1,053
Views
35
CrossRef citations to date
0
Altmetric
Articles

Potential of the LASH model for water resources management in data-scarce basins: a case study of the Fragata River basin, southern Brazil

, , , &
Pages 2567-2578 | Received 08 Jul 2015, Accepted 09 Dec 2015, Published online: 15 Jul 2016

References

  • Allen, R.G., et al. 1998. Crop evapotranspiration: guidelines for computing crop water requirements (Irrigation and Drainage Paper). Roma: FAO.
  • Almeida, A.C. and Soares, J.V., 2003, Comparação entre uso de água em plantações de eucalipto grandis e floresta ombrófila densa (mata Atlântica) na costa leste do Brasil. Revista Árvore, 27 (2), 159–170. doi:10.1590/S0100-67622003000200006
  • Alvarenga, C.C., et al. 2011. Continuidade espacial da condutividade hidráulica saturada do solo na bacia hidrográfica do Alto Rio Grande, MG. Revista Brasileira De Ciência Do Solo, 35 (5), 1745–1757. doi:10.1590/S0100-06832011000500029
  • Andrade, M.A., et al. 2013. Simulação hidrológica em uma bacia hidrográfica representativa dos Latossolos na região Alto Rio Grande, MG. Revista Brasileira De Engenharia Agrícola E Ambiental, 17 (1), 69–76. doi:10.1590/S1415-43662013000100010
  • Arnold, J.G., et al. 1998. Large area hydrologic modeling and assessment: part I: model development. Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Bainy, B.K. and Teixeira, M.S., 2012. Evaluation of the model MM5 performance in an extreme precipitation event and a deeper analysis of its meteorological causes. In: 26th Conference on Severe Local Storms, 5–8 November 2012, Nashville, TN, EUA.
  • Beskow, S., 2009. LASH Model: a hydrological simulation tool in GIS framework. Thesis (PhD). Federal University of Lavras.
  • Beskow, S., et al. 2009. Estimativa do escoamento superficial em uma bacia hidrográfica com base em modelagem dinâmica e distribuída. Revista Brasileira de Ciência Do Solo, 33 (1), 169–178. doi:10.1590/S0100-06832009000100018
  • Beskow, S., et al., 2011a. Development, sensitivity and uncertainty analysis of LASH model. Scientia Agricola, 68 (3), 265–274.
  • Beskow, S., et al. 2011b. Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions. Catena, 86 (3), 160–171. doi:10.1016/j.catena.2011.03.010
  • Beskow, S., et al. 2013. Hydrological prediction in a tropical watershed dominated by oxisols using a distributed hydrological model. Water Resources Management, 27 (2), 341–363. doi:10.1007/s11269-012-0189-8
  • Beskow, S., et al. 2014. Índices de sazonalidade para regionalização hidrológica de vazões de estiagem no Rio Grande do Sul. Revista Brasileira de Engenharia Agrícola e Ambiental, 18 (7), 740–746. doi:10.1590/S1415-43662014000700012
  • Beskow, S., et al., 2015. Multiparameter probability distributions for heavy rainfall modeling in extreme Southern Brazil. Journal of Hydrology: Regional Studies, 4 (B), 123–133.
  • Booker, D.J. and Snelder, T.H., 2012. Comparing methods for estimating flow duration curves at ungauged sites. Journal of Hydrology, 434–435, 78–94. doi:10.1016/j.jhydrol.2012.02.031
  • Bormann, H., et al. 2007. Analyzing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecological Modelling, 209 (1), 29–40. doi:10.1590/S0100-204X2002000600005
  • Brasil, 1973. Levantamento de reconhecimento dos solos do Estado do Rio Grande do Sul. Recife: Ministério da Agricultura-Departamento Nacional de Pesquisa Agropecuária/Divisão de Pesquisa Pedológica.
  • Caldeira, T.L., et al. 2015. Modelagem probabilística de eventos de precipitação extrema no estado do Rio Grande do Sul. Revista Brasileira de Engenharia Agrícola e Ambiental, 19 (3), 197–203. doi:10.1590/1807-1929/agriambi.v19n3p197-203
  • Castiglioni, S., et al. 2009. Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation. Journal of Hydrology, 378 (3–4), 272–280. doi:10.1016/j.jhydrol.2009.09.032
  • Collischonn, W., 2001. Simulação hidrológica de grandes bacias. Thesis (PhD). Federal University of Rio Grande do Sul.
  • De Roo, A.P.J. and Jetten, V.G., 1999, Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa. Catena, 37 (3–4), 477–493. doi:10.1016/S0341-8162(99)00034-X
  • Duan, Q., Sorooshian, S., and Gupta, V., 1992, Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28 (4), 1015–1031. doi:10.1029/91WR02985
  • Efstratiadis, A., et al. 2008. HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins. Hydrology and Earth System Sciences, 12 (4), 989–1006. doi:10.5194/hess-12-989-2008
  • Embrapa (n.d.) Estação Agroclimatológica de Pelotas, Convênio Embrapa/UFPEL. Available from: http://www.cpact.embrapa.br/agromet/estacao/estacao.html [Accessed 19 March 2015].
