1,714
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Extracting water-related features using reflectance data and principal component analysis of Landsat images

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 269-284 | Received 06 Feb 2017, Accepted 08 Nov 2017, Published online: 25 Jan 2018

References

  • Afifi, A., May, S., and Clark, V., 2012. Practical multivariate analysis. Boca Raton: CRC Press.
  • Alsdorf, D.E., et al., 2000. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature, 404, 174–177. doi:10.1038/35004560
  • Aly, A.A., et al., 2016. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach. Solid Earth, 7, 713–725. doi:10.5194/se-7-713-2016
  • Amari, S. and Wu, S., 1999. Improving support vector machine classifiers by modifying kernel functions. Neural Networks, 12, 783–789. doi:10.1016/S0893-6080(99)00032-5
  • Ashburn, P., 1979. The vegetative index number and crop identification. In: Proceedings of the technical session, Houston, TX, Vols. 1–2. NASA. Johnson Space Center Proc. of Tech., 843–855.
  • Atkinson, P.M., 2004. Spatially weighted supervised classification for remote sensing. International Journal of Applied Earth Observation and Geoinformation, 5, 277–291. doi:10.1016/j.jag.2004.07.006
  • Baret, F. and Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173. doi:10.1016/0034-4257(91)90009-U
  • Barnett, T., et al., 2004. The effects of climate change on water resources in the west: introduction and overview. Climatic Change, 62, 1–11. doi:10.1023/B:CLIM.0000013695.21726.b8
  • Bartholy, J., et al., 2009. Analysis of regional climate change modelling experiments for the Carpathian Basin. International Journal of Global Warming, 1, 238–252. doi:10.1504/IJGW.2009.027092
  • Basto, M. and Pereira, J.M., 2012. An SPSS R-menu for ordinal factor analysis. Journal of Statistical Software, 46 (4), 1–29. doi:10.18637/jss.v046.i04
  • Bernaards, C.A. and Jennrich, R.I., 2005. Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65, 676–696. doi:10.1177/0013164404272507
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
  • Burai, P., et al., 2015. Classification of herbaceous vegetation using airborne hyperspectral imagery. Remote Sensing, 7, 2046–2066. doi:10.3390/rs70202046
  • Byrne, G.F., Crapper, P.F., and Mayo, K.K., 1980. Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sensing of Environment, 10, 175–184. doi:10.1016/0034-4257(80)90021-8
  • Chen, X.-L., et al., 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133–146. doi:10.1016/j.rse.2005.11.016
  • Churches, C.E., et al., 2014. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. International Journal of Applied Earth Observation and Geoinformation, 30, 203–216. doi:10.1016/j.jag.2014.01.020
  • Cingolani, A.M., et al., 2004. Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sensing of Environment, 92, 84–97. doi:10.1016/j.rse.2004.05.008
  • Clark Labs, 2012. IDRISI Selva. Worcester: Clark University.
  • CLC 2000, Corine Land Cover Programme, EEA. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database [Accessed September 2016].
  • Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46. doi:10.1016/0034-4257(91)90048-B
  • Davis, J.C., 1986. Statistics and data analysis in geology. 2nd ed. New York: Wiley.
  • de Alwis, D.A., et al., 2007. Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrology and Earth System Sciences, 11, 1609–1620. doi:10.5194/hess-11-1609-2007
  • Deering, D.W., et al., 1975. Measuring “forage production” of grazing units from Landsat MSS data. In: Proceedings of the 10th International Symposium on Remote Sensing of Environment, Vol. 2, Ann Arbor: ERIM, 1169–1178.
