575
Views
4
CrossRef citations to date
0
Altmetric
Articles

Studies on emergent flow over vegetative channel bed with downward seepage

, &
Pages 408-420 | Received 17 Oct 2015, Accepted 29 Jun 2016, Published online: 17 Oct 2016

References

  • Armanini, A., Righetti, M., and Grisenti, P., 2005. Direct measurement of vegetation resistance in prototype scale. Journal of Hydraulic Research, 43 (5), 481–487. doi:10.1080/00221680509500146
  • Bennett, S., Pirim, T., and Barkdoll, B., 2002. Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel. Geomorphology, 44, 115–126. doi:10.1016/S0169-555X(01)00148-9
  • Cao, D. and Chiew, Y.-M., 2013. Suction effects on sediment transport in closed-conduit flows. Journal of Hydraulic Engineering. doi:10.1061/(ASCE)HY.1943-7900.0000833
  • Chen, X. and Chiew, Y.-M., 2004. Velocity distribution of turbulent open channel flow with bed suction. Journal of Hydraulic Engineering, 130 (2), 140–148. doi:10.1061/(ASCE)0733-9429(2004)130:2(140)
  • Cheng, N.-S., 2013. Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model. Journal of Hydraulic Engineering, 139 (6), 602–611. doi:10.1061/(ASCE)HY.1943-7900.0000722
  • Chow, V.T., 1959. Open channel hydraulics. New York: McGraw-Hill.
  • Clarke, S., 2002. Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26 (2), 159–172. doi:10.1191/0309133302pp324ra
  • Cowan, W.L., 1956. Estimating hydraulic roughness coefficient. Agricultural Engineering, 37 (7), 473–475.
  • Darby, S.E., 1999. Effect of riparian vegetation on flow resistance and flood potential. Journal of Hydraulic Engineering, 125 (5), 443–454. doi:10.1061/(ASCE)0733-9429(1999)125:5(443)
  • Deshpande, V. and Kumar, B., 2015. Advent of sheet flow in suction affected alluvial channels. Environmental Fluid Mechanics, doi:10.1007/s10652-015-9409-0
  • Dey, S. and Nath, T.K., 2010. Turbulence characteristics in flows subjected to boundary injection and suction. Journal of Engineering Mechanics, 136 (7), 877–888. doi:10.1061/(ASCE)EM.1943-7889.0000124
  • Dey, S., et al., 2012. Turbulence in mobile bed streams for flat bed. Acta Geophysica, 60 (6), 1547–1588. doi:10.2478/s11600-012-0055-3
  • Finnigan, J., 2000. Turbulence in plant canopies. Annual Review of Fluid Mechanics, 32, 519–571. doi:10.1146/annurev.fluid.32.1.519
  • Finnigan, J., Shaw, R., and Patton, E., 2009. Turbulence structure above a vegetation canopy. Journal of Fluid Mechanics, 637, 387–424. doi:10.1017/S0022112009990589
  • Ghisalberti, M. and Nepf, H., 2006. The structure of the shear layer in flows over rigid and flexible canopies. Environmental Fluid Mechanics, 6 (3), 277–301. doi:10.1007/s10652-006-0002-4
  • Goring, D.G. and Nikora, V.I., 2002. Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128 (1), 117–126. doi:10.1061/(ASCE)0733-9429(2002)128:1(117)
  • Gyr, A. and Schmid, A., 1989. The different ripple formation mechanism. Journal of Hydraulic Research, 27, 61–74. doi:10.1080/00221688909499244
  • Harvey, J., Conklin, M., and Koelsch, R., 2003. Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Advances in Water Resources, 26, 939–950. doi:10.1016/S0309-1708(03)00085-X
  • Huai, W., et al., 2009. Velocity distribution of flow with submerged flexible vegetations based on mixing-length approach. Journal of Applied Mathematics and Mechanics, 30 (3), 343–351. doi:10.1007/s10483-009-0308-1
  • Huang, I., Rominger, J., and Nepf, H., 2011. The motion of kelp blades and the surface renewal model. Limnology and Oceanography, 56 (4), 1453–1462. doi:10.4319/lo.2011.56.4.1453