  • Embrapa, (1997). Manual de métodos de análise de solos. 2nd ed. Rio de janeiro: Embrapa Solos.
  • Environmental Systems Research Institute (ESRI), 2014. Redands, CA, 265p.
  • Fagundes, J.L., et al. 2006. Características morfogênicas e estruturais do capim-braquiária em pastagem adubada com nitrogênio avaliadas nas quatro estações do ano. Revista Brasileira de Zootecnia, 35 (1), 21–29. doi:10.1590/S1516-35982006000100003
  • Favarin, J.L., et al. 2002. Equações para a estimativa do índice de área foliar do cafeeiro. Pesquisa Agropecuária Brasileira, 37 (6), 769–773. doi:10.1590/S0100-204X2002000600005
  • Flanagan, D.C. and Nearing, M.A., 1995. USDA-water erosion prediction project (WEPP) hillslope profile and watershed model documentation. West Lafayette: National Soil Erosion Research Laboratory.
  • Gomes, N.M., et al. 2008. Aplicabilidade do LISEM (Limburg Soil Erosion Model) para simulação hidrológica em uma bacia hidrográfica tropical. Revista Brasileira de Ciência do Solo, 32 (6), 2483–2492. doi:10.1590/S0100-06832008000600025
  • Green, C.H., et al. 2006. Hydrologic evaluation of the soil and water assessment tool for a large tile-drained watershed in Iowa. Transactions of the ASABE, 49 (2), 413–422. doi:10.13031/2013.20415
  • Guo, Y. and Quader, A., 2009, Derived flow–duration relationships for surface runoff dominated small urban streams. Journal of Hydrologic Engineering, 14 (1), 42–52. doi:10.1061/(ASCE)1084-0699(2009)14:1(42)
  • Hasenack, H. and Weber, E., 2010. Base cartográfica vetorial continua do Rio Grande do Sul – escala 1:50.000. [DVD-ROM]. Porto Alegre: UFRGS-IB-Centro de Ecologia.
  • Jain, M.K., et al. 2004. A GIS based distributed rainfall-runoff model. Journal of Hydrology, 299 (1–2), 107–135. doi:10.1016/j.jhydrol.2004.04.024
  • Kuinchtner, A. and Buriol, G.A., 2001, Clima do estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Disciplinarum Scientia, 2 (1), 171–182.
  • Laaha, G. and Blöschl, G., 2005, Low flow estimates from short stream flow records—a comparison of methods. Journal of Hydrology, 306 (1–4), 264–286. doi:10.1016/j.jhydrol.2004.09.012
  • Laaha, G. and Blöschl, G., 2006, A comparison of low flow regionalisation methods—catchment grouping. Journal of Hydrology, 323 (1–4), 193–214. doi:10.1016/j.jhydrol.2005.09.001
  • Li, M., et al. 2010. A new regionalization approach and its application to predict flow duration curve in ungauged basins. Journal of Hydrology, 389 (1–2), 137–145. doi:10.1016/j.jhydrol.2010.05.039
  • Liew, M.W., et al. 2007. Suitability of SWAT for the conservation effects assessment project: A comparison on USDA - ARS watersheds. Journal of Hydrologic Engineering, 12 (2), 173–189. doi:10.1061/(ASCE)1084-0699(2007)12:2(173)
  • Lima, W.P., 1996. Impacto ambiental do eucalipto. 2nd ed. Piracicaba: EDUSP.
  • Mamum, A.A., et al. 2010. Regionalisation of low flow frequency curves for the Peninsular Malaysia regionalisation of low flow frequency curves for the Peninsular Malaysia. Journal of Hydrology, 381 (1–2), 174–180. doi:10.1016/j.jhydrol.2009.11.039
  • Manfron, P.A., et al., 2003. Modelo do índice de área foliar da cultura do milho. Revista Brasileira de Agrometeorologia, 11 (2), 333–342.
  • Marques Filho, A.O., Dallarosa, R.G., and Pachêco, V.B., 2005, Radiação solar e distribuição vertical de área foliar em floresta: reserva biológica do Cuieiras, ZF2. Acta Amazônica, 35 (4), 427–436. doi:10.1590/S0044-59672005000400007
  • Mello, C.R., et al. 2008. Development and application of a simple hydrologic model simulation for a Brazilian headwater basin. Catena, 75 (3), 235–247. doi:10.1016/j.catena.2008.07.002
  • Miranda, A.C., et al., 1996. Carbon dioxide fluxes over a cerrado sensu stricto in central Brazil. In: J.H.C. Gash, et al., eds. Amazonian deforestation and climate. New York: Wiley, 353–364.
