969
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of soil water content in watershed using artificial neural networks

, , &
Pages 2120-2138 | Received 16 Nov 2015, Accepted 21 Apr 2017, Published online: 25 Aug 2017

References

  • Ahuja, L.R., Naney, J.W., and Williams, R.D., 1985. Estimating soil water characteristics from simpler properties or limited data. Soil Science Society of America Journal, 49, 1100–1105. doi:10.2136/sssaj1985.03615995004900050005x
  • Allen, R.G., et al., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO Irrigation and Drainage Paper, No. 56, 300.
  • Arsoy, S., et al., 2013. Enhancing TDR based water content measurements by ANN in sandy soils. Geoderma, 195–196, 133–144. doi:10.1016/j.geoderma.2012.11.019
  • Arya, L.M., et al., 1999. Scaling parameter to predict the soil-water characteristic from particle-size distribution data. Soil Science Society of America Journal, 63, 510–519. doi:10.2136/sssaj1999.03615995006300030013x
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5 (2), 115–123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
  • Baroni, G., et al., 2013. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize cropped field. Journal of Hydrology, 489, 148–159. doi:10.1016/j.jhydrol.2013.03.007
  • Beltrame, L.S.F., et al., 1994. Evapotranspiração potencial no Rio Grande do Sul. Universidade Federal do Rio Grande do Sul. Recursos Hídricos, 3, 49.
  • Borges, A.L.O. and Bordas, M.P., 1988. Choix de bassins représentatifs et expérimentaux pour l´étude de l´érsion sur lê plateau basaltique sudaméricain. IAHS Publication, 174, 161–169.
  • Brady, N.C., 1989. Natureza e Propriedades do Solos. 7th ed. Rio de Janeiro: Freitas Bastos, 898.
  • Cantón, Y., et al., 2010. Temporal dynamics of soil water balance components in a karst range in southeastern Spain: estimation of potential recharge. Hydrological Sciences Journal, 55 (5), 73–753. doi:10.1080/02626667.2010.490530
  • Carvalho, A.P., et al., 1990. Levantamento semidetalhado dos solos da bacia do arroio Taboão (Pejuçara/Ijuí RS). Porto Alegre: Publicação interna, IPH/UFRGS, 41p. + Mapa 1:25.000.
  • Chai, -S.-S., et al., 2010. Use of soil moisture variability in artificial neural network retrieval of soil moisture. Remote Sensing, 2, 166–190. doi:10.3390/rs2010166
  • Cho, E. and Choi, M., 2014. Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula. Journal of Hydrology, 516 (4), 317–329. doi:10.1016/j.jhydrol.2013.12.053
  • Coelho, L.S., et al., 2009. Identification of temperature and moisture content fields using a combined neural network and clustering method approach. International Communications in Heat and Mass Transfer, 36 (4), 304–313. doi:10.1016/j.icheatmasstransfer.2009.01.012
  • Contador, J.F.L., Maneta, M., and Schnabel, S., 2006. Prediction of near-surface soil moisture at large scale by digital terrain modelling and neural networks. Environmental Monitoring and Assessment, 121, 213–232. doi:10.1007/s10661-005-9116-2
  • Cui, Y., et al., 2016. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543 (Part B), 242–254. doi:10.1016/j.jhydrol.2016.10.005
  • de Carvalho, N.O., 2008. Hidrossedimentologia prática. Rio de Janeiro: Interciência. 599. 2ª ed., rev., atual e amp.
  • Dobriyal, P., et al., 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458–459, 110–117. doi:10.1016/j.jhydrol.2012.06.021
  • Elshorbagy, A. and Parasuraman, K., 2008. On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362 (1–2), 1–18. doi:10.1016/j.jhydrol.2008.08.012
  • EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária), 2006. Determinação da curva de retenção de água no solo em laboratório. Teresina: Embrapa Meio-Norte.