  • Demetriades-Shah, T.H., Steven, M.D., and Clark, J.A., 1990. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33, 55–64. doi:10.1016/0034-4257(90)90055-Q
  • Deng, J.S., et al., 2008. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing, 29, 4823–4838. doi:10.1080/01431160801950162
  • Di Baldassarre, G., Schumann, G., and Bates, P.D., 2009. A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent. Journal of Hydrology, 367 (3–4), 276–282. doi:10.1016/j.jhydrol.2009.01.020
  • Dronova, I., et al., 2015. Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment, 158, 193–206. doi:10.1016/j.rse.2014.10.027
  • Eklundh, L. and Singh, A., 1993. A comparative analysis of standardised and unstandardised principal components analysis in remote sensing. International Journal of Remote Sensing, 14, 1359–1370. doi:10.1080/01431169308953962
  • Estoque, R.C. and Murayama, Y., 2015. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecological Indicators, 56, 205–217. doi:10.1016/j.ecolind.2015.03.037
  • Fichera, C.R., Modica, G., and Pollino, M., 2012. Land cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing, 45, 1–18. doi:10.5721/EuJRS20124501
  • Fisher, A. and Danaher, T., 2013. A water index for SPOT5 HRG satellite imagery, New South Wales, Australia, determined by linear discriminant analysis. Remote Sensing, 5 (11), 5907–5925. doi:10.3390/rs5115907
  • Forzieri, G., et al., 2011. Satellite multispectral data for improved floodplain roughness modelling. Journal of Hydrology, 407, 41–57. doi:10.1016/j.jhydrol.2011.07.009
  • Frassy, F., et al., 2013. Minimum noise fraction transform for improving the classification of airborne hyperspectral data: two case studies. In: 5th Workshop on hyperstectral image and signal processing: evolution in remote sensing, Gainesville, FL: IEEE, 1–4. doi:10.1109/WHISPERS.2013.8080626.
  • Gabriel, K.R., 1971. The bi-plot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467. doi:10.1093/biomet/58.3.453
  • Gao, B.-C., 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266. doi:10.1016/S0034-4257(96)00067-3
  • Gu, Y., et al., 2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35, L22401. doi: 10.1029/2008GL035772
  • Hegedüs, P., et al., 2015. Analysis of spatial variability of near-surface soil moisture to increase rainfall-runoff modelling accuracy in SW Hungary. Open Geosciences, 7, 126–139. doi:10.1515/geo-2015-0017
  • Hirosawa, Y., Stuart, E.M., and Kliman, D.H., 1996. Application of standardized principal component analysis to land-cover characterization using multitemporal AVHRR data. Remote Sensing of Environment, 58, 267–281. doi:10.1016/S0034-4257(96)00068-5
  • Ho, T.K., 1995. Random decision forests. In: Proceedings of the 3rd international conference on document analysis and recognition, Montreal, QC, 14–16 August 1995. IEEE Computer Society, 278–282.
  • Jaccard, J. and Wan, C.K., 1996. LISREL approaches to interaction effects in multiple regression. London: Quantitative Applications in the Social Sciences, SAGE Publications.
  • Jin, S., Li, D., and Wang, J., 2005. A comparison of support vector machine with maximum likelihood classification algorithms on texture features. In: Proceedings. IEEE international geoscience and remote sensing symposium, IGARSS ‘05, Vol. 5, 3717–3720. doi:10.1109/IGARSS.2005.1526659
  • Jolliffe, I.T., 2002. Principal component analysis. 2nd ed. New York: Springer.
  • Jöreskug, K. and Sörbom, D., 1996. LISREL 8: user’s reference guide. Lincolnwood: Scientific Software International.
  • Kassambara, A. and Mundt, F., 2017. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.4. https://CRAN.R-project.org/package=factoextra [Accessed September 2017].
  • Keuchel, J., et al., 2003. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sensing of Environment, 86, 530–541. doi:10.1016/S0034-4257(03)00130-5
  • Khan, N.M., et al., 2005. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77, 96–109. doi:10.1016/j.agwat.2004.09.038
  • Kit, O., Lüdeke, M., and Reckien, D., 2012. Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Applied Geography, 32, 660–667. doi:10.1016/j.apgeog.2011.07.016
  • Ko, B.C., Kim, H.H., and Nam, J.Y., 2015. Classification of potential water bodies using landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, 15, 13763–13777. doi: 10.3390/s150613763
  • Kohler, U. and Luniak, M., 2005. Data inspection using bi-plots. The Stata Journal, 5, 208–223.
