1,734
Views
8
CrossRef citations to date
0
Altmetric
Articles

Flow–duration curve integration into digital filtering algorithms for simulating climate variability based on river baseflow

&
Pages 1558-1573 | Received 26 Apr 2018, Accepted 21 Jun 2018, Published online: 02 Oct 2018

References

  • Al-Faraj, F. and Scholz, M., 2014. Incorporation of the flow duration curve method within digital filtering algorithms to estimate the baseflow contribution to total runoff. Water Resources Management, 28 (15), 5477–5489. doi:10.1007/s11269-014-0816-7
  • Al-Faraj, F., Scholz, M., and Tigkas, D., 2014. Sensitivity of surface runoff to drought and climate change: application for Shared River Basins. Water, 6, 3033–3048. doi:10.3390/w6103033
  • Allen, R.G., et al., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. Rome, Italy: Food and Agriculture Organization of the United Nations, FAO Irrigation and Drainage Paper 56.
  • Arnold, J.G. and Allen, P.M., 1999. Validation of automated methods for estimating baseflow and groundwater recharge from stream flow records. Journal of the American Water Resources Association, 35 (2), 411–424. doi:10.1111/j.1752-1688.1999.tb03599.x
  • Brodie, R.S. and Hostetler, S., 2005. A review of techniques for analyzing base-flow from stream hydrographs. Proceedings of the NZHSIAH-NZSSS 2005 Conference, 28 November–2 December 2005, Auckland, New Zealand. Available from: http://data.daff.gov.au/data/warehouse/brsShop/data/iah05_dry-weather_final.pdf. [Accessed 11 June 2018].
  • Chapman, T., 1999. A comparison of algorithms for streamflow recession and baseflow separation. Hydrological Processes, 13 (5), 701–714. doi:10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
  • Eckhardt, K., 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19, 507–515. doi:10.1002/hyp.5675
  • Fadhil, M.A., 2011. Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. International Journal of Digital Earth, 4 (3), 239–257. doi:10.1080/17538947.2010.489971
  • Fan, Y., et al., 2013. Variation of baseflows in the headstreams of the Tarim River Basin during 1960–2007. Journal of Hydrology, 487, 98–108. doi:10.1016/j.jhydrol.2013.02.037
  • FAO (Food and Agriculture Organization of the UN). 2012. Adaptation to climate change in semi-arid environments. Experience and lessons from mozambique. Environment and natural resources management series. Rome, Italy: Food and Agriculture Organization of the United Nations, 1–83, Retrieved from, http://www.fao.org/docrep/015/i2581e/i2581e00.pdf
  • Foehn, A., et al., 2016. RS MINERVE – user’s manual v2.6. Switzerland: RS MINERVE Group.
  • GADM (Global Administrative Areas Database), 2012. Boundaries without limits [online]. Available from http://www.gadm.org. [Accessed 11 June 2018].
  • GLCF (Global and Land Cover Facility), 2015. Earth science data interface [online]. Available from: http://www.landcover.org/data/srtm/. [Accessed 11 June 2018].
  • Gordon, N.C., et al., 2004. Stream hydrology: an introduction for ecologists. 2nd ed. Chichester: John Wiley and Sons.
  • He, S., et al., 2016. Baseflow separation based on a meteorology-corrected nonlinear reservoir algorithm in a typical rainy agricultural watershed. Journal of Hydrology, 535, 418–428. doi:10.1016/j.jhydrol.2016.02.010
  • HydroOffice, 2015. Download [online]. Available from: https://hydrooffice.org/Downloads?Items=Software. [Accessed 11 June 2018].
  • Information Technology Services (ITS), 2016. IBM SPSS statistics 23 Part 3: regression analysis. Winter 2016, Version 1.