  • Hui, E.Q. and Hu, X.E., 2010. A study of drag coefficient related with vegetation based on the flume experiment. Journal of Hydrodynamics, Series B, 22 (3), 329–337. doi:10.1016/S1001-6058(09)60062-7
  • Hurd, C.L., 2000. Water motion, marine macroalgal physiology, and production. Journal of Phycology, 36, 453–472. doi:10.1046/j.1529-8817.2000.99139.x
  • Järvelä, J., 2005. Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307 (1–4), 233–241. doi:10.1016/j.jhydrol.2004.10.013
  • Kinzli, K.-D., et al., 2010. Using an ADCP to determine canal seepage loss in an irrigation district. Agricultural Water Management, 97 (6), 801–810. doi:10.1016/j.agwat.2009.12.014
  • Koch, E., 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24 (1), 1–17. doi:10.2307/1352808
  • Kubrak, E., Kubrak, J., and Rowiński, P.M., 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrological Sciences Journal, 53 (4), 905–920. doi:10.1623/hysj.53.4.905
  • Larsen, L. and Harvey, J., 2011. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology, 126, 279–296. doi:10.1016/j.geomorph.2010.03.015
  • Lee, J.K., et al., 2004. Drag coefficients for modeling flow through emergent vegetation in the Florida everglades. Ecological Engineering, 22, 237–248. doi:10.1016/j.ecoleng.2004.05.001
  • Li, L.P., et al., 2014a. Nitrogen and phosphorus stoichiometry of common reed (Phragmites australis) and its relationship to nutrient availability in northern China. Aquatic Botany, 112, 84–90. doi:10.1016/j.aquabot.2013.08.002
  • Li, Y., et al., 2014b. Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment. Journal of Hydro-Environment Research. doi:10.1016/j.jher.2014.01.006
  • Liu, D., et al., 2008. An experimental study of flow through rigid vegetation. Journal of Geophysical Research, 113, F04015. doi:10.1029/2008JF001042
  • Lu, S.S. and Willmarth, W.W., 1973. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics, 60 (3), 481–511. doi:10.1017/S0022112073000315
  • Maclean, A.G., 1991. Open channel velocity profiles over a zone of rapid infiltration. Journal of Hydraulic Research, 29 (1), 15–27. doi:10.1080/00221689109498990
  • Mars, M., Kuruvilla, M., and Goen, H., 1999. The role of the submergent macrophyte triglochin huegelii in domestic greywater treatment. Ecological Engineering, 12, 57–66. doi:10.1016/S0925-8574(98)00054-8
  • Martin, C.A. and Gates, T.K., 2014. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. Journal of Hydrology, 517, 746–761. doi:10.1016/j.jhydrol.2014.05.074
  • Nepf, H., 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35, 479–489. doi:10.1029/1998WR900069
  • Nepf, H., 2012. Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44, 123–142. doi:10.1146/annurev-fluid-120710-101048
  • Nepf, H. and Vivoni, E., 2000. Flow structure in depth-limited, vegetated flow. Journal of Geophysical Research, 105 (28), 554–557. doi:10.1029/2000JC900145
  • Noaranayan, L., Murali, K., and Sundar, V., 2012. Manning’s ‘n’ coefficient for flexible emergent vegetation in tandem configuration. Journal of Hydro-environment Research, 6, 51–62. doi:10.1016/j.jher.2011.05.002
  • O’Hare, M.T., Hutchinson, K.A., and Clarke, R.T., 2007. The drag and reconfiguration experienced by five macrophytes from a lowland river. Aquatic Botany, 86, 253–259. doi:10.1016/j.aquabot.2006.11.004
  • Patel, M., Deshpande, V., and Kumar, B., 2015. Turbulent characteristics and evolution of sheet flow in an alluvial channel with downward seepage. Geomorphology, 248, 161–171. doi:10.1016/j.geomorph.2015.07.042
  • Petryk, S. and Bosmajian, G., 1975. Analysis of flow through vegetation. Journal of the Hydraulics Division - ASCE, 101 (7), 871–884.
