1,306
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of storage–discharge relationships and recession analysis-based distributed hourly runoff simulation in large-scale, mountainous and snow-influenced catchment

, , &
Pages 2872-2886 | Received 15 Jul 2013, Accepted 15 Mar 2016, Published online: 02 Aug 2016

References

  • Ajami, H., et al., 2011. Quantifying mountain block recharge by means of catchment-scale storage–discharge relationships. Water Resources Research, 47 (4). doi:10.1029/2010WR009598
  • Aksoy, H. and Wittenberg, H., 2011. Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal, 56 (2), 226–237. doi:10.1080/02626667.2011.553614
  • Ambroise, B., Beven, K., and Freer, J., 1996. Toward a generalization of the TOPMODEL concepts: topographic indices of hydrological similarity. Water Resources Research, 32 (7), 2135–2145. doi:10.1029/95WR03716
  • Bard, Y., 1974. Nonlinear parameter estimation. New York, NY: Academic Press.
  • Beldring, S., 2002. Runoff generating processes in boreal forest environments with glacial tills. Nordic Hydrology, 33 (5), 347–372.
  • Beldring, S., et al., 2003. Estimation of parameters in a distributed precipitation-runoff model for Norway. Hydrology and Earth System Sciences, 7 (3), 304–316. doi:10.5194/hess-7-304-2003
  • Bergström, S., 1976. Development and application of a conceptual runoff model for Scandinavian catchments. Norrköping, SMHI Report RHO 7, 134 pp.
  • Beven, K., 2012. Rainfall-runoff modeling. 2nd ed. Oxford: Wiley-Blackwell.
  • Beven, K.J., 2000. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences, 4 (2), 203–213. doi:10.5194/hess-4-203-2000
  • Beven, K.J., 2006. Searching for the Holy Grail of scientific hydrology: Qt=(S, R, Δt)A as closure. Hydrology and Earth System Sciences, 10, 609–618. doi:10.5194/hess-10-609-2006
  • Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6, 279–298. doi:10.1002/(ISSN)1099-1085
  • Beven, K.J., Freer, J., Hankin, B., and Schulz, K., 2000. The use of generalized likelihood measures for uncertainty estimation in higher-order models of environmental systems. In: Fitzgerald, Smith, R.C., Walden, A.T., & Young, P.C., eds. Nonlinear and nonstationary signal processing, UK: Cambridge University Press.
  • Blöschl, G., 2006. Hydrologic synthesis: across processes, places, and scales. Water Resources Research, 42, W03S02. doi:10.1029/2005WR004319
  • Bogacki, P. and Shampine, L.F., 1989. A 3 (2)pair of Runge–Kutta formulas. Applied Mathematics Letters, 2 (4), 321–325. doi:10.1016/0893-9659(89)90079-7
  • Box, G.E.P. and Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211–252.
  • Brauer, C.C., et al., 2013. Investigating storage–discharge relations in a lowland catchment using hydrograph fitting, recession analysis and soil moisture data. Water Resources Research, 49, 4257–4264. doi:10.1002/wrcr.20320
  • Brutsaert, W. and Nieber, J.L., 1977. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13, 637–643. doi:10.1029/WR013i003p00637
  • Clark, M.P., et al., 2009. Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes, 23, 311–319. doi:10.1002/hyp.v23:2
  • Cunderlik, J.M., et al., 2013. Integrating logistical and technical criteria into a multiteam, competitive watershed model ranking procedure. Journal of Hydrologic Engineering, 18, 641–654. doi:10.1061/(ASCE)HE.1943-5584.0000670
  • Ewen, J. and Birkinshaw, S.J., 2007. Lumped hysteretic model for subsurface stormflow developed using downward approach. Hydrological Processes, 21 (11), 1496–1505. doi:10.1002/(ISSN)1099-1085
  • Fiorotto, V. and Caroni, E., 2013. A new approach to master recession curve analysis. Hydrological Sciences Journal, 58 (5), 966–975. doi:10.1080/02626667.2013.788248
  • Fovet, O., et al., 2015. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models. Hydrology and Earth System Sciences, 19, 105–123. doi:10.5194/hess-19-105-2015
  • Gottschalk, L., et al., 2001. Regional/macroscale hydrological modelling: a Scandinavian experience. Hydrological Sciences Journal, 46 (6), 963–982. doi:10.1080/02626660109492889
  • Hailegeorgis, T.T., et al., 2015. Evaluation of different parameterizations of the spatial heterogeneity of subsurface storage capacity for hourly runoff simulation in boreal mountainous watershed. Journal of Hydrology, 522, 522–533. doi:10.1016/j.jhydrol.2014.12.061
  • Jansson, C., Espeby, B., and Jannson, P.-E., 2005. Preferential flow in glacial till soil. Hydrology Research, 36 (1), 1–11.
