622
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Consequences of implementing a reservoir operation algorithm in a global hydrological model under multiple meteorological forcing

, , &
Pages 1047-1061 | Received 05 Jun 2017, Accepted 27 Apr 2018, Published online: 01 Jun 2018

References

  • Biemans, H., et al., 2011. Impacts of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resources Research, 47, W03509. doi:10.1029/2009WR008929
  • Bindoff, N.L., et al., 2013. Detection and attribution of climate change: from global to regional. In: T.F. Stocker, et al., eds. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press.
  • Compo, G.P., et al., 2011. The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137, 1–28. doi:10.1002/qj.776
  • Dankers, R., et al., 2014. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences USA, 111, 3257–3261. doi:10.1073/pnas.1302078110
  • Dee, D.P., et al., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. doi:10.1002/qj.828
  • Dirmeyer, P.A., et al., 2006. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bulletin of the American Meteorological Society, 87, 1381–1397. doi:10.1175/BAMS-87-10-1381
  • Döll, P., Fiedler, K., and Zhang, J., 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences, 13, 2413–2432. doi:10.5194/hess-13-2413-2009
  • Goldewijk, K.K., et al., 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20, 73–86. doi:10.1111/j.1466-8238.2010.00587.x
  • Gordon, N.D., et al. 2004. Stream hydrology: an introduction for ecologists, 2nd ed. Chichester, UK: John Wiley & Sons Ltd.
  • Haddeland, I., et al., 2011. Multimodel estimate of the global terrestrial water balance: setup and first results. Journal of Hydrometeorology, 12, 869–884. doi:10.1175/2011JHM1324.1
  • Haddeland, I., Skaugen, T., and Lettenmaier, D.P., 2006. Anthropogenic impacts on continental surface water fluxes. Geophysical Research Letters, 33, L08406. doi:10.1029/2006GL026047
  • Hagemann, S., Loew, A., and Andersson, A., 2013. Combined evaluation of MPI-ESM land surface water and energy fluxes. Journal of Advances in Modeling Earth Systems, 5, 259–286.
  • Hanasaki, N., et al., 2008a. An integrated model for the assessment of global water resources – part 1: Model description and input meteorological forcing. Hydrology and Earth System Sciences, 12, 1007–1025. doi:10.5194/hess-12-1007-2008
  • Hanasaki, N., et al., 2008b. An integrated model for the assessment of global water resources – part 2: applications and assessments. Hydrology and Earth System Sciences, 12, 1027–1037. doi:10.5194/hess-12-1027-2008
  • Hanasaki, N., Kanae, S., and Oki, T., 2006. A reservoir operation scheme for global river routing models. Journal of Hydrology, 327, 22–41. doi:10.1016/j.jhydrol.2005.11.011
  • Hattermann, F.F., et al., 2017. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 141, 561–576. doi:10.1007/s10584-016-1829-4
  • Hirabayashi, Y., et al., 2013. Global flood risk under climate change. Nature Climate Change, 3, 816–821. doi:10.1038/nclimate1911
  • The Inter-Sectoral Impact Model Intercomparison Project, 2015. ISIMIP2a Simulation protocol., Available from: https://www.isimip.org/protocol/ [Accessed 29 May 2017].
  • Kalnay, E., et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  • Kim, H., 2014. Available from: http://hydro.iis.u-tokyo.ac.jp/GSWP3/index.html [Accessed 29 May 2017].
  • Lehner, B., et al., 2011a. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9, 494–502. doi:10.1890/100125
  • Lehner, B., et al., 2011b. Global Reservoir and Dam (GRanD) database, Technical documentation Version 1.1. Available from: http://www.gwsp.org/fileadmin/downloads/GRanD_Technical_Documentation_v1_1.pdf [Accessed 21 May 2015].
  • Lempérière, F., 2013. Achieving a sustainable development target. Available from: http://www.hydrocoop.org/the-role-of-dams-in-the-xxi-century [Accessed 29 May 2017].
  • Masaki, Y., et al., 2014. Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resources Research, 50, 4054–4078. doi:10.1002/2013WR014266
  • Masaki, Y., et al., 2017. Intercomparison of global river discharge simulations focusing on dam operation – multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado. Environmental Research Letters, 12, 055002. doi:10.1088/1748-9326/aa57a8
  • Mitchell, T.D. and Jones, P.D., 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712. doi: 10.1002/joc.1181
  • Müller Schmied, H., et al., 2016. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrology and Earth System Sciences, 20, 2877–2898. doi:10.5194/hess-20-2877-2016
  • New, M., Hulme, M., and Jones, P., 1999. Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12, 829–856. doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
  • Nilsson, C., et al., 2005. Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408. doi:10.1126/science.1107887
  • Oki, T. and Kanae, S., 2006. Global hydrological cycles and world water resources. Science, 313, 1068–1072. doi:10.1126/science.1128845
  • Oki, T., Nishimura, T., and Dirmeyer, P., 1999. Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). Journal of the Meteorological Society of Japan, 77, 235–255. doi:10.2151/jmsj1965.77.1B_235
  • Portmann, F.T., Siebert, S., and Döll, P., 2010. MIRCA2000–global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24, GB1011. doi:10.1029/2008GB003435
  • Schewe, J., et al., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences USA, 111, 3245–3250. doi:10.1073/pnas.1222460110
  • Schneider, U., et al., 2014. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115, 15–40. doi:10.1007/s00704-013-0860-x
  • Sheffield, J., Goteti, G., and Wood, E.F., 2006. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19, 3088–3111. doi:10.1175/JCLI3790.1
  • Uppala, S.M., et al., 2005. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012. doi:10.1256/qj.04.176
  • US Army Corps of Engineers, 2006. Missouri river mainstem reservoirs system master water control manual (Revision 1). Omaha: Northern Division of the United States Army Corps of Engineers.
  • Voisin, N., et al., 2013. On an improved sub-regional water resources management representation for integration into earth system models. Hydrology and Earth System Sciences, 17, 3605–3622. doi:10.5194/hess-17-3605-2013
  • Wada, Y., et al., 2013. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters, 40, 4626–4632. doi:10.1002/grl.50686
  • Wada, Y., et al., 2016. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 9, 175–222. doi:10.5194/gmd-9-175-2016
  • Wada, Y., van Beek, L.P.H., and Bierkens, M.F.P., 2011. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences, 15, 3785–3808. doi:10.5194/hess-15-3785-2011
  • Warszawski, L., et al., 2014. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP): project framework. Proceedings of the National Academy of Sciences USA, 111, 3228–3232. doi:10.1073/pnas.1312330110
  • Weedon, G.P., et al., 2010. The WATCH forcing data 1958–2001: a meteorological forcing dataset for land surface- and hydrological models. WATCH Technical Report 22.
  • Weedon, G.P., et al., 2014. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, 7505–7514. doi:10.1002/2014WR015638
  • Yasutomi, N., Hamada, A., and Yatagai, A., 2011. Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environmental Research, 15, 165–172.
  • Yoshikawa, S., et al., 2014. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2050). Hydrology and Earth System Sciences, 18, 4289–4310. doi:10.5194/hess-18-4289-2014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.