  • Poggi, D., et al., 2004. The effect of vegetation density on canopy sub-layer turbulence.”. Boundary-Layer Meteorology, 111, 565–587. doi:10.1023/B:BOUN.0000016576.05621.73
  • Pollen, N. and Simon, A., 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41, W07025. doi:10.1029/2004WR003801
  • Rao, A.R., et al., 1991. Seepage effects on sand bed channels. Journal of Irrigation and Drainage Engineering, 120, 1.
  • Raupach, M.R., 1981. Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. Journal of Fluid Mechanics, 108, 363–382. doi:10.1017/S0022112081002164
  • Richardson, J.R., Abt, S.R., and Richardson, E.V., 1985. Inflow seepage influence on straight alluvial channels. Journal of Hydraulic Engineering, 111, 8.
  • Rowiński, P.M. and Kubrak, J., 2002. A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation. Hydrological Sciences Journal, 47 (6), 893–904. doi:10.1080/02626660209492998
  • Schnauder, I., 2004. StrÖmungsstruktur und Impulsaustausch in Gegliederten Gerinnen mit Vorlandvegetation. Thesis (PhD). University of Karlsruhe, Karlsruhe.
  • Shi, J.Z., et al., 2013. Hydrological characteristics of vegetated river flows: a laboratory flume study. Hydrological Sciences Journal, 58 (5), 1047–1058. doi:10.1080/02626667.2013.797580
  • Shucksmith, J.D., Boxall, J.B., and Guymer, I., 2010. Effects of emergent and submerged natural vegetation on longitudinal mixing in open channel flow. Water Resources Research, 46 (4), W04504. doi:10.1029/2008WR007657
  • Stone, B.M. and Shen, H.T., 2002. Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128 (5), 500–506. doi:10.1061/(ASCE)0733-9429(2002)128:5(500)
  • Tal, M. and Paola, C., 2007. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geological Society of America, 35, 347–350.
  • Tanino, Y. and Nepf, H., 2008. Lateral dispersion in random cylinder arrays at high Reynolds number. Journal of Fluid Mechanics, 600, 339–371. doi:10.1017/S0022112008000505
  • Tanji, K.K. and Kielen, N.C., 2002. Agricultural drainage water management in arid and semi-arid areas. Irrigation and Drainage Systems, 16, 279–295. doi:10.1023/A:1024877630332
  • Taylor, G.I., 1935. Statistical theory of turbulence: parts 1–4. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 151, 421–444. doi:10.1098/rspa.1935.0158
  • Tennekes, H. and Lumley, J.L., 1972. A first course in turbulence. Cambridge, MA: MIT Press.
  • Thompson, A., Wilson, B.N., and Hansen, B., 2004. Shear stress partitioning for idealized vegetated surfaces. Transactions of the ASAE, 47 (3), 701–709. doi:10.13031/2013.16102
  • Türker, U., Yagci, O., and Kabdaşlı, M., 2006. Analysis of coastal damage of a beach profile under the protection of emergent vegetation. Ocean Engineering, 33, 810–828. doi:10.1016/j.oceaneng.2005.04.019
  • Wang, H., et al., 2014. An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation. Science China Technological Sciences, 57 (6), 1165–1174. doi:10.1007/s11431-014-5549-6
  • Wilcock, R., et al., 1999. The influence of aquatic macrophytes on the hydraulic and physicochemical properties of a New Zealand lowland stream. Hydrobiologia, 416 (1), 203–214. doi:10.1023/A:1003837231848
  • Wilson, C.A.M.E., Hoyt, J., and Schnauder, I., 2008. Impact of foliage on the drag force of vegetation in aquatic flows. Journal of Hydraulic Engineering, 134 (7), 885–891. doi:10.1061/(ASCE)0733-9429(2008)134:7(885)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.