Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method. Journal of Hydrology, 507, 186–200. doi:10.1016/j.jhydrol.2013.09.025
  • Rosenbrock, H.H., 1960. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3 (3), 175–184. doi:10.1093/comjnl/3.3.175
  • Santos, C.A.G. and da Silva, G.B.L., 2014. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59 (2), 312–324. doi:10.1080/02626667.2013.800944
  • Sexton, R.S. and Gupta, J.N.D., 2000. Comparative valuation of genetic algorithm and back-propagation for training neural networks. Information Sciences, 129, 45–59. doi:10.1016/S0020-0255(00)00068-2
  • Shamseldin, A.Y., Nasr, AE., and O’Connor, K.M., 2002. Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrology and Earth System Sciences, 6, 671–684. doi:10.5194/hess-6-671-2002
  • Singh, P.K., Mishra, S.K., and Jain, M.K., 2014. A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59 (2), 239–261. doi:10.1080/02626667.2013.870664
  • Singh, S.K. and Bardossy, A., 2012. Calibration of hydrological models on hydrologically unusual events. Advances in Water Resources, 38, 81–91. doi:10.1016/j.advwatres.2011.12.006
  • Socha, K. and Blum, C., 2007. An ant colony optimization algorithm for continuous optimization: application to feedforward neural network training. Neural Computing and Applications, 16 (3), 235–247. doi:10.1007/s00521-007-0084-z
  • Solomatine, D.P. and Ostfeld, A., 2008. Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics, 10 (1), 3–22. doi:10.2166/hydro.2008.015
  • Sorensen, K., 2015. Metaheuristics – the metaphor exposed. International Transactions in Operational Research, 22, 3–18. doi:10.1111/itor.12001
  • Storn, R. and Price, K.V., 1995. Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley, CA: International Computer Sciences Institute, Tech. Report TR-95-012 .
  • Taormina, R. and Chau, K.-W., 2015. Neural network river forecasting with multi-objective fully informed particle swarm optimization. Journal of Hydroinformatics, 17 (1), 99–113. doi:10.2166/hydro.2014.116
  • Taormina, R., Chau, K.-W., and Sethi, R., 2012. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25 (8), 1670–1676. doi:10.1016/j.engappai.2012.02.009
  • Tapoglou, E., et al., 2014. Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrological Sciences Journal, 59 (6), 1225–1239. doi:10.1080/02626667.2013.838005
  • Taver, V., et al., in press. Feed-forward vs recurrent neural network models for non-stationarity modelling using data assimilation and adaptivity. Hydrological Sciences Journal, 60 (7–8), 1242–1265. doi:10.1080/02626667.2014.967696
  • Thirel, G., et al., 2015. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 60, 7–8. doi:10.1080/02626667.2014.967248
  • Trescott, P.C., 1968. Groundwater resources and hydrogeology of the Annapolis- Cronwallis Valley, Nova Scotia. Nova Scotia: Nova Scotia Department of Mines, Memoir 6, Halifax, 159.
  • Van Dijk, A., et al., 2013. The millennium drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research, 49 (2), 1040–1057. doi:10.1002/wrcr.20123
  • Vidal, J.-P., et al., 2010. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30, 1627–1644. doi:10.1002/joc.v30:11
  • Vrugt, J.A., Robinson, B.A., and Hyman, J.M., 2009. Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Transactions on Evolutionary Computation, 13 (2), 243–259. doi:10.1109/TEVC.2008.924428
  • Wang, W.-C., et al., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374 (3–4), 294–306. doi:10.1016/j.jhydrol.2009.06.019
  • Wang, Y., Cai, Z.X., and Zhang, Q.F., 2011. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 15 (1), 55–66. doi:10.1109/TEVC.2010.2087271
  • Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin, 1 (6), 80–83. doi:10.2307/3001968
  • Wolpert, D.H. and Macready, W.G., 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1 (1), 67–82. doi:10.1109/4235.585893
  • Wu, C.L., Chau, K.W., and Li, Y.S. 2009. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resources Research, 45, Art. No.: W08432. doi:10.1029/2007WR006737
  • Yin, S., et al., 2016. A combined rotated general regression neural network method used for river flow forecasting. Hydrological Sciences Journal, 61 (4), 669–682. doi:10.1080/02626667.2014.944525
  • Zhang, G., Patuwo, B.E., and Hu, M.Y., 1998. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35–62. doi:10.1016/S0169-2070(97)00044-7
  • Zhang, J. and Sanderson, A.C., 2009. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13 (5), 945–958. doi:10.1109/TEVC.2009.2014613
  • Zheng, J., 2009. Predicting software reliability with neural network ensembles. Expert Systems with Applications, 36, 2116–2122. doi:10.1016/j.eswa.2007.12.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.