  • Jarvis, P.G., 1993. Prospects for bottom-up models. In: J.R. Ehleringer and C.B. Field, eds. Scaling physiological processes: leaf to globe. New York: Academic Press.
  • Kirchner, J.W., 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42, W03S04. doi:10.1029/2005WR004362
  • Kirchner, J.W., 2009. Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45, W02429. doi:10.1029/2008WR006912
  • Klemeš, V., 1986. Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31, 13–24. doi:10.1080/02626668609491024
  • Klemeš, V., 1983. Conceptualization and scale in hydrology. Journal of Hydrology, 65, 1–23. doi:10.1016/0022-1694(83)90208-1
  • Kolberg, S.A. and Bruland, O., 2012. ENKI - an open source environmental modelling platform. Geophysics Research Abstracts, 14, EGU2012–13630. EGU General Assembly.
  • Kolberg, S.A. and Gottschalk, L., 2006. Updating of snow depletion curve with remote sensing data. Hydrological Processes, 20 (11), 2363–2380. doi:10.1002/(ISSN)1099-1085
  • Krakauer, N.Y. and Temimi, M., 2011. Stream recession curves and storage variability in small watersheds. Hydrology and Earth System Sciences, 15, 2377–2389. doi:10.5194/hess-15-2377-2011
  • Krier, R., et al., 2012. Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg. Water Resources Research, 48, W10525. doi:10.1029/2011WR010657
  • Lamb, R. and Beven, K.J., 1997. Using interactive recession curve analysis to specify a general catchment storage model. Hydrology and Earth System Sciences, 1, 101–113. doi:10.5194/hess-1-101-1997
  • Lambert, A.O., 1969. A comprehensive rainfall-runoff model for an upland catchment area. Journal of the Institute of Water Engineering, 23, 231–238.
  • Lundquist, J.D., et al., 2010. Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the Northern Sierra Nevada. Journal of Hydrometeorology, 11, 1141–1156. doi:10.1175/2010JHM1264.1
  • Maidment, D.R., et al., 1996. A unit hydrograph derived from a spatially distributed velocity field. Hydrological Processes, 10 (6), 831–844. doi:10.1002/(ISSN)1099-1085
  • Martina, M.L.V., Todini, E., and Liu, Z., 2011. Preserving the dominant physical processes in a lumped hydrological model. Journal of Hydrology, 399, 121–131. doi:10.1016/j.jhydrol.2010.12.039
  • McDonnell, J.J., et al., 2007. Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resources Research, 43, W07301. doi:10.1029/2006WR005467
  • Moore, R.J., 1985. The probability-distributed principle and runoff production at point and basin scales. Hydrological Sciences Journal, 30, 273–297. doi:10.1080/02626668509490989
  • Myrabo, S., 1997. Temporal and spatial scale of response area and groundwater variation in Till. Hydrological Processes, 11, 1861–1880. doi:10.1002/(SICI)1099-1085(199711)11:14<1861::AID-HYP535>3.0.CO;2-P
  • Naden, P.S., 1992. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrological Sciences Journal, 37, 53–71. doi:10.1080/02626669209492561
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nepal, S., 2012. Evaluating upstream–downstream linkages of hydrological dynamics in the Himalayan region. Thesis (PhD). Friedrich Schiller University of Jena.
