1,500
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of three remote sensing based models for the estimation of latent heat flux over India

, &
Pages 2705-2719 | Received 25 Nov 2016, Accepted 12 Sep 2017, Published online: 01 Dec 2017

References

  • Anderson, M.C., et al., 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65. doi:10.1016/j.rse.2011.08.025
  • Batra, N., et al., 2006. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sensing of Environment, 103, 1–15. doi:10.1016/j.rse.2006.02.019
  • Bhattacharya, B.K., et al., 2010. Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. Journal of Hydrology, 387, 65–80. doi:10.1016/j.jhydrol.2010.03.030
  • Bisht, G., et al., 2005. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sensing of Environment, 97, 52–67. doi:10.1016/j.rse.2005.03.014
  • Cammalleri, C., Anderson, M.C., and Kustas, W.P., 2014. Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications. Hydrology and Earth System Sciences, 18, 1885–1894. doi:10.5194/hess-18-1885-2014
  • Chirouze, J., et al., 2014. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrology and Earth System Sciences, 18 (3), 1165–1188. doi:10.5194/hess-18-1165-2014
  • Crago, R.D., 1996. Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology, 180, 173–194. doi:10.1016/0022-1694(95)02903-6
  • Eswar, R., Sekhar, M., and Bhattacharya, B.K., 2013. A simple model for spatial disaggregation of evaporative fraction: comparative study with thermal sharpened land surface temperature data over India. Journal of Geophysical Research-Atmospheres, 118, 12,029–12,044. doi:10.1002/2013JD020813
  • Galleguillos, M., et al., 2011b. Comparison of two temperature differencing methods to estimate daily evapotranspiration over a Mediterranean vineyard watershed from ASTER data. Remote Sensing of Environment, 115, 1326–1340. doi:10.1016/j.rse.2011.01.013
  • Galleguillos, M., et al., 2011a. Mapping daily evapotranspiration over a mediterranean vineyard watershed. IEEE Geoscience and Remote Sensing Letters, 8 (1), 168–172. doi:10.1109/LGRS.2010.2055230
  • Gavilan, P. and Berengena, J., 2007. Accuracy of the Bowen ratio-energy balance method for measuring latent heat flux in a semiarid advective environment. Irrigation Science, 25, 127–140. doi:10.1007/s00271-006-0040-1
  • Glenn, E.P., Nagler, P.L., and Huete, A.R., 2010. Vegetation index methods for estimating evapotranspiration by remote sensing. Surveys in Geophysics, 31 (6), 531–555. doi:10.1007/s10712-010-9102-2
  • Gomez, M., et al., 2005. Retrieval of evapotranspiration over the Alpilles/ReSeDA experimental site using airborne POLDER sensor and a thermal camera. Remote Sensing of Environment, 96, 399–408. doi:10.1016/j.rse.2005.03.006
  • Guerra, L.O., Mattar, C., and Galleguillos, M., 2014. Estimation of real evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile. International Journal of Applied Earth Observation and Geoinformation, 28, 160–169. doi:10.1016/j.jag.2013.11.012
  • Jiang, L. and Islam, S., 1999. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophysical Research Letters, 26 (17), 2773–2776. doi:10.1029/1999GL006049
  • Jiang, L. and Islam, S., 2001. Estimation of surface evaporation map over southern great plains using remote sensing data. Water Resources Research, 37 (2), 329–340. doi:10.1029/2000WR900255
  • Jiang, L., et al., 2009. A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida. Global and Planetary Change, 67, 62–77. doi:10.1016/j.gloplacha.2008.12.008
  • Jin, M. and Liang, S., 2006. An improved land surface emissivity parameter for land surface models using global remote sensing observations. Journal of Climate, 19, 2867–2881. doi:10.1175/JCLI3720.1
  • Kim, J. and Hogue, T.S., 2013. Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions. Journal of Applied Remote Sensing, 7, 073493. doi:10.1117/1.JRS.7.073493
  • Laxmi, K. and Nandagiri, L., 2014. Latent heat flux estimation using trapezoidal relationship between MODIS land surface temperature and fraction of vegetation–application and validation in a humid tropical region. Remote Sensing Letters, 5 (11), 981–990. doi:10.1080/2150704X.2014.984083
  • Li, F., et al., 2008. Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sensing of Environment, 112, 337–349. doi:10.1016/j.rse.2006.11.032
  • Li, X., et al., 2012. Estimation of evapotranspiration in an arid region by remote sensing—A case study in the middle reaches of the Heihe River Basin. International Journal of Applied Earth Observation and Geoinformation, 17, 85–93. doi:10.1016/j.jag.2011.09.008
  • Liang, S., 2000. Narrowband to broadband conversions of land surface albedo: I. Algorithms, Remote Sensing of Environment, 76, 213–238. doi:10.1016/S0034-4257(00)00205-4
  • Long, D., Singh, V.P., and Scanlon, B.R., 2012. Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. Journal of Geophysical Research-Atmospheres, 117. doi:10.1029/2011JD017079
  • Lu, J., et al., 2015. Assessment of two temporal-information-based methods for estimating evaporative fraction over the Southern Great Plains. International Journal of Remote Sensing, 36 (19–20), 4936–4952. doi:10.1080/01431161.2015.1040133
  • Mallick, K., et al., 2009. Latent heat flux estimation in clear sky days over Indian agroecosystems using noon-time satellite remote sensing data. Agricultural and Forest Meteorology, 149 (10), 1646–1665. doi:10.1016/j.agrformet.2009.05.006