  • Koutsias, N., Mallinis, G., and Karteris, M., 2009. A forward/backward principal component analysis of Landsat-7 ETM+ data to enhance the spectral signal of burnt surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 37–46. doi:10.1016/j.isprsjprs.2008.06.004
  • Kumar, D., 2015. Remote sensing based vegetation indices analysis to improve water resources management in urban environment. Aquatic Procedia, 4, 1374–1980. doi:10.1016/j.aqpro.2015.02.178
  • Kuti, L., Kerék, B., and Vatai, J., 2006. Problem and prognosis of excess water inundation based on agrogeological factors. Carpathian Journal of Earth and Environmental Sciences, 1, 5–18.
  • Lê, S., Josse, J., and Husson, F., 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25 (1), 1–18. doi:10.18637/jss.v025.i01
  • Ladányi, Z., et al., 2015. Multi-indicator sensitivity analysis of climate change effects on landscapes in the Kiskunság National Park, Hungary. Ecological Indicators, 58, 8–20. doi:10.1016/j.ecolind.2015.05.024
  • Li, X., et al., 2013. Comparative study of water-body information extraction methods based on electronic sensing image. Lecture Notes in Electrical Engineering, 178, 331–336. doi:10.1007/978-3-642-31528-2_52
  • Liu, J., Pattey, E., and Jégo, G., 2012. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358. doi:10.1016/j.rse.2012.04.002
  • Louppe, G., et al., 2013. Understanding variable importances in forests of randomized trees. In: Advances in neural information processing systems. NIPS proceedings, 431–439. Neural Information Processing Systems Conference, Lake Tahoe. Neural Information Processing Systems Foundation, Inc.
  • Lu, D., et al., 2014. Methods to extract impervious surface areas from satellite images. International Journal of Digital Earth, 7, 93–112. doi:10.1080/17538947.2013.866173
  • Lu, D. and Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823–870. doi:10.1080/01431160600746456
  • Marshall, M. and Thenkabail, P., 2015. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 205–218. doi:10.1016/j.isprsjprs.2015.08.001
  • McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432. doi:10.1080/01431169608948714
  • Meglen, R.R., 1992. Examining large databases: a chemometric approach using principal component analysis. Marine Chemistry, 39, 217–237. doi:10.1016/0304-4203(92)90103-H
  • Melesse, A.M. and Shih, S.F., 2002. Spatially distributed storm runoff depth estimation using Landsat images and GIS. Computers and Electronics in Agriculture, 37, 173–183. doi:10.1016/S0168-1699(02)00111-4
  • Mika, J., 2013. Meteorological extremes and their changes: phenomenology and empirical aproaches. Climatic Change, 121, 15–26. doi:10.1007/s10584-013-0914
  • Mills, R.T., et al., 2013. Identification and visualization of dominant patterns and anomalies in remotely sensed vegetation phenology using a parallel tool for principal components analysis. Procedia Computer Science, 18, 2396–2405. doi:10.1016/j.procs.2013.05.411
  • Mukherjee, S., et al., 2006. Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Advances in Computational Mathematics, 25, 161–193. doi:10.1007/s10444-004-7634-z
  • Munyati, C., 2004. Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue Flats, Zambia. Geocarto International, 19, 11–22. doi:10.1080/10106040408542313
  • Narasimhan, B. and Srinivasan, R., 2005. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133, 69–88. doi:10.1016/j.agrformet.2005.07.012
  • Nyarko, B.K., et al., 2015. Floodplain wetland mapping in the White Volta River Basin of Ghana. GIScience & Remote Sensing, 52, 374–395. doi:10.1080/15481603.2015.1026555
  • Otukei, J.R. and Blaschke, T., 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12 (S1), S27–S31. doi:10.1016/j.jag.2009.11.002
  • Ozesmi, S. and Bauer, M.E., 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10, 381–402. doi:10.1023/A:1020908432489
  • Pal, M., 2005. Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26, 217–222. doi:10.1080/01431160412331269698
  • Pásztor, L., et al., 2015. Spatial risk assessment of hydrological extremities: inland excess water hazard, Szabolcs-Szatmár-Bereg County, Hungary. Journal of Maps, 11, 636–644. doi:10.1080/17445647.2014.954647
  • Pásztor, L., et al., 2016. Integrated spatial assessment of wind erosion risk in Hungary. Natural Hazards and Earth System Sciences, 16, 2421–2432. doi:10.5194/nhess-16-2421-2016
  • Perry Jr., C. and Lautenschlager, L.F., 1984. Functional equivalence of spectral vegetation indices. Remote Sensing of Environment, 14, 169–182. doi:10.1016/0034-4257(84)90013-0
  • R Core Team, 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/ [Accessed 10 May 2015].