  • Mishra, S.K., et al. 2003. A modified SCS-CN method: characterization and testing. Water Resources Management, 17 (1), 37–68. doi:10.1023/A:1023099005944
  • Mishra, S.K., et al. 2006. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology. Water Resources Management, 20 (5), 643–660. doi:10.1007/s11269-005-9000-4
  • Moriasi, D.N., et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mosley, M.P. and McKerchar, A.I., 1993. Streamflow. In: D. Maidment, ed. Handbook of hydrology. New York: McGraw-Hill, 8.1–8.39.
  • Nash, J.E. and Sutcliffe, J.V., 1970, River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Notter, B., et al., 2007. Impacts of environmental change on water resources in the Mt. Kenya Region. Journal of Hydrology, 343 (3–4), 266–278.
  • Perrotta, M.M., 2005. Processamento digital básico de imagens de sensores remotos ópticos para uso em mapeamento geológico – programa ENVI. Belo Horizonte: CPRM.
  • Pilgrim, D.H. and Cordery, I., 1993. Flood runoff. In: D. Maidment, ed. Handbook of hydrology. New York: McGraw-Hill, 9.1–9.42.
  • Pruski, F.F., et al. 1997. Model to design level terraces. Journal of Irrigation and Drainage Engineering, 123 (1), 8–12. doi:10.1061/(ASCE)0733-9437(1997)123:1(8)
  • Rawls, W.J. 1993. Infiltration and soil water movement. In: D. Maidment, et al. ed. Handbook of hydrology. New York: McGraw-Hill, 1–51.
  • Reichardt, K. and Timm, L.C., 2012. Solo, planta e atmosfera: conceitos, processos e aplicações. 2nd ed. Barueri: Manole.
  • SCS, 1972. Section 4: hydrology. In: Soil Conservation Service/USDA, ed. National engineering handbook. Washington: USDA Soil Conservation Service.
  • Shuttleworth, W.J., 1993. Evaporation. In: D. Maidment, ed. Handbook of hydrology. New York: McGraw-Hill, 4.1–4.53.
  • Soil Survey Staff, 2010. Keys to soil taxonomy. 11th ed. Washington: USDA-Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580
  • Soulis, K. and Dercas, N., 2007, Development of a GIS-based spatially distributed continuous hydrological model and its first application. Water International, 32 (1), 177–192. doi:10.1080/02508060708691974
  • Stackelberg, N.O., et al. 2007. Simulation of the hydrologic effects of afforestation in the Tacuarembó River Basin, Uruguay. Transactions of the ASABE, 50 (3), 455–468. doi:10.13031/2013.22636
  • Thanapakpawin, P., et al. 2007. Effects of land use change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. Journal of Hydrology, 334 (1–2), 215–230. doi:10.1016/j.jhydrol.2006.10.012
  • Tucci, C.E.M., 2005. Modelos hidrológicos. Porto Alegre: UFRGS/ABRH.
  • Vezza, P., et al., 2010. Low flows regionalization in North-Western Italy. Water Resources Management, 24, 4049–4074. doi:10.1007/s11269-010-9647-3
  • Viola, M.R., 2008. Simulação hidrológica na região Alto Rio Grande à montante do Reservatório de Camargos/CEMIG. Thesis (Master’s Degree). Federal University of Lavras.
  • Viola, M.R., et al. 2009. Modelagem hidrológica na bacia hidrográfica do rio Aiuruoca, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, 13 (5), 581–590. doi:10.1590/S1415-43662009000500011
  • Viola, M.R., et al. 2013. Applicability of the LASH model for hydrological simulation of the Grande river basin, Brazil. Journal of Hydrologic Engineering, 18 (12), 1639–1652. doi:10.1061/(ASCE)HE.1943-5584.0000735
  • Viola, M.R., et al. 2014a. Impacts of land-use changes on the hydrology of the Grande river basin headwaters, Southeastern Brazil. Water Resources Management, 28 (13), 4537–4550. doi:10.1007/s11269-014-0749-1
  • Viola, M.R., et al. 2014b. Assessing climate change impacts on Upper Grande River Basin hydrology, Southeast Brazil. International Journal of Climatology, 35 (6), 1054–1068. doi:10.1002/joc.4038
  • Vivoni, E.R., et al. 2011. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. Journal of Hydrology, 409 (1–2), 483–496. doi:10.1016/j.jhydrol.2011.08.053
  • Wheater, H.S., 2008. Modeling hydrological processes in arid and semi-arid areas: an introduction to the workshop. In: H.S. Wheater, S. Sorooshian, and K.D. Sharma, eds. Hydrological modeling in arid and semi-arid areas. New York: Cambridge University, 1–20.
  • White, K.L. and Chaubey, I., 2005, Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. Journal of the American Water Resources Association, 41 (5), 1077–1089. doi:10.1111/jawr.2005.41.issue-5
  • Yapo, P.O., et al. 1996. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology, 181 (1–4), 23–48. doi:10.1016/0022-1694(95)02918-4
  • Zappa, M., 2002. Multiple-response verification of a distributed hydrological model at different spatial scales. Thesis (PhD). Swiss Federal Institute of Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.