  • Narasimhan, T.N., 2008. A note on India’s water budget and evapotranspiration. Journal of Earth System Science, 117 (3), 237–240. doi:10.1007/s12040-008-0028-8
  • Nemani, R.R. and Running, S.W., 1989. Estimation of regional surface-resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology, 1989 (28), 276–284. doi:10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
  • Nishida, K., et al., 2003. An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research, 108 (D9), 4270. doi:10.1029/2002JD002062
  • Norman, J.M., Kustas, W.P., and Humes, K.S., 1995. Source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77, 263–293. doi:10.1016/0168-1923(95)02265-Y
  • Peacock, C.E. and Hess, T.M., 2004. Estimating evapotranspiration from a reed bed using the Bowen ratio energy balance method. Hydrological Processes, 18, 247–260. doi:10.1002/hyp.1373
  • Perez, P.J., et al., 1999. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agricultural and Forest Meteorology, 97, 141–150. doi:10.1016/S0168-1923(99)00080-5
  • Prihodko, L. and Goward, S.N., 1997. Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60, 335–346. doi:10.1016/S0034-4257(96)00216-7
  • Roerink, G.J., Su, Z., and Menenti, M., 2000. S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, 25, 147–157. doi:10.1016/S1464-1909(99)00128-8
  • Sekhar, M., et al., 2016. Influences of climate and agriculture on water and biogeochemical cycles: kabini critical zone observatory. Proceedings of Indian National Science Academy, 82 (3), 833–846. doi:10.16943/ptinsa/2016/48488
  • Shuttleworth, W.J., et al., 1989. FIFE: the variation in energy partition at surface flux sites. IAHS Publications, 186, 67–74.
  • Singh, V., 2015. The Indian critical zone – a case for priority studies. Current Science, 108 (6), 1045–1046.
  • Sobrino, J.A., et al., 2007. Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sensing of Environment, 110, 139–148. doi:10.1016/j.rse.2007.02.017
  • Sobrino, J.A., et al., 2005. A simple algorithm to estimate evapotranspiration from DAIS data: application to the DAISEX campaigns. Journal of Hydrology, 315, 117–125. doi:10.1016/j.jhydrol.2005.03.027
  • Stisen, S., et al., 2008. Combining the triangle method with thermal inertia to estimate regional evapotranspiration — applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment, 112, 1242–1255. doi:10.1016/j.rse.2007.08.013
  • Su, Z., 2002. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6 (1), 85–99. doi:10.5194/hess-6-85-2002
  • Sun, Z., et al., 2009. Development of a simple remote sensing evapotranspiration model (Sim-ReSET): algorithm and model test. Journal of Hydrology, 376, 476–485. doi:10.1016/j.jhydrol.2009.07.054
  • Sun, Z., et al., 2013. Further evaluation of the Sim-ReSET model for ET estimation driven by only satellite inputs. Hydrological Sciences Journal, 58 (5), 994–1012. doi:10.1080/02626667.2013.791026
  • Tang, R., Li, Z.L., and Chen, K.S., 2011a. Validating MODIS - derived land surface evapotranspiration with in situ measurements at two AmeriFlux sites in a semiarid region. Journal of Geophysical Research-Atmospheres, 116. doi:10.1029/2010JD014543
  • Tang, R., et al., 2011b. An intercomparison of three remote sensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat–corn production region. Remote Sensing of Environment, 115, 3187–3202. doi:10.1016/j.rse.2011.07.004
  • Tang, R., Li, Z.L., and Sun, X., 2013. Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sensing of Environment, 138, 102–118. doi:10.1016/j.rse.2013.07.001
  • Tang, R., Li, Z.L., and Tang, B., 2010. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation. Remote Sensing of Environment, 114, 540–551. doi:10.1016/j.rse.2009.10.012
  • Todd, R.W., Evett, S.R., and Howell, T.A., 2000. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agricultural and Forest Meteorology, 103, 335–348. doi:10.1016/S0168-1923(00)00139-8
  • Tomas, A.D., et al., 2014. Validation and scale dependencies of the triangle method for the evaporative fraction estimation over heterogeneous areas. Remote Sensing of Environment, 152, 493–511. doi:10.1016/j.rse.2014.06.028
  • Van Niel, T.G., et al., 2012. Upscaling latent heat flux for thermal remote sensing studies: comparison of alternative approaches and correction of bias. Journal of Hydrology, 468–469, 35–46. doi:10.1016/j.jhydrol.2012.08.005
  • Venturini, V., et al., 2004. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida. Remote Sensing of Environment, 93, 77–86. doi:10.1016/j.rse.2004.06.020
  • Verstraeten, W.W., Veroustraete, F., and Feyen, J., 2005. Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: towards an operational processing chain for integrated optical and thermal sensor data products. Remote Sensing of Environment, 96, 256–276. doi:10.1016/j.rse.2005.03.004
  • Wang, K., Li, Z., and Cribb, M., 2006. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: a new method to determine the Priestley – Taylor parameter. Remote Sensing of Environment, 102, 293–305. doi:10.1016/j.rse.2006.02.007
  • Yang, J. and Wang, Y., 2011. Estimating evapotranspiration fraction by modeling two-dimensional space of NDVI/albedo and day–night land surface temperature difference: A comparative study. Advances in Water Resources, 34, 512–518. doi:10.1016/j.advwatres.2011.01.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.