  • Famiglietti, J., Rudnicki, J., and Rodell, M., 1998. Variability in surface moisture content along a hillslope transect, Rattlesnake Hill, Texas. Journal of Hydrology, 210 (1), 259–281. doi:10.1016/S0022-1694(98)00187-5
  • Fantín-Cruz, I., et al., 2011. Historical reconstruction of floodplain inundation in the Pantanal (Brazil) using neural networks. Journal of Hydrology, 399 (3/4), 376–384. doi:10.1016/j.jhydrol.2011.01.014
  • Fashi, F.H., 2016. Evaluation of adaptive neural-based fuzzy inference system approach for estimating saturated soil water content. Modeling Earth Systems and Environmental, 2–197, 2–6.
  • Hagan, M.T. and Menhaj, M.B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5 (6), 989–993. doi:10.1109/72.329697
  • Hassan-Esfahani, L., et al., 2017. Spatial root zone soil water content estimation in agricultural lands using bayesian-based artificial neural networks and high- resolution visual, NIR, and thermal imagery: remote sensing of agricultural soil moisture using UAV. Irrigation and Drainage, 66 (2), 273–288. doi:10.1002/ird.2098
  • Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the First IEEE International Joint Conference on Neural Networks, San Diego, CA. New York: IEEE Press. 11–14.
  • Hecht-Nielsen, R., 1990. Neurocomputing. Boston: Addison - Wesely Publishing Company.
  • Hornik, K., Stinchcombe, M., and White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366. doi:10.1016/0893-6080(89)90020-8
  • Hu, W. and Si, B.C., 2014. Can soil water measurements at a certain depth be used to estimate mean soil water content of a soil profile at a point or at a hillslope scale? Journal of Hydrology, 516, 67–75. doi:10.1016/j.jhydrol.2014.01.053
  • Humphrey, G.B., et al., 2016. A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540, 623–640. doi:10.1016/j.jhydrol.2016.06.026
  • Ilonen, J., Kamarainen, J.-K., and Lampinen, J., 2003. Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters, 17 (1), 93–105. doi:10.1023/A:1022995128597
  • IPAGRO, 1989. Atlas agroclimático do Estado do Rio Grande do Sul. Vol. 3. Porto Alegre: IPAGRO, mapa n. 232.
  • Kasabov, N., 1998. Foundations of neural networks, fuzzy systems and knowledge engineering. Cambridge: Massachussets institute of technology.
  • Kayarvizhy, N., Kanmani, S., and Uthariaraj, R.V., 2014. ANN models optimized using swarm intelligence algorithms. WSEAS Transactions on Computers, 13, 501–519.
  • Köksal, E.S., et al., 2011. A new approach for neutron moisture meter calibration: artificial neural network. Irrigation Science, 29, 369–377. doi:10.1007/s00271-010-0246-0
  • Korres, W., Reichenau, T.G., and Schneider, K., 2013. Patterns and scaling properties of surface soil moisture in an agricultural landscape: an ecohydrological modelling study. Journal of Hydrology, 498, 89–102. doi:10.1016/j.jhydrol.2013.05.050
  • Kröse, B. and Smagt, P.V.D., 1996. An introduction to neural networks. 8th ed. Amsterdam: University of Amsterdam.
  • Mariano, J.C.Q., Santos, G.O., and Hernandez, F.B.T., 2011. Software para cálculo da evapotranspiração de referência diária pelo método de Penman-Monteith. In: XXI CONIRD (Congresso Nacional de Irrigação e Drenagem), Petrolina, 20 a 25 de novembro de 2011. Petrolina: Associação Brasileira de Irrigação e Drenagem (ABID), 6.