  • Kaleris, V. and Langousis, A., 2017. Comparison of two rainfall-runoff models: effects of conceptualization, model calibration and parameter variability. Hydrological Sciences Journal, 62 (5), 729–748. doi:10.1080/02626667.2016.1250899
  • Lim, K.J., et al., 2005. Automated web GIS based hydrograph analysis tool, WHAT. Journal of the American Water Resources Association, 41 (6), 1407–1416. doi:10.1111/j.1752-1688.2005.tb03808.x
  • Linsley, R.K., Kohler, M.A., and Paulhus, J.L.H., 1988. Hydrology for engineers. London: McGraw-Hill.
  • Lott, D.A. and Stewart, M.T., 2016. Baseflow separation: A comparison of analytical and mass balance methods. Journal of Hydrology, 535, 525–533. doi:10.1016/j.jhydrol.2016.01.063
  • Lu, S., et al., 2015. Quantifying impacts of climate variability and human activities on the hydrological system of the haihe river basin, China. Hydrology and Earth System Sciences, 73, 1491–1503. doi:10.1007/s12665-014-3499-8
  • Mei, Y. and Anagnostou, E.N., 2015. A hydrograph separation method based on information from rainfall and runoff records. Journal of Hydrology, 523, 636–649. doi:10.1016/j.jhydrol.2015.01.083
  • Miller, M.P., et al., 2016. The importance of baseflow in sustaining surface water flow in the upper colorado river basin. Water Resources Research, 52, 3547–3562. doi:10.1002/2015WR017963
  • Mohammed, R. and Scholz, M., 2016. Impact of climate variability and streamflow alteration on groundwater contribution to the baseflow of the Lower Zab River (Iran and Iraq). Environmental Earth Sciences, 75 (1392), 1–11. doi:10.1007/s12665-016-6205-1
  • Mohammed, R. and Scholz, M., 2017a. The reconnaissance drought index: a method for detecting regional arid climatic variability and potential drought risk. Journal of Arid Environment, 144, 181–191. doi:10.1016/j.jaridenv.2017.03.014
  • Mohammed, R. and Scholz, M., 2017b. Adaptation strategy to mitigate the impact of climate change on water resources in arid and semi-arid regions: a case study. Water Resources Management, 31 (11), 3557–3573. doi:10.1007/s11269-017-1685-7
  • Mohammed, R. and Scholz, M., 2017c. Impact of evapotranspiration formulations at various elevations on the reconnaissance drought index. Water Resources Management, 31, 531–538. doi:10.1007/s11269-016-1546-9
  • Mohammed, R. and Scholz, M., 2018. Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area: lower Zab River Basin, Iraq. Environmental Earth Sciences, 77 (10), 357. doi:10.1007/s12665-018-7537-9
  • Mohammed, R., et al., 2018. Assessment of models predicting anthropogenic interventions and climate variability on surface runoff of the Lower Zab River. Stochastic Environmental Research and Risk Assessment, 32 (1), 223–240. doi:10.1007/s00477-016-1375-7
  • Mohammed, R., Scholz, M., and Zounemat-Kermani, M., 2017b. Temporal hydrologic alterations coupled with climate variability and drought for transboundary river basins. Water Resources Management, 31, 1489–1502. doi:10.1007/s11269-017-1590-0
  • Mulder, G., et al., 2015. Identifying water mass depletion in northern Iraq observed by GRACE. Hydrology and Earth System Sciences, 19, 1487–1500. doi:10.5194/hess-19-1487-2015
  • Nathan, R.J. and McMahon, T.A., 1990. Evaluation of automated techniques for baseflow and recession analysis. Water Resources Research, 26, 1465–1473. doi:10.1029/WR026i007p01465
  • The Nature Conservancy, 2009. Indicators of hydrologic alteration version 7.1 user’s manual. The Nature Conservancy, June, 76.
  • Partington, D., et al., 2012. Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. Journal of Hydrology, 458–459, 28–39. doi:10.1016/j.jhydrol.2012.06.029
  • Piggott, A.R., Moin, S., and Southam, C., 2005. A revised approach to the UKIH method for the calculation of baseflow/Une approche améliorée de la méthode de l’UKIH pour le calcul de l’écoulement de base. Hydrological Sciences Journal, 50, 911–920. doi:10.1623/hysj.2005.50.5.911
  • Price, K., 2011. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Progress in Physical Geography, 35 (4), 465–492. doi:10.1177/0309133311402714
  • Reis, J., et al., 2016. Evaluating the impact and uncertainty of reservoir operation for malaria control as the climate changes in Ethiopia. Climatic Change, 136, 601–614. doi:10.1007/s10584-016-1639-8
  • Robaa, S.M. and AL-Barazanji, Z.J., 2013. Trends of annual mean surface air temperature over Iraq. Nature and Science, 11 (12), 138–145.