  • Revelle, W., 2015. psych: procedures for personality and psychological research. Evanston: Northwestern University. http://CRAN.R-project.org/package=psych [Accessed September 2017].
  • Richards, J.A., 1984. Thematic mapping from multitemporal image data using the principal components transformation. Remote Sensing of Environment, 16, 35–46. doi:10.1016/0034-4257(84)90025-7
  • Richardson, A.J. and Wiegand, C.L., 1977. Distinguishing vegetation from soil background information. Photogramnetric Engineering and Remote Sensing, 43, 1541–1552.
  • Rodarmel, C. and Shan, J., 2002. Principal component analysis for hyperspectral image classification. Surveying and Land Information Science, 62, 115–122.
  • Rouse, Jr., J.W., et al., 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In: NASA/GSFC type III final report, Greenbelt, MD, 371. Texas A&M University, Remote Sensing Center.
  • Sawaya, K.E., et al., 2003. Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment, 88, 144–156. doi:10.1016/j.rse.2003.04.006
  • Schölkopf, B., et al., 1997. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45, 2758–2765. doi:10.1109/78.650102
  • Schowengerdt, R.A., 2007. Remote sensing. San Diego: Academic Press – Elsevier.
  • Singh, A., 1989. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10 (6), 989–1003. doi:10.1080/01431168908903939
  • Sonka, M., Hlavac, V., and Boyle, R., 2014. Image processing, analysis, and machine vision. 4h ed. Stamford: Cengage Learning.
  • Srivastava, P.K., et al., 2012. Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50, 1250–1265. doi:10.1016/j.asr.2012.06.032
  • Szabó, S., et al., 2014. Testing algorithms for the identification of asbestos roofing based on hyperspectral data. Environmental Engineering and Management Journal, 143, 2875–2880.
  • Szabó, S., Gácsi, Z., and Balázs, B., 2016. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Acta Geographica Debrecina Landscape and Environment, 10 (3–4), 194–202. doi:10.21120/LE/10/3-4/13
  • Thiam, A.K., 1997. Geographic information systems and remote sensing methods for assessing and monitoring land degradation in the Sahel: the case of Southern Mauritania. Dissertation. Clark University, Worcester Massachusetts.
  • van den Berg, R.A., et al., 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142. doi:10.1186/1471-2164-7-142
  • van Leeuwen, B., et al., 2012. Identification of inland excess water floodings using an artificial neural network. Carpathian Journal of Earth and Environmental Sciences, 7, 173–180.
  • Vapnik, V., 1995. The nature of statistical learning theory. New York: Springer-Verlag.
  • Vörösmarty, C.J., et al., 2000. Global water resources: vulnerability from climate change and population growth. Science, 289, 284–288. doi:10.1126/science.289.5477.284
  • Wallace, J., Behn, G., and Furby, S., 2009. Vegetation condition assessment and monitoring from sequences of satellite imagery. Ecological Management and Restoration, 7, S31–S36. doi:10.1111/j.1442-8903.2006.00289.x
  • Water Quality Report, 2000. Chronology of the flood of spring of 2000. Vol. 7. Szolnok: Environmental Agency of the Middle-Tisza Region, 1–8 (in Hungarian).
  • Weng, Q., 2012. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49. doi:10.1016/j.rse.2011.02.030
  • Williams, G.J., 2011. Data mining with Rattle and R: the art of excavating data for knowledge discovery, use R! New York: Springer.
  • Wright, C. and Gallant, A., 2007. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of Environment, 107, 582–605. doi:10.1016/j.rse.2006.10.019
  • Xu, H., 2005. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI). Journal of Remote Sensing, 9, 589–595.
  • Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27, 3025–3033. doi:10.1080/01431160600589179
  • Zlinszky, A., et al., 2015. Mapping Natura 2000 habitat conservation status in a pannonic salt steppe with airborne laser scanning. Remote Sensing, 7, 2991–3019. doi:10.3390/rs70302991

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.