971
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Data-based modelling approach for variable density flow and solute transport simulation in a coastal aquifer

, , &
Pages 210-226 | Received 21 Dec 2016, Accepted 25 Oct 2017, Published online: 08 Jan 2018

References

  • Abd-Elhamid, H.F. and Javadi, A.A., 2011. A cost-effective method to control seawater intrusion in coastal aquifers. Water Resources Management, 25 (11), 2755–2780. doi:10.1007/s11269-011-9837-7
  • Acharya, N., et al., 2014. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Climate Dynamics, 43 (5–6), 1303–1310. doi:10.1007/s00382-013-1942-2
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural network in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5 (2), 115–123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
  • Ashtiani, A.B., Ketabchi, H., and Rajabi, M.M., 2013. Optimal management of a freshwater lens in a small island using surrogate models and evolutionary algorithms. Journal of Hydrologic Engineering, 19 (2), 339–354. doi:10.1061/(ASCE)HE.1943-5584.0000809
  • Aytek, A. and Kişi, Ö., 2008. A genetic programming approach to suspended sediment modelling. Journal of Hydrology, 351 (3), 288–298. doi:10.1016/j.jhydrol.2007.12.005
  • Banerjee, P., et al., 2011. Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology, 398 (3), 212–220. doi:10.1016/j.jhydrol.2010.12.016
  • Bear, J., et al., 1999. Seawater intrusion in coastal aquifers – concepts, methods and practices. Dordrecht, Netherlands: Kluwer Academic.
  • Bhattacharjya, R.K. and Datta, B., 2009. ANN-GA-based model for multiple objective management of coastal aquifers. Journal of Water Resources Planning and Management, 135 (5), 314–322. doi:10.1061/(ASCE)0733-9496(2009)135:5(314)
  • Bhattacharjya, R.K., Datta, B., and Satish, M.G., 2007. Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. Journal of Hydrologic Engineering, ASCE, 12 (3), 273–282. doi:10.1061/(ASCE)1084-0699(2007)12:3(273)
  • Chekirbane, A., et al., 2015. 3D simulation of a multi-stressed coastal aquifer, northeast of Tunisia: salt transport processes and remediation scenarios. Environmental Earth Sciences, 73 (4), 1427–1442. doi:10.1007/s12665-014-3495-z
  • Choy, K. and Chan, C., 2003. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of System Science, 34 (1), 763–773. doi:10.1080/00207720310001640241
  • Cobaner, M., et al., 2012. Three dimensional simulation of seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. Journal of Hydrology, 464, 262–280. doi:10.1016/j.jhydrol.2012.07.022
  • Deka, P.C., 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing, 19, 372–386. doi:10.1016/j.asoc.2014.02.002
  • Dhar, A. and Datta, B., 2009. Saltwater intrusion management of coastal aquifers. I: linked simulation-optimization. Journal of Hydrologic Engineering, 14 (12), 1263–1272. doi:10.1061/(ASCE)HE.1943-5584.0000097
  • Ferreira, C., 2006. Gene expression programming: mathematical modeling by an artificial intelligence. Berlin, Germany: Springer-Verlag.
  • Francone, F., 2000. DiscipulusTM owner’s manual, version 3.0. Register machine learning technologies.
  • Gizaw, M.S. and Gan, T.Y., 2016. Regional flood frequency analysis using support vector regression under historical and future climate. Journal of Hydrology, 538, 387–398. doi:10.1016/j.jhydrol.2016.04.041
  • Gopinath, S., et al., 2016. Modeling saline water intrusion in Nagapattinam coastal aquifers, Tamilnadu, India. Modeling Earth Systems and Environment, 2 (1), 1–10. doi:10.1007/s40808-015-0058-6
  • Guo, W. and Langevin, C.D., 2002. User’s guide to SEAWAT: A computer program for the simulation of three-dimensional variable-density ground-water flow [online]. US geological survey techniques of water resources investigations, Book 6, Chapter A7. Available from: http://pubs.er.usgs.gov/publication/twri06A7.
  • Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000. MODFLOW-2000, the US Geological survey modular groundwater model – user guide to modularization concepts and the groundwater flow process. US Geological Survey, Open-File Report 00-92.