  • Olivera, F., 1996. Spatially distributed modeling of storm runoff and nonpoint source pollution using geographic information systems, Thesis (PhD). Department of Civil Engineering, University of Texas at Austin, USA.
  • Parajka, J. and Bloschl, G., 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology, 358, 240–258. doi:10.1016/j.jhydrol.2008.06.006
  • Pokhrel, P. and Gupta, H.V., 2011. On the ability to infer spatial catchment variability using streamflow hydrographs. Water Resources Research, 47, W08534. doi:10.1029/2010WR009873
  • Pokhrel, P., Gupta, H.V., and Wagener, T., 2008. A spatial regularization approach to parameter estimation for a distributed watershed model. Water Resources Research, 44, W12419. doi:10.1029/2007WR006615
  • Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Ragletti, S. and Pellicciotti, F., 2012. Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resources Research. 48. 10.1029/2011WR010559
  • Rees, H.G., et al., 2004. Recession-based hydrological models for estimating low flows in ungauged catchments in the Himalayas. Hydrology and Earth System Sciences, 8 (5), 891–902. doi:10.5194/hess-8-891-2004
  • Røhr, P.C. and Killingtveit, Å., 2003. Rainfall distribution on the slopes of Mt Kilimanjaro. Hydrological Sciences Journal, 48 (1), 65–77. doi:10.1623/hysj.48.1.65.43483
  • Rooney, W.C. and Biegler, L.T., 2001. Design for model parameter uncertainty using nonlinear confidence regions. Process Systems Engineering, 47, 1794–1804.
  • Sicart, J. E., et al., 2006. Incoming longwave radiation to melting snow: observations, sensitivity and estimation in northern environments. Hydrological Processes, 20, 3697–3708.
  • Singh, V.P. and Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7, 270–292. doi:10.1061/(ASCE)1084-0699(2002)7:4(270)
  • Sivapalan, M., et al., 2003. Downward approach to hydrological prediction. Hydrological Processes, 17, 2101–2111. doi:10.1002/hyp.v17:11
  • Spence, C., et al., 2010. Storage dynamics and streamflow in a catchment with a variable contributing area. Hydrological Processes, 24, 2209–2221. doi:10.1002/hyp.7492
  • Staudinger, M., et al., 2011. Comparison of hydrological model structures based on recession and low flow simulations. Hydrology and Earth System Sciences, 15, 3447–3459. doi:10.5194/hess-15-3447-2011
  • Stoelzle, M., Stahl, K., and Weiler, M., 2012. Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences Discussions, 9, 10563–10593. doi:10.5194/hessd-9-10563-2012
  • Teuling, J., et al., 2010. Catchments as simple dynamical systems: experience from a Swiss prealpine catchment. Water Resources Research, 46, W10502. doi:10.1029/2009WR008777
  • Vrugt, J.A., et al., 2009. Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Journal of Nonlinear Sciences and Numerical Simulation, 10 (3), 273–290.
  • Vugrin, K.W., et al., 2007. Confidence region estimation techniques for nonlinear regression in groundwater flow: three case studies. Water Resources Research, 43, W03423. doi:10.1029/2005WR004804
  • Wagener, T., et al., 2007. Catchment classification and hydrologic similarity. Geography Compass, 1, 901–931. doi:10.1111/j.1749-8198.2007.00039.x
  • Wagener, T. and Wheater, H.S., 2006. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. Journal of Hydrology, 320, 132–154. doi:10.1016/j.jhydrol.2005.07.015
  • Wittenberg, H. and Sivapalan, M., 1999. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology, 219, 20–33. doi:10.1016/S0022-1694(99)00040-2
  • Zehe, E. and Sivapalan, M., 2009. Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications. Hydrology and Earth System Sciences, 13, 1273–1297. doi:10.5194/hess-13-1273-2009
  • Ziḙba, A., 2010. Effective number of observations and unbiased estimators of variance for autocorrelated data an overview. Metrology and Measurement Systems, XVII (1), 3–16. doi:10.2478/v10178-010-0001-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.