  • RS MINERVE 2.5 software, 2016. Download [online]. Available from: https://www.crealp.ch/down/rsm/install2/archives.html. [Accessed 11 June 2018].
  • Rumsey, C.A., et al., 2015. Regional scale estimates of baseflow and factors influencing baseflow in the upper colorado river basin. Journal of Hydrology: Regional Studies, 4 (2015), 91–107. doi:10.1016/j.ejrh.2015.04.008
  • Smakhtin, V.U., 2001. Low flow hydrology: a review. Journal of Hydrology, 240 (3–4), 147–186. doi:10.1016/S0022-1694(00)00340-1
  • Soundharajan, B.S., Adeloye, A.J., and Remesan, R., 2016. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment. Journal of Hydrology, 538, 625–639. doi:10.1016/j.jhydrol.2016.04.051
  • Stewart, M.K., 2015. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrology and Earth System Sciences, 19 (6), 2587–2603. doi:10.5194/hess-19-2587–2015
  • Tabari, H. and Taalaee, P.H., 2011. Analysis of trend in temperature data in arid and semi-arid regions of Iran. ISSN: 0921-8181. Global and Planetary Change, 72, 1–10. doi:10.1016/j.gloplacha.2011.07.008
  • Tallaksen, L.M. and Van Lanen, H.A., 2004. Hydrological drought – processes and estimation methods for streamflow and groundwater. Developments in Water Sciences 48. Amsterdam: Elsevier.
  • Tigkas, D., 2008. Drought characterisation and monitoring in regions of Greece. European Water, 23, 29–39.
  • Tigkas, D., Vangelis, H., and Tsakiris, G., 2012. Drought and climatic change impact on streamflow in small watersheds. ISSN: 0048-9697. Science of the Total Environment, 440, 33–41. doi:10.1016/j.scitotenv.2012.08.035
  • Tsakiris, G. and Vangelis, H., 2005. Establishing a drought index incorporation evapotranspiration. European Water, 9, 3–11.
  • UNESCO, 2014. United nations educational, scientific and cultural organization. Integrated drought risk management-DRM national framework for Iraq. An analysis report. Available from: http://unesdoc.unesco.org/images/0022/002283/228343E.pdf UN-ESCWA and BGR (United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe, Inventory of Shared Water Resources in Western Asia, Beirut.
  • Vangelis, H., Tigkas, D., and Tsakiris, G., 2013. The effect of PET method on reconnaissance drought index (RDI) calculation. Journal of Arid Environment, 88, 130–140. doi:10.1016/j.jaridenv.2012.07.020
  • Wan, L., et al., 2015. Decadal climate variability and vulnerability of water resources in arid regions of Northwest China. Environmental Earth Sciences, 73, 6539–6552. doi:10.1007/s12665-014-3874-5
  • Welderufael, W. and Woyessa, Y., 2010. Stream flow analysis and comparison of methods for baseflow separation: case study of the modder river basin in central South Africa. European Water, 8 (2), 107–119.
  • WMO (World Meteorological Organization), 2009. Manual of low-flow estimation and prediction, operational hydrology report no. 50. Geneva, Switzerland: World Meteorological Organization, WMO Report no. 1029.
  • Yang, T., et al., 2008. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower yellow river, China. Hydrological Processes, 22 (18), 3829–3843. doi:10.1002/hyp.6993
  • Yoo, C., 2006. Long term analysis of wet and dry years in Seoul, Korea. Journal of Hydrology, 318 (1–4), 24–36. doi:10.1016/j.jhydrol.2005.06.002