  • Harpham, C. and Dawson, C.W., 2006. The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing, 69 (16–18), 2161–2170. doi:10.1016/j.neucom.2005.07.010
  • Holding, S. and Allen, D.M., 2016. Risk to water security for small islands: an assessment framework and application. Regional Environmental Change, 16 (3), 827–839. doi:10.1007/s10113-015-0794-1
  • Holzbecher, E., 1998. Modeling density-driven flow in porous media: principles, numerics, software. Berlin, Germany: Springer-Verlag.
  • Huang, G.B., Zhu, Q.Y., and Siew, C.K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. Proceedings of 2004 IEEE the international joint conference on neural networks, 25–29 July 2004 Hungary. Budapest: IEEE. Vol. 2, 985–990.
  • Huang, G.B., Zhu, Q.Y., and Siew, C.K., 2006. Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501. doi:10.1016/j.neucom.2005.12.126
  • Hussain, M.S., et al., 2015. A surrogate model for simulation–optimization of aquifer systems subjected to seawater intrusion. Journal of Hydrology, 523, 542–554. doi:10.1016/j.jhydrol.2015.01.079
  • Juster, T.C., 1995. Circulation of saline and hypersaline groundwater in carbonate mud: mechanisms, rates, and an example from Florida Bay. Dissertation (PhD). Department of Geology, University of South Florida-Tampa, USA.
  • Kourakos, G. and Mantoglou, A., 2009. Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Advances in Water Resources, 32 (4), 507–521. doi:10.1016/j.advwatres.2009.01.001
  • Kourakos, G. and Mantoglou, A., 2013. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. Journal of Hydrology, 479, 13–23. doi:10.1016/j.jhydrol.2012.10.050
  • Langevin, C.D., Swain, E.D., and Wolfert, M.A., 2005. Simulation of integrated surfacewater/ground-water flow and salinity for a coastal wetland and adjacent estuary. Journal of Hydrology, 314, 212–234. doi:10.1016/j.jhydrol.2005.04.015
  • Lecca, G., 2000. Implementation and testing of the CODESA-3D model for density-dependent flow and transport problems in porous media. Pula, Italy: Environment Area, CRS4.
  • Liang, N.Y., et al., 2006. A fast and accurate online sequential learning algorithm for feedforward networks. Neural Networks, IEEE Transactions, 17 (6), 1411–1423. doi:10.1109/TNN.2006.880583
  • Lin, H.J., et al., 1997. A three-dimensional finite-element computer model for simulating density-dependent flow and transport in variable saturated media: version 3.1. Vicksburg, MS: US Army Engineering Research and Development Center.
  • Lin, J., et al., 2009. A modeling study of seawater intrusion in Alabama Gulf Coast, USA. Environmental Geology, 57, 119–130. doi:10.1007/s00254-008-1288-y
  • Lin, J.Y., Cheng, C.T., and Chau, K.W., 2006. Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51 (4), 599–612. doi:10.1623/hysj.51.4.599
  • Mohammadi, K., et al., 2015. Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214–225. doi:10.1016/j.compag.2015.08.008
  • Morgan, L.K., Werner, A. D., Morris, M. J., and Teubner, M. D., 2013. Application of a rapid-assessment method for seawater intrusion vulnerability: Willunga Basin, South Australia. Groundwater in the coastal zones of Asia-Pacific. Dordrecht: Springer Netherlands, 205–225.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nikam, V. and Gupta, K., 2013. SVM-based model for short-term rainfall forecasts at a local scale in the Mumbai urban area, India. Journal of Hydrologic Engineering, 19 (5), 1048–1052. doi:10.1061/(ASCE)HE.1943-5584.0000875
  • Oude Essink, G.H.P., 1998. MOC3D adapted to simulate 3D density-dependent groundwater flow. In: Proceedings of MODFLOW ’98 conference at the international ground water modeling center. Golden, Colorado: Colorado School of Mines, Vol. 1, 291–300.
  • Qahman, K. and Larabi, A., 2006. Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeology Journal, 14 (5), 713–728. doi:10.1007/s10040-005-003-2
  • Qu, J. and Zuo, M.J., 2010. Support vector machine based data processing algorithm for wear degree classification of slurry pump systems. Measurement, 43 (6), 781–791. doi:10.1016/j.measurement.2010.02.014
  • Rao, S.V.N., et al., 2004. Planning groundwater development in coastal aquifers. Hydrological Sciences Journal, 49 (1), 155–170. doi:10.1623/hysj.49.1.155.53999
  • Roy, D.K. and Datta, B., 2017. Fuzzy C-mean clustering based inference system for saltwater intrusion processes prediction in coastal aquifers. Water Resources Management, 31 (1), 355–376. doi:10.1007/s11269-016-1531-3
  • Sanford, W.E. and Konikow, L.F., 1985. A two-constituent solute transport model for ground water having variable density. In: US geological survey water-resources investigations report 85–4279.