  • Matos, A.B., Pedrollo, O.C., and Castro, N.M.R., 2014. Efeito do Controle de Montante de Sub-bacias Embutidas na Previsão Hidrológica de Curto Prazo com Redes Neurais: Aplicação à Bacia de Ponte Mística. Revista Brasileira De Recursos Hídricos, 19 (1), 87–99. doi:10.21168/rbrh.v19n1.p87-99
  • Mello, N.A., 2006. Relação entre a fração mineral do solo e qualidade de sedimento - o solo como fonte de sedimentos (p. 38–82). In: POLETO, C. e MERTEN, G. H. (org.). Qualidade dos sedimentos. Porto Alegre: ABRH, 397.
  • Melo, T.M. and Pedrollo, O.C., 2015. Artificial neural networks for estimating soil water retention curve using fitted and measured data. Applied and Environmental Soil Science, 2015, Article ID 535216, 16. doi:10.1155/2015/535216
  • Mermoud, A. and Xu, D., 2006. Comparative analysis of three methods to generate soil hydraulic functions. Soil and Tillage Research, 87, 89–100. doi:10.1016/j.still.2005.02.034
  • Moore, R.J., 1980. Real-time forecasting of flood events using transfer function noise models: report, Part 2. Wallingford: Institute of Hydrology.
  • Muñoz-Carpena, R., 2012. Field devices for monitoring soil water content. Gainesville, FL: Agricultural and Biological Engineering Department, University of Florida. BUL343.
  • Mustafa, A.-M., 2016. Modelling the root zone soil moisture using artificial neural networks, a case study. Environmental Earth Sciences, 75 (15), 1–12.
  • Nimer, E., 1989. Climatologia do Brasil. 2nd ed. Rio de Janeiro: Departamento de Recursos Naturais e Estudos Ambientais, Instituto Brasileiro de Geografia e Estatística (IBGE).
  • Oliveira, G.G., Pedrollo, O.C., and Castro, N.M.R., 2011. Metodologia de análise de sensibilidade e exclusão de variáveis de entrada em simulação hidrológica por redes neurais artificiais (RNAS): resultados preliminares. In: XIX Simpósio Brasileiro de Recursos Hídricos, Maceió, 27 de novembro a 01 de dezembro de 2011. Maceió, AL: Associação Brasileira de Recursos Hídricos (ABRH), 19.
  • Oliveira, G.G., et al., 2013. Simulações hidrológicas com diferentes proporções de área controlada na bacia hidrográfica. Revista Brasileira De Recursos Hídricos, 18 (3), 193–204. doi:10.21168/rbrh.v18n3.p193-204
  • Oliveira, N.T., Castro, N.M.R., and Goldenfum, J.A., 2010. Influência da Palha no Balanço Hídrico em Lisímetros. Revista Brasileira De Recursos Hídricos, 15 (2), 93–103. doi:10.21168/rbrh.v15n2.p93-103
  • Paloscia, S., et al., 2008. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR Images. IEEE Transactions on Geoscience and Remote Sensing, 46 (10), 3274–3284. doi:10.1109/TGRS.2008.920370
  • Paloscia, S., et al., 2013. Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248. doi:10.1016/j.rse.2013.02.027
  • Prado, H., 2007. Pedologia fácil - Aplicações na agricultura. 1st ed. Piracicaba: H. do Prado.
  • Ramírez-Beltran, A.N.D., et al., 2008. Stochastic transfer function model and neural networks to estimate soil moisture. Journal of the American Water Resources Association, 44 (4), 847–865. doi:10.1111/j.1752-1688.2008.00208.x
  • Rawls, W.J., et al., 2003. Effect of soil carbon on soil water retention. Geoderma, 116, 61–76. doi:10.1016/S0016-7061(03)00094-6
  • Romano, N., 2014. Soil moisture at local scale: measurements and simulations. Journal of Hydrology, 516, 6–20. doi:10.1016/j.jhydrol.2014.01.026
  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning representations by backpropagating errors. Nature, 323, 533–536. doi:10.1038/323533a0
  • Said, S., Kothyari, U.C., and Arora, M.K., 2008. ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data. Journal of Hydrologic Engineering, 13 (6), 461–475. doi:10.1061/(ASCE)1084-0699(2008)13:6(461)
  • Santi, E., et al., 2012. An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: hydroAlgo. Hydrology and Earth System Sciences, 16, 3659–3676. doi:10.5194/hess-16-3659-2012
  • Schaap, M.G., Nemes, A., and Van Genuchten, M.T., 2004. Comparison of models for indirect estimation of water retention and available water in surface soils. Vadose Zone Journal, 3, 1455–1463. doi:10.2136/vzj2004.1455
  • Singh, V.P. and Frevert, D.K., 2006. Watershed models. Boca Raton, FL: CRC Press.