  • Schalkoff, R.J., 1997. Artificial neural networks. New York, NY: Wiley.
  • Schmid, M.D., 2009. A neural network package for Octave user’s guide version: 0.1. 9.1. (plexso.com).
  • Schneider, J.C. and Kruse, S.E., 2006. Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier Islands: dog Island and St. George Island, Florida, USA. Hydrogeology Journal, 14, 131–145. doi:10.1007/s10040-005-0442-9
  • Shamshirband, S., et al., 2015a. Application of extreme learning machine for estimation of wind speed distribution. Climate Dynamics, 46 (5–6), 1893–1907. doi:10.1007/s00382-015-2682-2
  • Shamshirband, S., et al., 2015b. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renewable and Sustainable Energy Reviews, 52, 1031–1042. doi:10.1016/j.rser.2015.07.173
  • Sreekanth, J. and Datta, B., 2010. Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology, 393 (3–4), 245–256. doi:10.1016/j.jhydrol.2010.08.023
  • Sreekanth, J. and Datta, B., 2011. Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Resources Research, 47, W04516. doi:10.1029/2010WR009683
  • Sreekanth, J. and Datta, B., 2014. Stochastic and robust multi-objective optimal management of pumping from coastal aquifers under parameter uncertainty. Water Resources Management, 28 (7), 2005–2019. doi:10.1007/s11269-014-0591-5
  • Suryanarayana, C., et al., 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, 324–335. doi:10.1016/j.neucom.2014.05.026
  • Taormina, R. and Chau, K.W., 2015. Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning machines. Journal of Hydrology, 529, 1617–1632. doi:10.1016/j.jhydrol.2015.08.022
  • Vapnik, V., 1995. The nature of statistical learning theory. New York, NY: Springer-Verlag.
  • Vapnik, V., 2000. The nature of statistical learning theory. 2nd ed. New York, NY: Springer-Verlag.
  • Vapnik, V.N. and Vapnik, V., 1998. Statistical learning theory. New York, NY: Wiley, Vol. 1.
  • Vijay, R. and Mohapatra, P.K., 2016. Hydrodynamic assessment of coastal aquifer against saltwater intrusion for city water supply of Puri, India. Environmental Earth Sciences, 75 (7), 1–8. doi:10.1007/s12665-016-5357-3
  • Voss, C.I., 1984. A finite-element simulation model for saturated–unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically reactive single-species solute transport. Reston, VA: US Geological Survey, US Geological Survey Water-Resources Investigations Report 84-4369.
  • Wang, W.C., et al., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374 (3), 294–306. doi:10.1016/j.jhydrol.2009.06.019
  • Wang, W.C., et al., 2013. Improved annual rainfall–runoff forecasting using PSO–SVM model based on EEMD. Journal of Hydroinformatics, 15 (4), 1377–1390. doi:10.2166/hydro.2013.134
  • Wang, X. and Han, M., 2014. Online sequential extreme learning machine with kernels for non-stationary time series prediction. Neurocomputing, 145, 90–97. doi:10.1016/j.neucom.2014.05.068
  • Yadav, B., et al., 2016a. Discharge forecasting using an Online Sequential Extreme Learning Machine (OS-ELM) model: a case study in Neckar River, Germany. Measurement, 92, 433–445. doi:10.1016/j.measurement.2016.06.042
  • Yadav, B., et al., 2016b. Estimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approach. Journal of Hydrology, 543, 373–385. doi:10.1016/j.jhydrol.2016.10.013
  • Yang, J., et al., 2009. Group-sensitive multiple kernel learning for object categorization. In: 2009 IEEE 12th international conference on computer vision. IEEE, 436–443.
  • Yu, P.S., Chen, S.T., and Chang, I.F., 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328 (3), 704–716. doi:10.1016/j.jhydrol.2006.01.021
  • Yu, X., Liong, S., and Babovic, V., 2004. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics, 6 (3), 209–223.
  • Zhao, Z., Li, P., and Xu, X., 2013. Forecasting model of coal mine water inrush based on extreme learning machine. Applied Mathematics & Information Sciences, 7, 1243–1250. doi:10.12785/amis/070349

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.