  • Srivastava, P.K., et al., 2013. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS Land surface temperature for hydrological application. Water Resources Management, 27 (8), 3127–3144. doi:10.1007/s11269-013-0337-9
  • Sur, C., Jung, Y., and Choi, M., 2013. Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia. Geoderma, 207-208, 234–243. doi:10.1016/j.geoderma.2013.05.007
  • Thiessen, A.H., 1911. Precipitation averages for large areas. Monthly Weather Review, 39, 1082–1089.
  • USDA (US Department of Agriculture), 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys Agriculture Handbook, 436, 2a ed. Washington, DC: USDA Soil Survey Staff.
  • Van Oevelen, P.J., 1998. Soil moisture variability: a comparison between detailed field measurements and remote sensing measurement techniques. Hydrological Sciences Journal, 43 (4), 511–520. doi:10.1080/02626669809492148
  • Vereecken, H., et al., 2007. Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective. GeophysicaL Research Letters, 34, L22402. doi:10.1029/2007GL031813
  • Viero, A.C., 2014. Análise da geologia, geomorfologia e solos no processo de erosão por voçorocas: bacia do Taboão/RS. M.Sc. Thesis. Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul. 119.
  • Vogl, T.P., et al., 1988. Accelerating the convergence of the backpropagation method. Biological Cybernetics, 59, 256–264. doi:10.1007/BF00332914
  • Walczac, R.T., et al., 2006. Modelling of soil water retention curve using soil solid phase parameters. Journal of Hydrology, 329, 527–533. doi:10.1016/j.jhydrol.2006.03.005
  • Wang, L. and Qu, J.J., 2009. Satellite remote sensing applications for surface soil moisture monitoring: a review. Front of Earth Science in China, 3 (2), 237–247. doi:10.1007/s11707-009-0023-7
  • Wang, Y., et al., 2012. Regional spatial pattern of deep soil water content and its influencing factors. Hydrological Sciences Journal, 57 (2), 265–281. doi:10.1080/02626667.2011.644243
  • Western, A.W., et al., 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 286, 113–134. doi:10.1016/j.jhydrol.2003.09.014
  • Western, W.A., Grayson, R.B., and Blöschl, G., 2002. Scaling of soil moisture: a hydrologic perspective. Annual Review of Earth and Planetary Sciences, 30, 149–180. doi:10.1146/annurev.earth.30.091201.140434
  • Widrow, B. and Hoff, M.E., 1960. Adaptive switching circuits. Ire Wescon Convention Record, 4 (Supleme), 96–104.
  • WMO (World Meteorological Organization), 2003. Manual on sediment management and measurement. Geneva, Switzerland: yang Xiaoqing, 159, Operational Hydrology Report n. 47.
  • Zhang, P. and Shao, M., 2015. Spatio-temporal variability of surface soil water content and its influencing factors in a desert area, China. Hydrological Sciences Journal, 60 (1), 96–100. doi:10.1080/02626667.2013.875178
  • Zhu, Q. and Lin, H., 2011. Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 163, 45–54. doi:10.1016/j.geoderma.2011.03.015
  • Zou, P., et al., 2010. Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management, 97 (12), 2009–2019. doi:10.1016/j.agwat.2010.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.